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Abstract The notion of dually flatness is of central importance in information geometry.
Nevertheless, little is known about dually flat structures on quantum statistical manifolds
except that the Bogoliubov metric admits a global dually flat structure on a quantum state
space S(Cd) for any d ≥ 2. In this paper, we show that every monotone metric on a two-level
quantum state space S(C2) admits a local dually flat structure.

1 Introduction

A Riemannian metric g on a flat manifold (M,∇) is called a Hessian metric if there is a
function ψ on M such that g = ∇dψ , or equivalently,

gi j = ∂2ψ

∂θ i∂θ j
, (1)

where (θ i ) is a ∇-affine local coordinate system [1]. It is well known that a metric g on a flat
manifold (M,∇) is of Hessian type if and only if it satisfies the Codazzi equation

(∇X g)(Y, Z) = (∇Y g)(X, Z). (2)

Since ∇ is assumed to be a flat connection, the integrability condition (2) is equivalent to
saying that the dual affine connection ∇∗ defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
X Z)

is torsion free. Thus, (g,∇) is a Hessian structure if and only if (g,∇,∇∗) is a (local) dually
flat structure [2,3].

As mentioned above, it is straightforward to verify whether a Riemannian metric g on
a flat manifold (M,∇) is of Hessian type. In this paper, we are interested in a slightly
different problem. Given a Riemannian manifold (M, g), determine whether there is an
affine connection ∇ that makes g of Hessian type. This is equivalent to asking whether there
is a local coordinate system (θ i ) and a function ψ that satisfy (1). If this is the case, we say
that the Riemannian manifold (M, g) admits a Hessian structure.
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This problem was raised in [2, p. 102] and was recalled in [3,4]. Determining whether
a manifold admits a global dually flat structure was studied in [5]. For a local structure, a
clarification was made by Bryant [6] and Amari and Armstrong [7], who proved the following

Proposition 1 If dim M = 2 and g is analytic, a Riemannian manifold (M, g) admits a
Hessian structure. If dim M ≥ 3, a Riemannian manifold (M, g) does not always admit a
Hessian structure.

The idea behind the proof of Proposition 1 is simple. Letting n = dim M , the left-hand
side of (1) consists of 1

2n(n+ 1) functions gi j , while the right-hand side of (1) depends only
on (n+1) functions θ1, . . . , θn , and ψ . Thus, if n > 2, not every metric g can be represented
in the form (1). Note that Amari and Armstrong [7] further discussed a curvature obstruction
to the existence of Hessian metrics when dim M ≥ 4.

Turning our attention to quantum information geometry [3], there is a standard affine
connection ∇(m), called the mixture connection (m-connection, for short), on a quantum state
space S. Since the m-connection stems from the natural convex structure of S, the 2-tuple
(S,∇(m)) forms a flat manifold. It is then natural to inquire whether a Riemannian metric g on
the flat manifold (S,∇(m)) is of Hessian type. A crucial answer to this problem was given by
Nagaoka [3], who proved that a metric g on (S,∇(m)) induced from a generalized covariance
is of Hessian type if and only if g is the Bogoliubov metric. The canonical divergence of the
corresponding dually flat structure is the Umegaki relative entropy [8].

A variety of other divergence-like quantities on a quantum state spaceS have been devised,
and their relationships to information geometry have been discussed (see, for example, [9–
15], and the references cited therein). In particular, it is known that every monotone quantum
metric on S can be linked with some quantum relative entropy [12]. However, none of them
except the Umegaki relative entropy is interpreted as the canonical divergence associated
with some dually flat structure. In other words, we do not know any monotone quantum
metric besides the Bogoliubov metric that admits a Hessian structure. It is then interesting
to inquire whether there are other monotone metrics on a quantum state space that admit
Hessian structures. The purpose of this paper is to give a positive answer to this question.
The main result is the following

Theorem 2 Every monotone metric on a two-level quantum state space admits a Hessian
structure.

The paper is organized as follows. In Sect. 2, we give a brief review of monotone metrics
on a quantum state space S(H) over a finite-dimensional Hilbert space H. In Sect. 3, we
prove Theorem 2 by showing the existence of a local coordinate system (θ i ) and a function
ψ that satisfy (1) for any monotone metric on S(C2). In Sect. 4, we demonstrate the dually
flat structures induced from the SLD and the RLD metrics in depth. Section 5 is devoted to
concluding discussion.

2 Monotone metrics on quantum state spaces

Let L(H) and Lsa(H) denote the sets of linear operators and selfadjoint operators on a
finite-dimensional complex Hilbert space H, and let L++(H) denote the subset of Lsa(H)

comprising strictly positive operators. In this paper, we are interested in information geomet-
rical structures of the set

S := S(H) := {ρ ∈ L++(H) | Tr ρ = 1},
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which is called the quantum state space on H.
In quantum information geometry, it is customary to use a pair of operator representa-

tions of tangent vectors called the m-representation and the e-representation [3]. The m-
representation X (m) of a tangent vector X ∈ TρS at ρ ∈ S is simply defined by

X (m) := Xρ.

As to the e-representation, there are several ways of introducing it. For later convenience, we
adopt the following definition. Given a monotone increasing continuous function f : R++ →
R++ satisfying the normalization f (1) = 1 and the symmetry condition f (t) = t f (1/t),
the e-representation X (e)

f of X ∈ TρS associated with f is defined by

X (e)
f := f (�ρ)

{
ρ−1(Xρ)

}
, (3)

where �ρ : L(H) → L(H) is the modular operator [16] for ρ ∈ S defined by

�ρ : A �−→ ρAρ−1.

A Riemannian metric g on S is then defined by the pairing

gρ(X, Y ) = Tr
{
X (e)

f Y (m)
}

(4)

between e- and m-representations.
A metric g is called monotone [17,18] if it satisfies the monotonicity

gρ(X, X) ≥ gγ (ρ)(γ∗X, γ∗X)

for any completely positive trace-preserving map γ : L(H) → L(H). The physical implica-
tion of this inequality is that the distinguishability of two nearby quantum states as measured
by g cannot be enhanced by any physical process γ . Thus, the monotonicity is regarded
as a fundamental requirement for a metric. According to Petz’s theorem [18], the metric g
given by (4) is monotone if and only if the representing function f is operator monotone.
In what follows, we denote the set of normalized symmetric operator monotone functions
f : R++ → R++ by F . Typical examples are

2t

1 + t
,

t log t

t − 1
,

√
t,

t − 1

log t
,

1 + t

2
.

Note that 2t/(1 + t) and (1 + t)/2 are the minimum and the maximum elements of F [19].
In addition, f ∈ F if and only if f ⊥ ∈ F , where f ⊥ is the dual of f defined by f ⊥(t) :=
t/ f (t) [20]. Since the correspondence between f and f ⊥ is one to one (in fact, ( f ⊥)⊥ = f ),
we could express the e-representation (3) in terms of f ⊥ ∈ F as follows:

X (e)
f = f ⊥(�ρ)−1 {(Xρ)ρ−1} .

Actually, in his original argument, Petz [18] employed this expression to represent monotone
metrics.

Let us derive an explicit formula for the monotone metric g associated with an operator
monotone function f ∈ F . Let

ρ =
dim H∑

i=1

pi |ei 〉〈ei |
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be a Schatten decomposition of ρ ∈ S, where {ei }i is an orthonormal basis of H. Then, the
e-representation X (e)

f associated with f ∈ F is given by

X (e)
f =

∑

i, j

1

pi
f

(
pi
p j

)
|ei 〉〈ei |X (m)e j 〉〈e j |,

and the corresponding monotone metric g is given by

gρ(X, Y ) =
∑

i, j

1

pi
f

(
pi
p j

)
〈ei |X (m)e j 〉〈e j |Y (m)ei 〉

=
∑

i, j

1

2

{
1

pi
f

(
pi
p j

)
+ 1

p j
f

(
p j

pi

)}
〈ei |X (m)e j 〉〈e j |Y (m)ei 〉. (5)

Here, the second equality is due to the symmetry f (t) = t f (1/t). This formula will be used
in calculating the components of a monotone metric g.

3 Proof of Theorem 2

In this section, we prove that any monotone metric on the quantum state space S(C2) admits
a Hessian structure. Each element ρ of S(C2) is uniquely specified by the so-called Stokes
parameters (x1, x2, x3) ∈ R

3 as follows:

ρ = 1

2
(I + x1σ1 + x2σ2 + x3σ3) = 1

2

[
1 + x3 x1 − √−1 x2

x1 + √−1 x2 1 − x3

]
, (6)

where σ1, σ2, σ3 are the standard Pauli matrices. In order to assure the strict positivity of ρ,
the parameters must belong to the open unit ball

B = {(x1, x2, x3) ∈ R
3 | (x1)2 + (x2)2 + (x3)2 < 1},

which is sometimes referred to as the Bloch ball. In what follows, we adopt the Stokes
parameters (x1, x2, x3) as a reference coordinate system of S(C2).

Due to the Codazzi equation (2), a Riemannian manifold (S(C2), g) admits a Hessian
structure if and only if there is a local coordinate system θ = (θ i ) that satisfies

∂gi j
∂θk

= ∂gkj
∂θ i

,

or equivalently,
∂

∂θk

(
∂xλ

∂θ i

∂xμ

∂θ j
gλμ

)
= ∂

∂θ i

(
∂xλ

∂θk

∂xμ

∂θ j
gλμ

)
, (7)

where

gλμ := g

(
∂

∂xλ
,

∂

∂xμ

)

are the components of g with respect to the reference coordinate system x = (xλ), and
Einstein’s summation convention is used.

Suppose we are given an operator monotone function f ∈ F . Then, by a direct com-
putation using (5), the components gλμ of the corresponding monotone metric g are given
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by

[gλμ] = h(r)

1 − r2

⎡

⎣
1

1
1

⎤

⎦+ 1 − h(r)

r2(1 − r2)

⎡

⎣
(x1)2 x1x2 x1x3

x1x2 (x2)2 x2x3

x1x3 x2x3 (x3)2

⎤

⎦ , (8)

where r := √(x1)2 + (x2)2 + (x3)2 and

h(r) := 1

2

{
(1 − r) f

(
1 + r

1 − r

)
+ (1 + r) f

(
1 − r

1 + r

)}
.

Note that 1 − r2 ≤ h(r) ≤ 1, which follows from 2t/(1 + t) ≤ f (t) ≤ (1 + t)/2.
We shall prove Theorem 2 by showing the existence of a local coordinate system θ = (θ i )

that satisfies the integrability conditions (7). To this end, we assume that the solution xi =
xi (θ) has the form

xi = F
(
e2θ1 + e2θ2 + e2θ3

)
eθ i , (i = 1, 2, 3), (9)

where F is a smooth positive function. This transformation will turn out to be pertinent to
our problem because the functional form is covariant under the uniform shift of the origin
θ i �→ θ i + c. Note that the local coordinate system θ = (θ i ) in (9) only covers the positive
octant of the Bloch ball B. This difficulty is evaded just by rotating the reference frame
(σ1, σ2, σ3) in (6), which results in rotating the xi -axes in R

3. In this way, we can construct
an atlas that covers the Bloch ball except the origin.

Since (x1)2 + (x2)2 + (x3)2 < 1, we have

0 < RF(R)2 < 1, (10)

where R := e2θ1 + e2θ2 + e2θ3
. Further, since the Jacobian of the coordinate transformation

(9) is

det

[
∂xi

∂θ j

]
= eθ1+θ2+θ3

F(R)2 (2RF ′(R) + F(R)
)
,

we claim that
2RF ′(R) + F(R) �= 0. (11)

Let us solve Eq. (7), which comprise nine partial differential equations corresponding to all
combinations of i, j, k ∈ {1, 2, 3} with i < k. It is shown by direct computations that if i, j, k
are different, the differences between both sides of (7) for the coordinate transformation (9)
become zero; otherwise, the differences take the form

±e2(θ i+θk )
(
2RF ′(R) + F(R)

)

2R
(
1 − RF(R)2

)2 × H(R, F(R), F ′(R)),

where H(R, F(R), F ′(R)) is a certain function that is linear in F ′(R). Therefore, under (10)
and (11), the integrability conditions (7) are compressed into a single ordinary differential
equation (ODE) H(R, F(R), F ′(R)) = 0, which reads

F ′(R) = F(R)

8R(1 − S2)

[
(2 + S)(1 − S)2 f

(
1 + S

1 − S

)
+ (2 − S)(1 + S)2 f

(
1 − S

1 + S

)

+2S

{
(1 + S) f ′

(
1 + S

1 − S

)
− (1 − S) f ′

(
1 − S

1 + S

)}
− 4(1 − S2)

]
, (12)

where S := √RF(R)2 (= r).
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Since every operator monotone function f is infinitely differentiable [19,21], the right-
hand side of (12) is locally Lipschitz, and hence, the initial value problem for the ODE (12)
has a unique solution on the domain (10). Moreover, any solution of (12) on the domain (10)
satisfies (11). In fact, using the ODE (12) and the symmetry condition f (t) = t f (1/t) as
well as its derivative, we have

4(1 − S2)

F(R)

(
2RF ′(R) + F(R)

)

= (2 + S)(1 − S)2 f

(
1 + S

1 − S

)
+ (2 − S)(1 + S)2 f

(
1 − S

1 + S

)

+2S

{
(1 + S) f ′

(
1 + S

1 − S

)
− (1 − S) f ′

(
1 − S

1 + S

)}

= 2(2 + S)(1 − S)2 f

(
1 + S

1 − S

)
+ 4S(1 + S) f ′

(
1 + S

1 − S

)
,

which is positive for 0 < S < 1 because f is positive and monotone increasing.
Let us choose a solution F(R) of (12) arbitrarily. Then, the components gi j of g with

respect to the new local coordinate system θ = (θ i ) are represented as follows (cf.,
Appendix A):

[gi j ] = 4φ1(R)

⎡

⎢
⎣
e2θ1

e2θ2

e2θ3

⎤

⎥
⎦+ 4φ2(R)

⎡

⎢
⎣

e4θ1
e2(θ1+θ2) e2(θ1+θ3)

e2(θ1+θ2) e4θ2
e2(θ2+θ3)

e2(θ1+θ3) e2(θ2+θ3) e4θ3

⎤

⎥
⎦ , (13)

where

φ1(R) := h(S)

4
(
1 − S2

) F(R)2,

and

φ2(R) := 1

4R
(
1 − S2

)
[
(1 − h(S)) F(R)2 + 4RF(R)F ′(R) + 4R2F ′(R)2] .

It is important to realize that

dφ1(R)

dR
= φ2(R),

which is verified by a direct computation using the ODE (12). Thus, we conclude that the
above gi j is rewritten as

gi j = ∂2

∂θ i∂θ j
ψ
(
e2θ1 + e2θ2 + e2θ3

)
,

where ψ(R) is a primitive function of φ1(R), i.e.,

ψ(R) :=
∫ R

φ1(s) ds.

This completes the proof of Theorem 2.
Now, that we have found a potential function ψ for θ , computing the dual affine coordinate

system η = (ηi ), the dual potential ϕ(η) and the canonical divergence are standard. For
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example,

ηi = ∂ψ

∂θ i
= 2e2θ i φ1

(
e2θ1 + e2θ2 + e2θ3

)
.

In the next section, we demonstrate the dually flat structures induced from the SLD and the
RLD metrics in more depth.

4 Examples

4.1 SLD metric

In quantum statistics, one of the most important Riemannian metrics on the quantum state
space is the one derived from the symmetric logarithmic derivative (SLD, for short) [22–
24], and the corresponding metric is usually referred to as the SLD metric. The SLD metric
corresponds to the operator monotone function f (t) = 2t/(1 + t), which is the minimum
element of F .

For this operator monotone function, the ODE (12) is reduced to

F ′(R) = − F(R)3

2
.

This ODE has the following solutions on the domain (10):

F(R) = 1√
R + C

, (C > 0).

Note that changing the value of the integration constant C yields shifting the origin of the
θ -coordinate system, and thus, the induced affine connection is invariant. Therefore, we set
C = 1 without loss of generality. In this case,

φ1(R) = F(R)2

4
= 1

4(1 + R)
,

and

ψ(R) =
∫ R

0
φ1(s)ds = 1

4
log(1 + R).

The dual affine coordinate system η = (ηi ) is

ηi = ∂ψ(R)

∂θ i
= e2θ i

2
(
1 + e2θ1 + e2θ2 + e2θ3) ,

and the dual potential ϕ(η) for the coordinate system η is

ϕ(η) := max
θ

{
θ iηi − ψ(θ)

}
= 1

4

[
3∑

i=1

(2ηi ) log(2ηi )

+
⎛

⎝1 −
3∑

j=1

(2η j )

⎞

⎠ log

⎛

⎝1 −
3∑

j=1

(2η j )

⎞

⎠

⎤

⎦ .
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We thus arrive at the canonical divergence

D(ρ‖σ) := ψ(θ(σ )) + ϕ(η(ρ)) − θ i (σ ) ηi (ρ) = 1

4

3∑

i=0

pi log
pi
qi

,

where θ(τ ) = (θ i (τ )) and η(τ) = (ηi (τ )) denote the θ - and η-coordinates of τ ∈ S(C2),
and

pi :=

⎧
⎪⎨

⎪⎩

2ηi (ρ), (i = 1, 2, 3)

1 −
3∑

j=1

2ηi (ρ), (i = 0)
, qi =

⎧
⎪⎨

⎪⎩

2ηi (σ ), (i = 1, 2, 3)

1 −
3∑

j=1

2ηi (σ ), (i = 0)
.

To our surprise, the canonical divergence D(ρ‖σ) is identical, up to the factor of 1/4,
to the classical Kullback–Leibler divergence between the probability distributions p =
(p0, p1, p2, p3) and q = (q0, q1, q2, q3), and the coordinate systems θ i and ηi correspond
to the standard e- and m-affine coordinate systems on the probability 3-simplex in classical
information geometry. It is interesting to realize that such a classical structure is hidden in
the quantum state space S(C2) endowed with one of the most important quantum metrics,
the SLD metric.

4.2 RLD metric

Another important Riemannian metric in quantum statistics is the one derived from the right
logarithmic derivative (RLD, for short) [24,25], and the corresponding metric is usually
referred to as the RLD metric. Since the RLD metric is a complex metric, we here take its
real part and call it as the real RLD metric. The real RLD metric corresponds to the operator
monotone function f (t) = (1 + t)/2, which is the maximum element of F .

For this operator monotone function, the ODE (12) is reduced to

F ′(R) = F(R)3

2
(
1 − RF(R)2

) .

This ODE has the following implicit solutions:

RF(R)2 − log F(R)2 = C, (C ∈ R).

Set C = 0 without loss of generality. Then, the solution on the domain (10) is explicitly
written as

F(R) = e− 1
2 W (−R),

(
0 < R <

1

e

)
,

where W is the Lambert W -function, i.e., the inverse function of w �→ wew for w ≥ −1/e.
For this solution,

φ1(R) = F(R)2

4
(
1 − RF(R)2

) = 1

4
(
eW (−R) − R

) ,

and

ψ(R) =
∫ R

0
φ1(s)ds = −1

4
W (−R).
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The dual affine coordinate system η = (ηi ) is given by

ηi = ∂ψ(R)

∂θ i
= e2θ i

2
(
eW (−e2θ1 −e2θ2 −e2θ3

) − e2θ1 − e2θ2 − e2θ3
) .

Unfortunately, the inverse transformation (ηi ) �→ (θ i ) is obtained only implicitly, and thus,
neither the dual potential ϕ(η) nor the canonical divergence D(ρ‖σ) can be written down in
an explicit form.

5 Discussion

We have studied geometries of monotone quantum metrics and have found that any monotone
metric on the quantum state space S(C2) admits a Hessian structure (Theorem 2). The key
ingredient for the proof was the coordinate transformation of the form (9), which was valid for
all monotone metrics. One may be aware that (9) does not induce the standard m-connection
for the Bogoliubov metric because the local coordinate system θ = (θ i ) only covers a single
octant of the Bloch ball. In order to deal with this difficulty, we may use a generalized form
of a coordinate transformation:

xi = F
(
G(ξ1)2 + G(ξ2)2 + G(ξ3)2)G(ξ i ), (i = 1, 2, 3).

For example, let us consider the case when G(t) := t , that is,

xi = F
(
(ξ1)2 + (ξ2)2 + (ξ3)2) ξ i , (i = 1, 2, 3). (14)

This form of transformation is covariant under the uniform scaling ξ i �→ c ξ i . With this
transformation, the integrability conditions (7) for the Bogoliubov metric, which corresponds
to the operator monotone function f (t) = t log t/(t − 1), have solutions of the form

F(R) = C and F(R) = 1√
R

(
1 − e−C

√
R

1 + e−C
√
R

)

,

where C is a positive constant. The first solution actually induces the standard m-connection
for which the Stokes parameters x = (xi ) form a global affine coordinate system. The second
solution, on the other hand, induces another Hessian structure. To be more specific, letting
C = 1, the components gi j of the Bogoliubov metric with respect to the new coordinate
system (ξ i ) are shown to satisfy

gi j = ∂2

∂ξ i∂ξ j
ϕ
(
(ξ1)2 + (ξ2)2 + (ξ3)2) ,

where

ϕ(R) := log

(

cosh

√
R

2

)

.

Unfortunately, the coordinate transformation (14) is not universal, in that there are mono-
tone metrics, such as the SLD metric, for which the integrability conditions (7) do not have
solutions on the Bloch ball. In this sense, the universality of the exponential-type transfor-
mation (9) is highly beneficial.

We have demonstrated rich geometrical structures of S(C2) induced from monotone met-
rics, and thus, Theorem 2 as well as its proof might be of some interest in itself. Such a view
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could be supported by the fact that the two-level quantum system is a building block in quan-
tum information science. Nevertheless, the attainment here is far from satisfactory because
our goal is to characterize all monotone metrics on a generic quantum state space S(Cd) that
admit Hessian structures. Unfortunately, the method presented here is not immediately appli-
cable to a generic case because it essentially relies on a direct computation of the monotone
metrics as well as the radial symmetric structure of the space S(C2) for which the coordinate
transformation (9) is valid. In order to deal with a higher-dimensional quantum state space,
some novel ideas are needed. In what follows, we make a preliminary consideration that may
shed new light on this problem.

LetMbe the totality of monotone metrics onS. The setM is naturally regarded as a convex
set, and the e-representation (3) of X ∈ TρS establishes a one-to-one affine correspondence
between M and F . Further, due to Kubo and Ando’s theory of operator means [20], each
element of F is uniquely represented as

f (t) =
∫

[0,1]
1 + λ

2

(
t

t + λ
+ t

tλ + 1

)
dμ(λ), (15)

where μ is a probability measure on the closed interval [0, 1]. This representation shows that
the set F is a Choquet simplex, and its extreme points are given by

fλ(t) = 1 + λ

2

(
t

t + λ
+ t

tλ + 1

)
, (λ ∈ [0, 1]). (16)

Specifically, the functions

f1(t) = 2t

1 + t
and f0(t) = 1 + t

2

correspond, respectively, to the SLD metric and the real RLD metric.
Now, in view of the decomposition (15), a possible approach to our problem may be

decomposed into two questions as follows.

Problem 1 Do monotone metrics on S represented by the extreme points (16) of F admit
Hessian structures?

Problem 2 Given two Riemannian metrics g(0) and g(1) on a manifold M, both of which
admit Hessian structures, do their convex combinations g(α) := (1 − α)g(0) + αg(1) also
admit Hessian structures?

If both problems are resolved affirmatively, we can conclude that every monotone metric
on a generic quantum state space S admits a Hessian structure. Conversely, if we find a
counterexample to either of these problems, we will get a new perspective on the problem of
flattenability of a Riemannian manifold. These questions are left for future research.
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Appendix

A Proof of (13)

Let us compute the components

gi j (θ) = ∂xλ

∂θ i

∂xμ

∂θ j
gλμ(x)

∣∣∣∣
x=x(θ)

.

For the coordinate transformation xλ = F(R)eθλ
with R = e2θ1 + e2θ2 + e2θ3

, we have

∂xλ

∂θ i
=
(
F(R)δλi + F ′(R)2e2θ i

)
eθλ

.

On the other hand, it follows from (8) that the components gλμ(x(θ)) are written as

gλμ(x(θ)) = h(S)

1 − S2 δλμ + 1 − h(S)

S2(1 − S2)
F(R)2eθλ

eθμ

= h(S)

1 − S2 δλμ + 1 − h(S)

R(1 − S2)
eθλ+θμ

,

where S = √RF(R)2. Thus, a direct computation shows that

gi j (θ) =
∑

λ,μ

(
F(R)δλi + F ′(R)2e2θ i

)
eθλ ×

(
F(R)δμj + F ′(R)2e2θ j

)
eθμ

×
(

h(S)

1 − S2 δλμ + 1 − h(S)

R(1 − S2)
eθλ+θμ

)

= h(S)

1 − S2 F(R)2e2θ i δi j

+ 1

R
(
1 − S2

)
[
(1 − h(S)) F(R)2 + 4RF(R)F ′(R) + 4R2F ′(R)2] e2(θ i+θ j ).

This proves (13).
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