Skip to main content

Advertisement

Log in

A mathematical and parametric study of epidemiological smoking model: a deterministic stability and optimality for solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The qualitative study of a smoking model with parametric conditions for diseases controlling under the influence of smoking is investigated through rigorous mathematical study. The mathematical modeling of epidemiological smoking model having six compartments is traced out. Mathematical expressions for smoke-free and smoke-present equilibrium points have been developed. The strength of Lyapunov functional theory has been exploited to show that smoke-free equilibrium point is globally asymptotically stable whenever basic reproduction number \(R_\circ <1\). The competency of graphical and theoretic process is utilized to observe the global behavior of unique smoke equilibrium point. The sensitivity analysis of the model is performed through the basic reproduction number and diseased classes effectively to design reliable, robust and stable control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Ahmed, R. Rashid, P.W. McDonald, S.W. Ahmed, Prevalence of cigarette smoking among young adults in Pakistan. J. Pak. Med. Assoc. 58, 597–601 (2008)

    Google Scholar 

  2. World Health Organization. Tobacco. https://www.who.int/news-room/fact-sheets/detail/tobacco (2019)

  3. C.C. Garsow, G.J. Salivia, A.R. Herrera, Mathematical models for dynamics of tobacco use, Recovery and Relapse, Technical Report Series BU-1505-M, January (1997)

  4. Z. Alkhudhari, S. Sheikh, S. Al-Tuwairqi, Global dynamics of a mathematical model on smoking. Int. Sch. Res. Not. Appl. Math. 2014, Article ID: 847075, 2014, 7 (2014)

  5. F.J. Chaloupka, Curbing the epidemic: governments and the economics of tobacco control. Tobacco Control 8, 196–201 (1999)

    Article  Google Scholar 

  6. C.C. Garsow, G.J. Salivia, A.R. Herrera, Mathematical Models for the Dynamics of Tobacco Use, Recovery, and Relapse, Technical Report Series BU- 1505-M (Cornell University, Ithaca, NY, 2000)

    Google Scholar 

  7. A.T. Merchant, S.P. Luby, G. Parveen, Smoking among males in a low socioeconomic area of Karachi. J. Pak. Med. Assoc. 48, 62–63 (1998)

    Google Scholar 

  8. A.T. Merchant, S.P. Luby, G. Parveen, Smoking in Pakistan: more than cancer and heart disease. J. Pak. Med. Assoc. 48, 77–79 (1998)

    Google Scholar 

  9. M.A. Shaikh, A. Kamal, Prevalence and pattern of smoking in university students—perspective from Islamabad. J. Coll. Phys. Surg. Pak. 14, 194–194 (2004)

    Google Scholar 

  10. K. Nasir, N. Rehan, Epidemiology of cigarette smoking in Pakistan. Addiction 96, 1847–1854 (2001)

    Article  Google Scholar 

  11. M. Zaman, U. Irfan, Mukhtiar, E. Irshad, Prevalence of cigarette smoking among Peshawar University students. Pak. J. Chest Med. 8, 9–18 (2002)

    Google Scholar 

  12. O. Sharomi, A.B. Gumel, Curtailing smoking dynamics, a mathematical modeling approach. Appl. Math. Comput. 195, 475–499 (2008)

    MathSciNet  MATH  Google Scholar 

  13. A. Lahrouz, L. Omari, D. Kiouach, A. Belmaati, Deterministic and stochastic stability of a mathematical model of smoking. Stat. Probab. Lett. 81, 1276–1284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Zaman, Qualitative behavior of giving up smoking models. Bull. Mal. Sci. Soc. 34, 403–415 (2011)

    MathSciNet  MATH  Google Scholar 

  15. G. Zaman, Optimal campaign in the smoking dynamics. Comput. Math. Methods Med. Vol. 2011, Article ID: 163834, 2011, 9 (2011)

  16. R. Ullah, M. Khan, G. Zaman, S. Islam, M.A. Khan, S. Jan, T. Gul, Dynamical features of a mathematical model on smoking. J. Appl. Environ. Biol. Sci. 6, 92–96 (2016)

    Google Scholar 

  17. A.U. Awan, A. Sharif, T. Hussain, M. Ozair, Smoking model with cravings to smoke. Adv. Stud. Biol. 9, 31–41 (2017)

    Article  Google Scholar 

  18. A.L. Mojeeb, I.K. Adu, Modelling the dynamics of smoking epidemic. J. Adv. Math. Comput. Sci. 1–19 (2017)

  19. N.H. Shah, F.A. Thakkar, B.M. Yeolekar, Stability analysis of tuberculosis due to smoking. Int. J. Innov. Sci. Res. Technol. 3(1) (2018)

  20. A.M. Pulecio-Montoya, L.E. López-Montenegro, L.M. Benavides, Analysis of a mathematical model of smoking. Contemp. Eng. Sci. 12, 117–129 (2019)

    Article  Google Scholar 

  21. Z. Zhang, R. Wei, W. Xia, Dynamical analysis of a giving up smoking model with time delay. Adv. Differ. Equ. 2019(1), 505 (2019)

    Article  MathSciNet  Google Scholar 

  22. S.A. Khan, K. Shah, G. Zaman, F. Jarad, Existence theory and numerical solutions to smoking model under Caputo–Fabrizio fractional derivative. Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Ucar, E. Ucar, N. ozdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative. Chaos Solitons Fractals 118, 300–306 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. G. ur Rahman, R.P. Agarwal, Q. Din, Mathematical analysis of giving up smoking model via harmonic mean type incidence rate. Appl. Math. Comput. 354, 128–148 (2019)

    MathSciNet  MATH  Google Scholar 

  25. C. Sun, J. Jia, Optimal control of a delayed smoking model with immigration. J. Biol. Dyn. 13(1), 447–460 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Veeresha, D.G. Prakasha, H.M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 13(2), 115–128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. A.M.S. Mahdy, N.H. Sweilam, M. Higazy, Approximate solution for solving nonlinear fractional order smoking model. Alex. Eng. J. 59(2), 739–752 (2020)

    Article  Google Scholar 

  28. A.A. Alshareef, H.A. Batarfi, Stability analysis of chain, mild and passive smoking model. Am. J. Comput. Math. 10(01), 31 (2020)

    Article  Google Scholar 

  29. Z. Zhang, J. Zou, R.K. Upadhyay, A. Pratap, Stability and Hopf bifurcation analysis of a delayed tobacco smoking model containing snuffing class. Adv. Differ. Equ. 2020(1), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  30. A.A. Kashif, I.Q. Memon, A. Siyal, Thermal transmittance and thermo-magnetization of unsteady free convection viscous fluid through non-singular differentiations. Physica Scripta (2020). https://doi.org/10.1088/1402-4896/abc981

    Article  Google Scholar 

  31. A.A. Kashif, Abdon Atangana, Dual fractional modeling of rate type fluid through non-local differentiation. Numer. Methods Partial Differ. Equ. 1–16 (2020). https://doi.org/10.1002/num.22633

  32. J.F. Gómez-Aguilar, A. Atangana, V.F. Morales-Delgado, Electrical circuits RC, LC, and RL described by Atangana Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 45(11), 1514–33 (2017)

    Article  Google Scholar 

  33. K.A. Abro, A. Atangana, Numerical and mathematical analysis of induction motor by means of AB-fractal-fractional differentiation actuated by drilling system. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22618

    Article  Google Scholar 

  34. K.A. Abro, A. Siyal, B. Souayeh, A. Atangana, Application of statistical method on thermal resistance and conductance during magnetization of fractionalized free convection flow. Int. Commun. Heat Mass Transfer 119, 104971 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104971

    Article  Google Scholar 

  35. K.M. Owolabi, A. Atangana, Robustness of fractional difference schemes via the Caputo subdiffusion–reaction equations. Chaos Solitons Fractals 111, 119–127 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A.A. Kashif, M. Soomro, A. Atangana, J.F.G. Aguilar, Thermophysical properties of Maxwell Nanoluids via fractional derivatives with regular kernel. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10287-9

    Article  Google Scholar 

  37. K.A. Abro, B. Das, A scientific report of non-singular techniques on microring resonators: an application to optical technology. Optik Int. J. Light Electron Opt. 224, 165696 (2020). https://doi.org/10.1016/j.ijleo.2020.165696

    Article  Google Scholar 

  38. A. Khan, J.F. Gómez-Aguilar, T.S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos Solitons Fractals 122, 119–128 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Q. Ali, S. Riaz, A.U. Awan, K.A. Abro, Thermal investigation for electrified convection flow of Newtonian fluid subjected to damped thermal flux on a permeable medium. Physica Scripta (2020). https://doi.org/10.1088/1402-4896/abbc2e

    Article  Google Scholar 

  40. A.A. Kashif, Role of fractal-fractional derivative on ferromagnetic fluid via fractal Laplace transform: a first problem via fractal-fractional differential operator. Eur. J. Mech. B Fluids 85, 76–81 (2021). https://doi.org/10.1016/j.euromechflu.2020.09.002

    Article  MathSciNet  Google Scholar 

  41. A. Coronel-Escamilla, F. Torres, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, G.V. Guerrero-Ramírez, On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning. Multibody Syst. Dyn. 43(3), 257–277 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. A.K. Ali, M.H. Laghari, J.F. Gomez-Aguilar, Application of Atangana-Baleanu fractional derivative to carbon nanotubes based non-Newtonian nanofluid: applications in nanotechnology. J. Appl. Comput. Mech. 6(SI), 1260–1269 (2020). https://doi.org/10.22055/JACM.2020.33461.2229

    Article  Google Scholar 

  43. A. Yoku, H. Durur, A.K. Ali, D. Kaya, Role of Gilson-Pickering equation for the different types of soliton solutions: a nonlinear analysis. Eur. Phys. J. Plus 135, 657 (2020). https://doi.org/10.1140/epjp/s13360-020-00646-8

    Article  Google Scholar 

  44. A. Khan, H. Khan, J.F. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers–Ulam stability for a nonlinear singular fractional differential equations with Mittag–Leffler kernel. Chaos Solitons Fractals 127, 422–427 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A.U. Awan, M. Tahir, A.A. Kashif, Multiple soliton solutions with chiral nonlinear Schrödinger’s equation in (2+1)-dimensions. Eur. J. Mech. B Fluids (2020). https://doi.org/10.1016/j.euromechflu.2020.07.014

    Article  Google Scholar 

  46. A.K. Ali, A. Atangana, Porous effects on the fractional modeling of magnetohydrodynamic pulsatile flow: an analytic study via strong kernels. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10027-z

    Article  Google Scholar 

  47. V.F. Morales-Delgado, J.F. Gómez-Aguilar, K.M. Saad, M. AltafKhan, P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach. Physica A Stat. Mech. Appl. 523, 45–65 (2019)

    Article  MathSciNet  Google Scholar 

  48. A.A. Kashif, A. Atangana, Numerical study and chaotic analysis of meminductor and memcapacitor through fractal-fractional differential operator. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04780-4

    Article  Google Scholar 

  49. A.A. Kashif, A. Abdon, A comparative analysis of electromechanical model of piezoelectric actuator through Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6638

    Article  MathSciNet  Google Scholar 

  50. K.A. Abro, J.F. Gomez-Aguilar, Role of Fourier sine transform on the dynamical model of tensioned carbon nanotubes with fractional operator. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6655

    Article  Google Scholar 

  51. J.E. Solís-Pérez, J.F. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Solitons Fractals 114, 175–185 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. A.K. Ali, A. Atangana, Mathematical analysis of memristor through fractal-fractional differential operators: a numerical study. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6378

    Article  MathSciNet  MATH  Google Scholar 

  53. B. Lohana, A.A. Kashif, A.W. Shaikh, Thermodynamical analysis of heat transfer of gravity-driven fluid flow via fractional treatment: an analytical study. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09429-w

    Article  Google Scholar 

  54. K.A. Abro, A. Atangana, A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal-fractional differentiations. Eur. Phys. J. Plus 135, 226–242 (2020). https://doi.org/10.1140/epjp/s13360-020-00136-x

    Article  Google Scholar 

  55. A.A. Kashif, A. Siyal, A. Atangana, Thermal stratification of rotational second-grade fluid through fractional differential operators. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09312-8

    Article  Google Scholar 

  56. A.K. Ali, A. Atangana, Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid. Physica Scripta 95, 035228 (2020). https://doi.org/10.1088/1402-4896/ab560c

    Article  Google Scholar 

  57. K.A. Abro, A fractional and analytic investigation of thermo-diffusion process on free convection flow: an application to surface modification technology. Eur. Phys. J. Plus 135(1), 31–45 (2019). https://doi.org/10.1140/epjp/s13360-019-00046-7

    Article  Google Scholar 

  58. Q. Din, M. Ozair, T. Hussain, U. Saeed, Qualitative behavior of a smoking model. Adv. Differ. Equ. 2016(1), 1–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. P.V.D. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  60. D.J. Struik (ed.), A Source Book in Mathematics 1200–1800 (Princeton University Press, Princeton, 1986), pp. 89–93

    MATH  Google Scholar 

  61. Z. Shuai, P.V.D. Driessche, Global stability of infectious diseases models using lyapunov functions. SIAM J. Appl. Math. 73, 1513–1532 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. J.P. LaSalle, The stability of dynamical systems, regional conference series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA (1976)

  63. F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969)

    Book  MATH  Google Scholar 

  64. D.B. West, Introduction to Graph Theory (Prentice-Hall, Upper Saddle River, NJ, 1996)

    MATH  Google Scholar 

  65. M.Y. Li, Z. Shuai, Global-stability problems for coupled systems of differential equations on networks. J. Differ. Equ. 248, 1–20 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. N. Chitnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes, vol. 4 (Gordon and Breach Science Publishers, New York, NY, 1986)

    MATH  Google Scholar 

  68. W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control (Springer, New York, 1975)

    Book  MATH  Google Scholar 

  69. D.L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering (Academic Press, New York, 1982)

    Google Scholar 

  70. S. Lenhart, J.T. Workman, Optimal Control Applied to Biological Models, Mathematical and Computational Biology Series (Chapman and Hall/CRC Press, London/Boca Raton, 2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Abro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Awan, A.U., Abro, K.A. et al. A mathematical and parametric study of epidemiological smoking model: a deterministic stability and optimality for solutions. Eur. Phys. J. Plus 136, 11 (2021). https://doi.org/10.1140/epjp/s13360-020-00979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00979-4

Navigation