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Abstract The proposed modifications of the Einstein–Maxwell equations include: (1) the
addition of a scalar term to the electromagnetic side of the equation rather than to the gravita-
tional side, (2) the introduction of a four-dimensional, nonlinear electromagnetic constitutive
tensor, (3) the addition of curvature terms arising from the non-metric components of a gen-
eral symmetric connection and (4) the addition of a non-isotropic pressure tensor. The scalar
term is defined by the condition that a spherically symmetric particle be force-free and math-
ematically well behaved everywhere. The constitutive tensor introduces two structure fields:
One contributes to the mass and the other contributes to the angular momentum. The addi-
tional curvature terms couple both to particle solutions and to localized electromagnetic and
gravitational wave solutions. The pressure term is needed for the most general spherically
symmetric, static metric. It results in a distinction between the Schwarzschild mass and the
inertial mass.

1 Introduction

This approach to the construction of a classical unified field theory depends on modifying the
Einstein–Maxwell equations in four ways. The first modification is to move the scalar term,
which has been conjectured since the early days of Einstein’s cosmological constant, to the
electromagnetic side of the equations and to require that it be defined by the condition that a
spherically symmetric particle be force-free and mathematically well behaved everywhere.
This simplifies the calculations. The second modification is to introduce a four-dimensional
electromagnetic constitutive tensor which has two auxiliary structure fields. One of the fields
contributes to the mass, and the other contributes to the angular momentum. The second
field is due to a direct coupling between electric and magnetic fields. The third modification
is to introduce additional curvature terms on the gravitational side of the equations. These
terms arise from the non-metric components of a general symmetric connection and are
essential to all of the four-dimensional solutions. The fourth modification is to add a non-
isotropic pressure term in order to satisfy the generalized equation for the most general
spherically symmetric, static metric. Section 2 begins by looking at Maxwell’s equations
in flat space in a three-dimensional notation in order to develop a physical understanding
of the modifications to the electromagnetic side of the equation. Section 3 reviews non-
Riemannian geometry and gives the form of the generalized Einstein–Maxwell equations
used in this paper. Sections 4 and 5 solve the particle equations in three and four dimensions.
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Section 5 concludes with showing the distinction between the Schwarzschild mass and the
inertial mass. Section 6 solves the equations for the electromagnetic and gravitational waves.
The two types of waves are independent of each other and couple only to components of the
non-Riemannian connection. The conclusions are in Sect. 7.

A supplemental file has been uploaded. It contains Mathematica� [1] notebooks which
verify the derivations in Sects. 4–6. The MathTensorTM [2] Application Package is required.

2 Maxwell’s equations

If there are no material media, Maxwell’s equations can be written in 3 dimensions, using SI
units, as:

Ei = −φ;i − ∂t Ai Bi = εi jk Ak; j (2.1a)

Di = εi j E
j − γ j i B

j Hi = αi j B
j + γi j E

j (2.1b)

ρ = Di ;i j i = εi jk Hk; j − ∂t D
i (2.1c)

where εi jk is the Levi-Civita tensor and αi j is the inverse permeability. In free space with
metric gi j ,

εi j = ε0gi j αi j = μ−1
0 gi j c2ε0μ0 = 1 (2.2)

In vector–dyadic notation,

D = ε · E − B · γ H = α · B + γ · E (2.3)

Mathematically, the γi j terms arise from the fact that, in the four-dimensional formulation
(e.g., Post [3, pp. 127–134]), the constitutive relations are described by a fourth rank tensor.
Physically, they represent a direct coupling between the electric and magnetic fields which
traditionally has been thought to be of interest only in material media. The particular form
of the coupling used in this paper assumes that there is no optical activity. In this paper, we
will show that solutions for which B = 0 and γ �= 0 can be used to represent particles with
spin.

We will generalize the traditional definitions of the energy density, the stress tensor and the
Poynting vector in three ways. The first generalization is to make the definitions fully sym-
metric. The second generalization is to introduce a scalar term Q which is motivated by long
history of adding scalar fields to general relativity beginning with Einstein’s cosmological
constant as the simplest case. In a sense, it can be regarded as simply moving a generalized
cosmological term from the gravitational side of the Einstein–Maxwell equations to the elec-
tromagnetic side. However, adding a scalar term to the electromagnetic stress-energy tensor
turns out to make solving the equations much simpler. The third generalization is to add a
non-isotropic pressure tensor which will be needed only for particles in curved space.

E = 1
2 (Bi Hi + Ei Di ) − Q = 1

2 (αi j B
i B j + εi j E

i E j ) − Q (2.4a)

T i j = − 1
2 (Ei D j + E j Di + Hi B j + H j Bi )

+ 1
2 g

i j (αmn B
mBn + εmnE

mEn) + gi j Q + Pi j (2.4b)

Ni = 1
2εi jk(E j Hk + c2Dj Bk) (2.4c)

T i j is defined with the opposite sign from what is usually used in 3 dimensions. It is useful
because it lets T i j be the spatial part of Tμν , which will be defined so that T 4

4 = −E .
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Note that the symmetry in (2.3) ensures that there are no γi j terms in the energy density
(2.4a). Thus, there is no reason from an energy point of view for the γi j terms not to exist.
The function Q will be chosen so that particle solutions are force-free and have finite self-
energies. They can be constructed to have an exponential decay to the far field values rather
than a polynomial decay, thus avoiding conflict with experimental results. The force density
and the power loss density are

Fi = −T j
i ; j − c−2∂t Ni P = −Ni

;i − ∂tE (2.5)

In 4 dimensions, the electromagnetic fields and the current density are defined by

Aμ = c(A, − φ) (2.6a)

fμν = Aν,μ − Aμ,ν (2.6b)

pμν = 1
2χμνρσ fρσ (2.6c)

jμ = pμν ;ν (2.6d)

where fμν and pμν are antisymmetric and the constitutive tensor χμνρσ has the symmetries

χμνρσ = −χνμρσ χμνρσ = −χμνσρ χμνρσ = χρσμν (2.7)

The last of these conditions is the assumption of no optical activity. Post [3, p. 130] argues
for additional symmetries which have not been assumed here. The stress-energy tensor and
the force density are

Tμν = 1
2 ( f μ

τ p
ντ + f ν

τ p
μτ ) − gμν( 1

4 fκτ p
κτ − Q) + Pμν (2.8a)

fμ = −T ν
μ ;ν (2.8b)

In spherical coordinates in flat space, the metric is given by

ds2 = gμνdxμdxν = dr2 + r2dθ2 + r2 sin2(θ)dϕ2 − c2dt2
√−g = cr2 sin(θ)

(2.9)

3 Non-Riemannian geometry and the Einstein–Maxwell equations

Eisenhart [4] shows that the most general asymmetric connection can be written in the form

Lμ
αβ = Ω

μ
αβ + Γ̃

μ
αβ Γ̃

μ
αβ = aμ

αβ + Γ
μ
αβ

Ω
μ
αβ = −Ω

μ
βα aμ

αβ = aμ
βα Γ

μ
αβ = Γ

μ
βα

(3.1)

where Ω
μ
αβ and aμ

αβ are tensors and Γ
μ
αβ is the metric connection (Christoffel symbols). A

solidus (“|”) will denote covariant differentiation with respect to the asymmetric connection
Lμ

αβ , a semicolon will denote covariant differentiation with respect to the metric connec-

tion Γ
μ
αβ and a comma will denote partial differentiation with respect to the coordinates.

(Eisenhart uses the Christoffel symbols for the metric connection, Γ
μ
αβ for the general sym-

metric connection and a comma to denote covariant differentiation with respect to the general
symmetric connection.)

Since gμν;τ = 0, covariant differentiation with respect to the metric connection is more
convenient than covariant differentiation with respect to the asymmetric connection which
has the additional complications:

gμν|τ = −gαν(Ω
α
μτ + aα

μτ ) − gμα(Ωα
ντ + aα

ντ ) �= 0 (3.2a)

123



Eur. Phys. J. Plus (2021) 136:162 Page 165 of 171 162

gμν |τ = gαν(Ωμ
ατ + aμ

ατ ) + gμα(Ων
ατ + aν

ατ ) �= 0 (3.2b)

The curvature tensor for Lμ
αβ can be written as the sum of the curvature tensors for the

antisymmetric part of the connection, Ω
μ
αβ , and the symmetric part of the connection, Γ̃

μ
αβ ,

[4, (5.3)].

Lμ
νρσ = Ωμ

νρσ + Bμ
νρσ

Lμ
νρσ = −Lμ

νσρ Ωμ
νρσ = −Ωμ

νσρ Bμ
νρσ = −Bμ

νσρ

(3.3)

From [4, (5.5)] and (3.1),

Ωμ
νρσ = Ω

μ
νσ |ρ − Ω

μ
νρ|σ + Ωμ

ασ Ωα
νρ − Ωμ

αρΩα
νσ − 2Ωμ

ναΩα
ρσ

= Ω
μ

νσ ;ρ − Ω
μ

νρ;σ + Ωμ
αρΩα

νσ − Ωμ
ασ Ωα

νρ + 2Ωμ
αρa

α
νσ − 2Ωμ

ασa
α
νρ

(3.4)

From [4, (5.15)],

Bμ
νρσ = Rμ

νρσ + aμ

νσ ;ρ − aμ

νρ;σ + aα
νσa

μ
αρ − aα

νρa
μ
ασ (3.5)

where Rμ
νρσ is the Riemann curvature tensor for the metric gμν .

The spin is described by the non-Riemannian part of the connection. In Einstein–Cartan
theory, the assumption is that aμ

αβ = 0 and Ω
μ
αβ �= 0. In Weyl theory, the assumption is that

aμ
αμ �= 0 and Ω

μ
αβ = 0. [4, §30]. In this paper, we have assumed

Ω
μ
αβ = 0 aμ

αμ = 0 gαβaμ
αβ = 0 aα

βμa
β
αν = 0 (3.6)

The gauge invariance of fμν (2.6b) is preserved. Then

Bμν = Bα
μαν = Rμν + aα

μν;α B = gμνBμν = R (3.7)

Since B = R and since the divergence of the Einstein tensor Gμν ;ν = 0 can be derived either
from direct calculation or from the variation δ(

√−gR) , we will write the generalized form
of the Einstein–Maxwell equations as

Gμν + Sμν = 8πGc−4Tμν

Gμν = Rμν − 1
2 gμνR

Sμν = aα
μν;α

(3.8)

where G is Newton’s gravitational constant.
In every coordinate system,

aμ
αμ = a1

α1 + a2
α2 + a3

α3 + a4
α4 = 0 (3.9)

The solutions presented in this paper are such that for each one there exists a coordinate
system in which

a1
α1 = a2

α2 = a3
α3 = a4

α4 = 0 (3.10)

4 Particle equations in three-dimensional flat space

In spherical coordinates (r , θ , ϕ) in flat space, let the particles be defined by

E = fe(r)er = −φ′
e(r)er (4.1a)

A = 0 (4.1b)
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α = c2ε = c2ε0 fε(r)(er er + eθ eθ + eϕeϕ) (4.1c)

γ = h(r)[(2er er − eθ eθ − eϕeϕ) cos(θ) + (er eθ + eθ er ) sin(θ)] (4.1d)

F =
{
ε0(2r

4)−1 d

dr

[
r4 f 2

e (r) fε(r)
] − Q′(r)

}
er = 0 (4.1e)

where the form of γ has been chosen by trial and error so that in weak external fields there
are no singularities in the various volume integrals for force, momentum, etc.

Then

Q(r) = 1
2ε0 f

2
e (r) fε(r) − 2ε0

∫ ∞

r
dr′ (r ′)−1 f 2

e (r ′) fε(r ′) (4.2a)

E(r) = 1
2ε0 f

2
e (r) fε(r) − Q(r) = 2ε0

∫ ∞

r
dr′ (r ′)−1 f 2

e (r ′) fε(r ′) (4.2b)

D = ε0 fε(r) fe(r)er (4.2c)

H = fe(r)h(r)[2 cos(θ)er + sin(θ)eθ ] (4.2d)

N = 1
2h(r) f 2

e (r) sin(θ)eϕ (4.2e)

For finite, continuously differentiable functions, these solutions are force-free and radiation-
less. As r → 0 , we will assume that fe(r) is finite; and that fe(r) → 0 and h(r) → 0 fast
enough that there are no singularities and no directional discontinuities. In order to minimize
any disagreement with experimental results in the far field, we will assume that as r → ∞ ,
the limits are approached exponentially rather than polynomially. For example:

lim
r→∞ fe(r) =

{
q(4πε0r2)−1{1 − exp[−(r/r0)

3]} → q(4πε0r2)−1 charged particle

q(4πε0r2
0 )−1(r/r0)

3 exp[−(r/r0)
3] → 0 neutral particle

lim
r→∞ fε(r) = 1 − exp[−(r/r0)

3] → 1

lim
r→∞h(r) = μγ ε0(qr)

−1{1 − exp[−(r/r0)
3]} → μγ ε0(qr)

−1

(4.3)
where r0 is the nominal radius of the particle and μγ is the magnetic moment arising from
the action of γ . Note that the expression for Q(r) in (4.2a) is an integral expression in the
electromagnetic field rather than a local expression. The limits of the integral have been
chosen to insure the correct asymptotic behavior as r → ∞. We will show later that Q(r) is
local in terms of the electromagnetic field and the curved metric.

The rest mass

m0 = c−2
∫ ∞

0
dr r2

∫ π

0
dθ sin(θ)

∫ 2π

0
dϕ E(r) (4.4a)

= 8πε0c
−2

∫ ∞

0
dr r2

∫ ∞

r
dr′ (r ′)−1 f 2

e (r ′) fε(r ′) (4.4b)

= 8
3πε0c

−2
∫ ∞

0
dr r2 f 2

e (r) fε(r) (4.4c)

In Sect. 5, (4.4b) is proved to be the mass term in the far field of the Schwarzschild metric.
From (4.2a) and (4.2b), we can prove that without the Q(r) term, the factor 8

3 in (4.4c) would
have been 2. The additional mass is due to the force-free condition.
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Since
er = sin(θ) cos(ϕ)ex + sin(θ) sin(ϕ)ey + cos(θ)ez
eθ = cos(θ) cos(ϕ)ex + cos(θ) sin(ϕ)ey − sin(θ)ez
eϕ = − sin(ϕ)ex + cos(ϕ)ey

(4.5)

the total momentum and angular momentum in the rest frame are given by

PT = c−2
∫ ∞

0
dr r2

∫ π

0
dθ sin(θ)

∫ 2π

0
dϕ N = 0 (4.6a)

JT = c−2
∫ ∞

0
dr r2

∫ π

0
dθ sin(θ)

∫ 2π

0
dϕ r × N

= 4
3πc−2

∫ ∞

0
dr r3h(r) f 2

e (r)ez (4.6b)

If there are constant external fields

E0 = E0x ex + E0yey + E0zez B0 = B0x ex + B0yey + B0zez (4.7)

which do not, to a first approximation, modify fε(r), h(r) and Q(r) and if the accelerations
are low so that radiation reaction effects can be ignored, then the total force and the total
torque in the rest frame are

FT =
∫ ∞

0
dr r2

∫ π

0
dθ sin(θ)

∫ 2π

0
dϕ Fext

= 4πε0r
2 fε(r) fe(r) |∞r=0 E0

=
{
qE0 charged particle

0 neutral particle

(4.8a)

WT =
∫ ∞

0
dr r2

∫ π

0
dθ sin(θ)

∫ 2π

0
dϕ r × Fext

= 2πr3h(r) fe(r)
∣∣∞
r=0 ez × B0

=
{

1
2μγ ez × B0 charged particle

0 neutral particle

(4.8b)

where Fext is calculated from (2.5). The factor of 1
2 in WT distinguishes this result from the

normal magnetic dipole, WT = μmez × B . Thus the numerical values for μγ are related to
the numerical values reported for μm by

μγ = 2μm (4.9)

This corresponds to the quantum spin factor gs = 2. If we consider the special case

h(r) = μγ ε0(qr)
−1 fε(r) (4.10)

then (4.6b) and (4.4c) give
JT = μγm0(2q)−1ez (4.11)

If we set the z-component of JT to 1
2 h̄ for spin 1

2 particles, then we obtain the standard
magneton result

2μm = μγ = qh̄

m0
(4.12)
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where the quantum spin factor gs = 2 appears automatically. This suggests that fε(r) and
h(r) are not independent.

5 Particle equations in four-dimensional non-Riemannian space

In the rest frame of a particle, the most general spherically symmetric, static metric (e.g., see
Misner et al. [5, §23]) can be written in the form

ds2 = gμνdxμdxν = f −1
g1 (r)dr2 + r2dθ2 + r2 sin2(θ)dϕ2 − c2 fg1(r) fg2(r)dt

2

√−g = cr2 f 1/2
g2 (r) sin(θ)

(5.1)

Since
√−g includes a factor of f 1/2

g2 (r), four-dimensional volume integrals must be modified
accordingly. It also requires fg2(r) > 0. The requirement that the metric be flat as r → ∞,
forces fg2(r) → 1 in that limit. The advantage of this form is that it will clearly distinguish
the separate roles of fg1(r) and fg2(r).

In accordance with (3.6), let the only nonzero components of aμ
νσ be

a1
43 = a1

34 = −c rζ(r) fg1(r) f
1/2
g2 (r) sin2(θ) (5.2)

Let the non-isotropic pressure tensor have the diagonal form

P1
1 = pg1(r) P2

2 = P3
3 = pg2(r) P4

4 = 0 (5.3)

Let

Aμ = (0, 0, 0, −cφe(r)) Aμ =
(

0, 0, 0, c−1 f −1
g1 (r) f −1

g2 (r)φe(r)
)

φe(r) =
∫ ∞

r
dr′ fe(r ′) f 1/2

g2 (r ′) (5.4)

The metric and non-metric components of the constitutive tensor are specified by

χμνρσ = ε0 fε(r)(gμρgνσ − gνρgμσ )

χ3241 = −2cr2h(r) f 1/2
g2 (r) sin(θ) cos(θ)

χ3242 = −r2 fg1(r)χ3141 = −cr3h(r) f 1/2
g1 (r) f 1/2

g2 (r) sin2(θ)

χ2143 = −χ3142 = cr2h(r) f 1/2
g2 (r) sin(θ) cos(θ)

(5.5)

Then the nonzero components of Tμν , Gμν and Sμν are

T 1
1 = − 1

2ε0 fε(r) f
2
e (r) + Q(r) + pg1(r) (5.6a)

T 4
4 = − 1

2ε0 fε(r) f
2
e (r) + Q(r) (5.6b)

T 2
2 = T 3

3 = 1
2ε0 fε(r) f

2
e (r) + Q(r) + pg2(r) (5.6c)

T34 = − 1
2crh(r) f 2

e (r) f 1/2
g1 (r) f 1/2

g2 (r) sin2(θ) (5.6d)

G1
1 = r−2[−1 + fg1(r) + r f ′

g1(r)] + fg1(r) f
′
g2(r)[r fg2(r)]−1 (5.6e)

G4
4 = r−2[−1 + fg1(r) + r f ′

g1(r)] (5.6f)

G2
2 = G3

3 = 1
4r

−1[2 f ′
g1(r) + r f ′′

g1(r)] − 1
4 fg1(r)[ f ′

g2(r) f
−1
g2 (r)]2

+ 1
4 [r fg2(r)]−1{3r f ′

g1(r) f
′
g2(r) + 2 fg1(r)[ f ′

g2(r) + r f ′′
g2(r)]}

(5.6g)
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S34 = −cr−1 f 1/2
g1 (r)

d

dr

[
r2 f 1/2

g1 (r) f 1/2
g2 (r)ζ(r)

]
sin2(θ) (5.6h)

The solutions to the generalized Einstein–Maxwell equations (3.8) are

pg1(r) = c4(8πG)−1 fg1(r) f
′
g2(r)[r fg2(r)]−1 (5.7a)

pg2(r) = pg1(r)
{

1 + 1
4r [ f ′

g1(r) f
−1
g1 (r) + f ′

g2(r) f
−1
g2 (r)]

}
+ 1

2rp
′
g1(r) (5.7b)

Q(r) = 1
2ε0 f

2
e (r) fε(r) − 2ε0

∫ ∞

r
dr′ (r ′)−1 f 2

e (r ′) fε(r ′) same as (4.2a) (5.7c)

E(r) = −T 4
4 = 2ε0

∫ ∞

r
dr′ (r ′)−1 f 2

e (r ′) fε(r ′) same as (4.2b) (5.7d)

fg1(r) = 1 − 16πGε0

c4r

∫ r

0
dr′ (r ′)2

∫ ∞

r ′
dr′′ (r ′′)−1 f 2

e (r ′′) fε(r ′′) (5.7e)

ζ(r) = 4πG

c4r2 f −1/2
g1 (r) f −1/2

g2 (r)
∫ r

0
dr′(r ′)2 h(r ′) f 1/2

g2 (r ′) f 2
e (r ′) (5.7f)

Comparison of (5.7e) with the Schwarzschild metric, for which fg1(r) = 1−2Gm0c−2r−1,
shows that

m0s = 8πε0c
−2

∫ ∞

0
dr r2

∫ ∞

r
dr′ (r ′)−1 f 2

e (r ′) fε(r ′) (5.8)

which we define to be the Schwarzschild mass. It agrees with the result in flat space (4.4b).
An alternative definition of the mass is to modify the integral in (4.4b) to include the factor
of f 1/2

g2 (r) in
√−g. The inertial mass is defined to be

m0i = 8πε0c
−2

∫ ∞

0
dr r2 f 1/2

g2 (r)
∫ ∞

r
dr′ (r ′)−1 f 2

e (r ′) fε(r ′) (5.9)

If fg2(r) = 1, then pg1(r) = 0 , pg2(r) = 0 and m0i = m0s . Newton’s third law and law of
gravitation are an argument for setting fg2(r) = 1 whenever action at a distance is a valid
approximation. However at present, there is no theory that determines fg2(r) whenever field
effects are expected to be significant on either an astronomical scale or a microscopic scale.

For particles with an asymptotic form similar to (4.3), the asymptotic limit of (5.7e) is

lim
r→∞ fg1(r) = 1 − 2Gm0s

c2r
+ Gq2

T

4πε0c4r2 + · · · ,

{
qT = q charged particle

qT = 0 neutral particle
(5.10)

The first three terms agree with the Reissner–Nordstöm metric. We can construct solutions
such that higher-order terms decrease exponentially in order to ensure agreement with exper-
imental results in the far field.

Note that (5.7e) can be inverted to give

16πGε0c
−4 f 2

e (r) fε(r) = f ′′
g1(r) + 2r−2[1 − fg1(r)] (5.11)

thus showing that any well-behaved fg1(r) can be expressed in terms of f 2
e (r) fε(r). Note

also that Q(r) can be expressed as

Q(r) = 1
2ε0 f

2
e (r) fε(r) + c4(8πGr2)−1[ fg1(r) + r f ′

g1(r) − 1] (5.12)

This expresses Q(r) as the difference between the traditional form of Maxwell’s energy
density and Einstein’s gravitational energy density. It is a local function in terms of the
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electromagnetic field and the curved metric. The advantage of (5.7c) is that it is explicitly
derived from the force-free condition (4.1e).

6 Electromagnetic and gravitational waves

In a curved space with a Peres [6,7] type of cylindrically symmetric metric

ds2 = dr2 + r2dϕ2 + dz2 − c2dt2 − fgw(z − ct) fg(r)(dz − cdt)2

√−g = cr
(6.1)

there exist electromagnetic waves and gravitational waves. Let

Aμ = c femw(z − ct) fem(r)(1, 0, 0, 0) (6.2a)

χμνρσ = ε0(gμρgνσ − gνρgμσ ) (6.2b)

c2a1
33 = −ca1

43 = a1
44 = faw(z − ct) fa(r) (6.2c)

where aμ
νσ obeys the constraints (3.6). The asymptotic conditions must include

lim
r→0

fem(r) = 0 lim
r→∞ fem(r) = 0 lim

r→∞ fg(r) = 0 lim
r→∞ fa(r) = 0 (6.3)

For this type of electromagnetic wave,

jμ = ε0r
−1 d

dr
[r fem(r)] f ′

emw(z − ct)(0, 0, c, 1) (6.4a)

jμ = ε0r
−1 d

dr
[r fem(r)] f ′

emw(z − ct)(0, 0, c, −c2) (6.4b)

In free space, electromagnetic waves are usually assumed to have zero current, jμ = 0 .
However, if we admit the possibility of nonzero field currents such that jμ jμ = 0 , then we
have a class of force-free wave solutions that have a spatial variation in the plane perpendicular
to the direction of propagation. These null-vector field currents are intrinsic to the structure
of the wave; they are not an external source.

The nonzero components of Tμν , Gμν and Sμν are

T44 = −cT34 = c2T33 = c4ε0[ f ′
emw(z − ct)]2 f 2

em(r) (6.5a)

G44 = −cG34 = c2G33 = c2(2r)−1 fgw(z − ct)
d

dr

[
r f ′

g(r)
]

(6.5b)

S44 = −cS34 = c2S33 = r−1 faw(z − ct)
d

dr
[r fa(r)] (6.5c)

Thus Tμν ;ν = 0 and Sμν ;ν = 0. From (3.8),

c2(2r)−1 d

dr

[
r f ′

g(r)
]
fgw(z − ct) + r−1 d

dr
[r fa(r)] faw(z − ct)

= 8πGε0 f
2
em(r)[ f ′

emw(z − ct)]2 ≥ 0 (6.6)

Integration gives

1
2c

2 f ′
g(r) fgw(z − ct) + fa(r) faw(z − ct)

= 8πGε0r
−1

∫ r

0
dr ′r ′ f 2

em(r ′)[ f ′
emw(z − ct)]2 ≥0 (6.7)
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In general, f ′
g(r) has both positive and negative regions so the gravitational wave cannot

couple to the electromagnetic wave for all values of r . Therefore, fa(r) faw(z − ct) has to
have two pieces: one that couples to the electromagnetic wave and one that couples to the
gravitational wave. The electromagnetic and gravitational waves exist independently. This
type of electromagnetic wave is independent of the Riemannian part of the curvature tensor.

7 Conclusions

We have modified the Einstein–Maxwell equations by adding four types of terms and have
derived solutions for static, spherical particles and for localized electromagnetic and gravita-
tional cylindrical waves. The solutions are force-free and mathematically well behaved. We
have introduced a four-dimensional constitutive tensor with two structure fields that appear to
be related by a Bohr magneton condition. We have shown that there is a distinction between
the Schwarzschild mass and the inertial mass. We have also shown that the curvature terms
arising from the non-metric components of a general symmetric connection couple in various
ways to the particle solutions and to the localized electromagnetic and gravitational wave
solutions.
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