Skip to main content
Log in

Fidelity-based supervised and unsupervised learning for binary classification of quantum states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Here, we develop two quantum-computational schemes for supervised and unsupervised classification tasks in a quantum world by employing the quantum information-geometric tools of quantum fidelity and quantum search algorithm. Presuming that pure states of a set of given quantum systems (or objects) belong to one of two known classes, the objective here is to decide to which of these classes each system belongs—without knowing its state. The supervised binary classification algorithm is based on having a training sample of quantum systems whose class memberships are already known. The unsupervised binary classification algorithm, however, uses a quantum oracle which knows the class membership of the states of the computational basis. Both algorithms require the ability to evaluate the fidelity between states of the quantum systems with unknown states, for which here we also develop a general scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning (Springer, New York, 2009)

    Book  Google Scholar 

  2. E. Alpaydin, Introduction to Machine Learning (MIT Press, Cambridge, 2010)

    MATH  Google Scholar 

  3. L. Xu, A. Krżyzak, IEEE Trans. Syst. Man. Cybern. 22, 418 (1992)

    Article  Google Scholar 

  4. J.A.K. Suykens, J. Vandewalle, Neural Process. Lett. 9, 293 (1999)

    Article  Google Scholar 

  5. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  6. P. Wittek, Quantum Machine Learning - What Quantum Computing Means to Data Mining (Academic Press, Amsterdam, 2014)

    MATH  Google Scholar 

  7. M. Schuld, I. Sinayskiy, F. Petruccione, Contemp. Phys. 56, 172 (2015)

    Article  ADS  Google Scholar 

  8. J. C. Adcock, E. Allen, M. Day, S. Frick, J. Hinchliff, M. Johnson, S. Morley-Short, S. Pallister, A. B. Price, and S. Stanisic, arXiv:1512.02900

  9. S. Arunachalam, R. de Wolf, ACM SIGACT News 48, 41 (2017)

    Article  MathSciNet  Google Scholar 

  10. P. Rebentrost, M. Mohseni, S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  11. A.W. Harrow, A. Hassidim, S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 100, 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Guţă, W. Kotłowski, New J. Phys. 12, 123032 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Sentis, J. Calsamiglia, R. Muñoz-Tapia, E. Bagan, Sci. Rep. 2, 708 (2012)

    Article  ADS  Google Scholar 

  15. M. Hayashi, Quantum Information: An Introduction (Springer, Berlin, 2006)

    MATH  Google Scholar 

  16. S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  17. A.T. Rezakhani, P. Zanardi, Phys. Rev. A 73, 012107 (2006)

    Article  ADS  Google Scholar 

  18. S. Alipour, A.T. Rezakhani, Phys. Rev. A 91, 042104 (2015)

    Article  ADS  Google Scholar 

  19. S. Lloyd, M. Mohseni, P. Rebentrost, Nature Phys. 10, 631 (2014)

    Article  ADS  Google Scholar 

  20. A. Miyake, M. Wadati, Phys. Rev. A 64, 042317 (2001)

    Article  ADS  Google Scholar 

  21. C. Cafaro, S. Mancini, Physica A 391, 1610 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. S.T. Flammia, Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011)

    Article  ADS  Google Scholar 

  23. Often this \({\cal{F}}\) is the square of the standard fidelity in the literature of quantum information theory [5]; see also A. Gilchrist, N. K. Langford, and M. A. Nielsen, Phys. Rev. A 71, 062310 (2005)

Download references

Acknowledgements

This work was partially supported by Sharif University of Technology’s Office of Vice President for Research and Technology and the Schools of Physics and Nano Science at the Institute for Research in Fundamental Sciences (IPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Rezakhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahi, F., Rezakhani, A.T. Fidelity-based supervised and unsupervised learning for binary classification of quantum states. Eur. Phys. J. Plus 136, 280 (2021). https://doi.org/10.1140/epjp/s13360-021-01232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01232-2

Navigation