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Abstract The simplest delay differential equation describing the dynamics of non-lethal
infectious diseases in a fixed-size population is extended to include the incubation period,
as an additional delay parameter. It is observed that these types of deterministic models
consist of one delay differential equation, whereas standard SIR and SEIR models consist
of two and three ordinary differential equations, respectively. The extended model presents
interesting peculiarities as, for example, initial oscillatory patterns in the curve counting the
infectious individuals. A comparison of the doubly delayed differential equation with the
standard SEIR model is made. It is argued that self-sustained oscillations, which are intrinsic
properties of models with time delay, have to be taken into account in designing optimal
epidemic containment strategies.

1 Introduction

Recently, due to the pandemic outbreak of COVID-19 [1], infectious disease dynamics has
become an important topic. Decision makers, journalists, and ordinary people have been
exposed to the precise terminology developed during the years to describe the results obtained
by mathematical models dedicated to the way infectious diseases spread in a closed popula-
tion. A rather exhaustive essay on deterministic epidemiological models has been given by
Hethcote [2]. Stochastic [3, 4] and network [5] approaches are also important in providing
a more detailed description of the individual interactions. All these classes of models are
to be considered, in order to acquire a complete picture of spatial and time dependence of
observables, like the number of susceptible, exposed, infectious, or recovered individuals,
during an infectious disease outbreak. Compartmental deterministic models, like SIR and
SEIR models and their extensions [2, 4], are particularly suitable to study optimal strategies
to mitigate the epidemic evolution, and thus they are frequently mentioned in current mass
media debates.

In the last 10 years, there has been a growing interest in epidemiological models, con-
sidering the paramount importance of the sanitary problems related to epidemic outbreaks.
These models have been developed also with the intent of addressing different aspects of
infectious disease dynamics, such as temporary immunity and possible secondary infection
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[6], effectiveness of vaccination strategies [7], seasonal character of epidemic outbreaks [8],
and controllability of chaotic response [9].

As for deterministic mathematical models describing the dynamics of infectious diseases
in a closed population, they are commonly classified using the acronyms SIR and SEIR
[10–13]. In the second class of models, individuals are partitioned in compartments collecting
susceptible (S), exposed (E), infectious (I ), and recovered (R) individuals; in the first, the
exposed (E) class, collecting infected individuals not yet infectious, is not taken in account.

On the other hand, a rather different formulation of the epidemic evolution can be expressed
in terms of delay differential equations. The use of delay differential equations in epidemi-
ology dates back to the pioneering work of Van Der Plank [14] who introduced these mod-
els to describe plant diseases. Van Der Plank work had a limited impact in the context of
human/animal diseases models, probably because the model assumptions are very specific
of plant pathologies. However, in Ref. [15], it has been demonstrated that a variant of Van
Der Plank model is perfectly suited to describe human/animal diseases. In particular, the
Noviello–Romeo–De Luca (NRD) model [15] consists of a single delay differential equation
(DDE). The latter model describes, much in the same way as the SIR model does, the infec-
tious disease dynamics in the absence of an incubation period. Nonetheless, the incubation
period is an essential ingredient in achieving a correct description, prevention, and control of
specific illnesses [16]. Moreover, introduction of this parameter in the model improves the
understanding of disease dynamics.

To add this ingredient, in the present work we extend the NRD model to the case in which
a constant quiescence time tI is present in the system. Differently from the existing models
[17] based on DDE, we look for a minimal model, which is here denoted as NRDE model.
Thus, in the following, we provide a detailed derivation of the NRDE model also discussing
the effects on the dynamics of the two time delays tR and tI .

Therefore, the paper is organized as follows. In Sect. 2 we review the SIR, SEIR, and
NRD models. In Sect. 3 we construct the NRDE model by including an additional delay time
tI in the NRD model. A comparison between SEIR and NRDE models is made in Sect. 4.
Oscillatory patterns in the NRDE model are studied in Sect. 5. Finally, conclusions are drawn
in the last section.

2 The SIR, SEIR, and NRD models

Let us now first consider the SIR and SEIR models. Denoting by S(t), E(t), I (t), and R(t)
the number of individuals belonging to the classes S, E , I , and R, respectively, at time t , by
the closed population assumption (absence of vital dynamics) one can write the following
constraint:

S(t) + E(t) + I (t) + R(t) � N . (1)

Assuming validity of the prey–predator interaction between susceptible and infectious indi-
viduals, the SEIR model can be summarized by the following set of differential equations:

d

dt
S(t) � − β

N
S(t)I (t), (2a)

d

dt
E(t) � β

N
S(t)I (t) − δE(t), (2b)

d

dt
I (t) � δE(t) − γ I (t), (2c)
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where the parameters β, tR � 1
γ

, and tI � 1
δ
, are the effective infection rate, the average

recovery time, and the average duration of the latent period, respectively. Naturally, because
of Eq. (1), it is not necessary to exhibit the fourth differential equation d

dt R(t) � γ I (t) for
the model.

The SIR model can be obtained disregarding the exposed class. In the latter model, by
describing the initial part of the time evolution of the curve I (t), the value of the basic
reproduction number R0 � β

γ
can be associated to two different dynamic regimes of the

system. In fact, in an initial interval of time, where S(t) ≈ N , the number of infectious
individuals is determined by the following differential equation:

d

dt
I (t) � (R0 − 1)γ I (t), (3)

so that the relations R0 > 1 or R0 < 1 imply initial exponential growth or decay of I (t),
respectively, while R0 � 1 implies that the number of infectious individuals is left initially
unaltered.

In the NRD model [15], which is the simplest epidemic model with time delay, it is
necessary to introduce the cumulative function

M(t) � I (t) + R(t), (4)

equivalent to counting all individuals being or having been ill. In this SIR-like model, with
the aid of the average recovery time tR , the functions S(t), I (t), and R(t) can be expressed
as follows:

S(t) � N − M(t), (5a)

I (t) � M(t) − M(t − tR), (5b)

R(t) � M(t − tR). (5c)

Therefore, by substituting in Eq. (2a) the expressions for S(t) and I (t) given in Eqs. (5a)
and (5b), respectively, the model is represented by the following delay differential equation
(DDE):

d

dt
M(t) � β

N
[N − M(t)][M(t) − M(t − tR)]. (6)

The above DDE requires knowledge of the cumulative function M(t) in the time interval
[−tR, 0]. In this respect, the model keeps memory of the history of the function M(t). In
Ref. [15], however, the following simple choice for the function M(t) in the time interval
[−tR, 0] has been made:

M(t) �
{

0 for − tR ≤ t < 0
M0 � I0 � N − S0 for t � 0

. (7)

3 The NRDE model

In Ref. [15], it has been proven that the quantity tR represents a natural time scale and appears
as a constant delay time in the nonlinear differential equation defining the NRD model. In
fact, starting from a semi-continuous analysis of the problem, the authors have shown that a
single globally defined function M(t) can be adopted to describe the dynamics of all classes
of individuals, namely, S, I , and R. The NRD model is similar to the SIR model, sharing
with it the concept of the basic reproduction number R0. Furthermore, the initial conditions
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in the SIR model can be emulated as in Eq. (7). In addition, as for the outcome of the NRD
model, a characteristic S-shaped curve for the number of recovered individuals R(t), similar
to the one obtained for the SIR model, gives the same asymptotic value R∞ for t → +∞.
Both models predict extinction of the illness after a sufficiently long time, with the same
regimes indicated for the SIR model in Sect. 2. Moreover, in the epidemic regime, the time
evolution of the number of infectious individuals I (t) presents an initial exponential increase,
a central peak value and a subsequent decrease to zero. The same behavior can be found in
the corresponding curves obtained by means of the SIR model.

Both SIR and NRD models cannot account for a possible quiescent time of the illness, i.e.,
a period in which an infected individual is not yet infectious. Therefore, an extended NRD
model (NRDE model) needs to be introduced in the same way a SEIR model is developed
starting from a SIR model. In order to develop an extended model, two time delays, i.e.,
tR and tI , need to be considered. Investigation of the dynamic interplay between these two
intrinsic time scales of the system constitutes the main purpose of this work.

In this section, we provide the fundamental time delay equation describing the dynamics
of non-lethal infectious diseases with incubation time tI . We shall show that the NRDE
model reduces to the NRD model by simply setting tI � 0, since the latter time is naturally
conceived as an additional delay in the model. In order to establish this point, we notice that
the recovery time represents the delay with which a susceptible individual from S reaches
class R in the NRD model, passing through class I , there remaining for an average time tR .
In this way, by use of M(t), one can write Eq. (5b) as the difference of two shifted values of
the same cumulative function.

We start by assuming that it is not possible to detect the illness, unless the individual
is infectious, so that individual belonging to class E cannot be detected as such until they
make a transition to class I . Therefore, the cumulative function can be still defined as in
Eq. (4). However, we need to modify Eqs. (5a–c) and write and additional expression for
E(t). For this purpose, we may notice that the expression for the number of infectious and
recovered individuals are unaltered, because of the starting assumption that individuals in
class E are not infectious and can be detected only when they make a transition in the class
I . For the same reason, in order to determine the number of susceptible individuals at time
t , we need to subtract from the total population number N all the individuals in the other
classes. Therefore, since M(t) counts only the infected and recovered individuals at time t ,
we may add to this number the function E(t) by considering all medical records at t + tI . In
this way, we end up with the following relations:

S(t) � N − M(t) − E(t) (8a)

M(t) + E(t) � M(t + tI ) (8b)

By summarizing the dependence of all functions S(t), E(t), I (t), and R(t) on M(t), we
write:

S(t) � N − M(t + tI ), (9a)

E(t) � M(t + tI ) − M(t), (9b)

I (t) � M(t) − M(t − tR), (9c)

R(t) � M(t − tR). (9d)

Having defined the way the number of individuals can be expressed in terms of the cumulative
function M(t), we may specify the history of the disease for t ∈ [−tR, 0]. In order to
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mimic the initial conditions of a SEIR model, for example, we may adopt the same history
described by Eq. (7). However, we remark that the initial history may also play a role in
determining the dynamics of the system and thus this issue deserves further consideration.
Before writing down the dynamic equation for the NRDE model, let us make the following
time transformation:

t ′ � t + tI . (10)

In this way, we first write Eq. (2a) in terms of the new time variable t ′, by writing:

d

dt ′
S
(
t ′
) � − β

N
S
(
t ′
)
I
(
t ′
)
. (11)

By now considering Eqs. (9a), (9c), and (10), we have:

d

dt ′
M

(
t ′
) � β

N

[
N − M

(
t ′
)][

M
(
t ′ − tI

) − M
(
t ′ − tI − tR

)]
. (12)

The history (7) now becomes:

M
(
t ′
) �

{
0 for − (tR + tI ) ≤ t ′ < 0
M0 � I0 � N − S0 for t ′ � 0

. (13)

Let us now define the following dimensionless quantities:

τ � t ′

tR
; τI � tI

tR
; s(τ ) � S(τ )

N
; e(τ ) � E(τ )

N
; i(τ ) � I (τ )

N
; r(τ ) � R(τ )

N
,m(τ ) � M(τ )

N
,

(14)

where the time τ is measured in units of tR and the number of individuals X(τ ) in the generic
class X is expressed more conveniently in terms of the ratio 0 ≤ x(τ ) � X(τ )

N ≤ 1. Because
of Eqs. (14), (12) and (13) can be written as follows:

d

dτ
m(τ ) � R0[1 − m(τ )][m(τ − τI ) − m(τ − τI − 1)], (τ > 0), (15a)

m(τ ) � 0 for τ ∈ [−(1 + τI ), 0[
m(τ ) � m0 � 1 − s0 for τ � 0

, (15b)

where m0 � M0
N and s0 � S0

N .
Furthermore, because of Eqs. (10) and (14), the expressions in Eqs. (9a–d) can be written

as follows:

s(τ ) � 1 − m(τ + τI ), (16a)

e(τ ) � m(τ + τI ) − m(τ ), (16b)

i(τ ) � m(τ ) − m(τ − 1), (16c)

r(τ ) � m(τ − 1). (16d)

Equation (15a, b) and (16a–d) completely define the NRDE model. Examining the main
dynamic features of the model, we may observe that, as in the NRD model, a single DDE is
sufficient to describe the time evolution of the number of individuals in the various classes,
as specified in Eqs. (16a–d). The dynamics is expressed in terms of the same cumulative
function m(τ ) encountered in the NRD model. From Eq. (15a), we may notice that this
function is forced to be a monotonically increasing function. Moreover, m(τ ) is also a non-
negative bounded function. Finally, examining Eq. (15a), one can observe that time evolution
of the system, depending on the specific initial history, may proceed toward two distinct fixed
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points which are reached when either the number of susceptible individuals or the number
of infectious individuals is equal to zero. In this way, m(τ ) cannot show chaos, i.e., long-
term aperiodic behavior [18]. For these reasons the dynamics of the NRDE model, although
presenting peculiar and extremely important fingerprints discussed in the following section,
does not show qualitative differences from the models reviewed in Sect. 3. However, if a
time-discretized version of the model would be developed, starting from Eq. (15a), chaotic
behavior could not be excluded. The latter analysis is beyond the purpose of the present work.

It is worth mentioning that this model shares the same type of limitations of many deter-
ministic compartmental models like, for instance, the SIR and NRD models. In fact, just
to mention a not exhaustive list of limitations, the model disregards vital dynamics, age-
stratified incidence of the disease, detailed diffusion mechanisms on the social network, and
seasonal effects. Despite these limitations, the model presents an intrinsic dynamic richness
and can be further extended to include some of these features. For example, in order to take
account of the age-stratified incidence of the disease, an NRDE model with age-dependent
recovery time can be developed.

4 Comparison between SEIR and NRDE models

The NRDE model relies upon a single time-delay differential equation, namely, Eq. (15a),
and reduces to the NRD model for τI � 0. In the present section we shall look for similarities
and differences between the SEIR and the NRDE models. In fact, the NRDE model can be
considered the time-delayed version of a SEIR model. For this reason, a comparison between
SEIR and NRDE dynamics is appropriate. For this purpose, we shall first investigate the
dynamic properties of the curves i(τ ) and r(τ ); successively, we shall take a close look at
the duration τD of the disease.

Standard numerical routines are used to simulate the time evolution of the observables
i(τ ) and r(τ ), as outcome of the SEIR and NRDE models, starting from a value ofm0 � 0.005
(s0 � 0.995) and R0 � 2.50 to fix our ideas.

In Fig. 1a, b, we show the outcome of the SEIR model for this choice of parameters R0

and s0 and for three different values of τI , namely, τI � 1.00 (brown curves), τI � 1.25
(red curves), and τI � 1.50 (cyan curves). In particular, in Fig. 1a the bell-shaped time
dependence of the quantity i(τ ) is shown. The observed trend in these curves is a gradual
shift of the maximum point to the right, with a concomitant decrease of the maximum value,
as τI increases. In Fig. 1b, on the other hand, the S-shaped curves for r(τ ) are shown. While
the asymptotic value r∞ of these curves remain unaltered for all values of τI , the increasing
ramp shifts to the right as the value of τI increases.

In Fig. 2a, b we show the outcome of the NRDE model for the same choice of the parameters
R0 and s0 and for the same three different values of τI , namely, τI � 1.00 (orange curves),
τI � 1.25 (purple curves), and τI � 1.50 (green curves). In particular, in Fig. 2a, the curves
for i(τ ) are shown. The same qualitative features as in Fig. 1a are present in the global
behavior of these curves. However, an additional oscillating behavior, superimposed to the
bell profile, is detected. This type of behavior will be investigated more closely in the next
section. In Fig. 2b, on the other hand, qualitatively similar S-shaped curves are reported for
this model. We observe that the same asymptotic value r∞ is reached for all values of τI , as
for the SEIR model.

In order to make a close comparison between these two sets of curves, the results obtained,
for the same choice of parameters for the SEIR and the NRDE models, are reported on the
same graph in Fig. 3a–c and in Fig. 4a–c for m0 � 0.005 (s0 � 0.995) and R0 � 2.50.
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Fig. 1 Outcome of the SEIR
model for s0 � 0.995, R0 � 2.50
and for τI � 1.00 (brown
curves), τI � 1.25 (red curves),
and τI � 1.50 (cyan curves). In
(a) and (b) the time evolutions of
i(τ ) and r(τ ) are shown,
respectively

Fig. 2 Outcome of the NRDE
model for s0 � 0.995, R0 � 2.50
and for τI � 1.00 (orange
curves), τI � 1.25 (purple
curves), and τI � 1.50 (green
curves). In (a) and (b) the time
evolutions of i(τ ) and r(τ ) are
shown, respectively
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Fig. 3 Comparison between the
i(τ ) curves obtained by means of
the SEIR and of the NRDE
models for s0 � 0.995,
R0 � 2.50 and for τI � 1.00 (a),
τI � 1.25 (b), and τI � 1.50 (c).
The same choice of colors as in
Figs. 1a and 2a has been made

Therefore, in Fig. 3a–c, we show the i(τ ) curves obtained for the two models for τI � 1.00
(a), τI � 1.25 (b), and τI � 1.50 (c). In these curves we notice that the NRDE model curves
reach higher maximum values and show an increase at earlier times with respect to the SEIR
curves. Thus, even though the curves are qualitatively similar, they differ on the quantitative
point of view.

In Fig. 4a–c the r(τ ) curves obtained for the two models for τI � 1.00 (a), τI � 1.25
(b), and τI � 1.50 (c) are shown. Once again we note that, even though the shape of the
curves is similar, the NRDE model curves show an increase at earlier times with respect
to the SEIR curves. On the other hand, the asymptotic value r∞ reached by the curves is
the same. Therefore, in the epidemic regime, the quantity r∞ shows independence from the
model and from the parameter τI . This same consideration can be extended to the SIR and
NRD models, because of the independence of r∞ on τI . We may therefore give a numerical
account of this aspect, by exhibiting r∞ versus R0 plots at a fixed value of τI and for various
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Fig. 4 Comparison between the
r(τ ) curves obtained by means of
the SEIR and of the NRDE
models for s0 � 0.995,
R0 � 2.50 and for τI � 1.00 (a),
τI � 1.25 (b), and τI � 1.50 (c).
The same choice of colors as in
Figs. 1b and 2b has been made

values of s0. Therefore, in Fig. 5, we show the numerical evaluation of the asymptotic value
r∞ as a function of the parameter R0 as calculated by means of the SEIR and the NRDE
model by taking τI � 1.0 both for s0 � 0.980 and for s0 � 0.999. By these curves we
notice that indeed the output for the SEIR and the NRDE model juxtapose, and for R0 > 2
all points tend to collapse into single spots. By these curves we notice that a rapid increase
of r∞ occurs for R0 > 1, thus giving another way of recognizing the effects of an epidemic
outbreak.

We now consider the duration τD of the disease. In order to make useful predictions, we
introduce an empirical cutoff. In fact, in order to decide when the epidemic outbreak can be
thought to be finished, we may establish that the quantity i(τ ) lye below a small quantity ε,
so that the duration τD is implicitly defined by the following condition:

i(τD) � ε. (17)
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Fig. 5 Asymptotic value r∞ of
the curve r(τ ) as a function of the
parameter R0 for τI � 1.0. SEIR
model: s0 � 0.980 (blue points);
s0 � 0.999 (red points). The
output for the NRDE model
juxtapose to those obtained with
the SEIR model

We can numerically determine the duration of the epidemic regime as predicted by the
SEIR and NRDE models as a function of the parameter R0. Let us then set m0 � 0.005
(s0 � 0.995) and τI � 1.0. Before making a comparison between the SEIR and the NRDE
models, in Fig. 6a, b, we investigate the outcome of the numerical evaluation of the τD
versus R0 dependence for s0 � 0.995 and τI � 1.00 separately for the two models. In
Fig. 6a, predictions obtained by the SEIR model have been reported for the following cutoff
values: ε � 0.0001 (cyan); ε � 0.0005 (blue); ε � 0.0010 (purple). In Fig. 6b, on the
other hand, predictions obtained by the NRDE model have been reported for the following
cutoff values: ε � 0.0001 (orange); ε � 0.0005 (green); ε � 0.0010 (brown). From these
curves, we can once more observe the rather clear distinction between two regions, the first
below and the second above R0 � 1.0. In the first region, we notice a sharp increase of the
duration τD for increasing value of R0 up to a rather high cusp value. In the second region,
on the other hand, an asymptotic decrease of τD for increasing value of R0 is present. As
for the dependence on the cutoff value ε of the plots in Fig. 6a, b, we notice that lower
values of ε imply slightly higher values of τD , as it could be expected. It is important to
stress that the cutoff value ε, comparable with i0, is a measure of the socially acceptable
number of infectious individuals in a given sanitary system. In this way, the parameter ε can
be considered as a tolerable endemic threshold for the illness.

In Fig. 7a–c we compare the behavior of τD versus R0 predicted by the two models.
The same choice of parameters and colors as in Fig. 6a, b has been made. In particular, in
Fig. 7a–c, the τD versus R0 plots are represented, in the order, for ε � 0.0001 (SEIR model in
cyan; NRDE model in orange), for ε � 0.0005 (SEIR model in blue; NRDE model in green),
for ε � 0.0010 (SEIR model in purple; NRDE model in brown). Coherently with what
observed when we have considered the dynamics of the number of infectious individuals,
the τD versus R0 plots obtained by means of the NRDE model lye below those obtained by
the SEIR model, meaning that the duration of the disease predicted by the NRDE model is
lower than the corresponding quantity predicted by the SEIR model.

5 Oscillations in the number of infectious individuals

In the present section, we give an account of the oscillating pattern, superimposed to the
bell-shaped profile, in the initial part of the curve of infectious individuals in the NRDE
model. We start by considering Eq. (15a) and set s(τ ) � 1 − m(τ ) ≈ 1, so that:
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Fig. 6 Duration τD versus R0 of
the disease obtained by means of
the SEIR (a) and of the NRDE
(b) models for s0 � 0.995 and
τI � 1.00. In panel (a) the
correspondence between colors
and ε values is as follows:
ε � 0.0001 (cyan); ε � 0.0005
(blue); ε � 0.0010 (purple). In
(b) the correspondence between
colors and ε values is as follows:
ε � 0.0001 (orange); ε � 0.0005
(green); ε � 0.0010 (brown)

d

dτ
m(τ ) ≈ R0[m(τ − τI ) − m(τ − τI − 1)] (18)

This assumption is justified by the fact that, being in general very low the value of m0 � i0 �
1 − s0, the number of susceptible individuals can be initially taken almost equal to N , so that
s(τ ) ≈ 1, as set above. Let us now assume that the initial form of the function is given by an
oscillating pattern superimposed to an exponential growth (we shall only take into account
the epidemic regime), so that we set:

m(τ ) ≈ Ae(α+iω)τ + Beβτ . (19)

where A, α, ω, B, β are real constants. By substituting the above expression in Eq. (16), we
have:

A(α + iω) + Bβeβτ ≈ R0Ae
−(α+iω)τI

[
1 − e−(α+iω)

]
+ R0Be

βτ e−βτI
[
1 − e−β

]
. (20)

By now equating the factors of the coefficients A and B, we obtain the following two equa-
tions:

(α + iω)

R0
e(α+iω)τI ≈ 1 − e−iω; (21a)

β

R0
eβτI ≈ 1 − e−β . (21b)

Therefore, if the above set of transcendental equations, for given values of R0 and τI , has one
or more solutions for ω > 0, the curves in the NRDE model will show initial oscillations.
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Fig. 7 Comparison between the
duration τD of the disease
obtained by means of the SEIR
and of the NRDE models for
s0 � 0.995 and τI � 1.00. In
(a) ε � 0.0001; in
(b) ε � 0.0005; in
(c) ε � 0.0010. The choice of
colors is the same as in Fig. 6a, b

It is a rather formidable task to provide an analytic solution of the Eqs. (21a, b). However,
we may attempt to solve these equations by considering α very small, the latter being an
assumption consistent with numerical solutions. In this way, by setting α � 0 in Eq. (21a),
we have:

iω

R0
eiωτI ≈ 1 − e−iω. (22)

By separating the real and imaginary parts in Eq. (22), we have:

sin ω � ω

R0
cos ωτI . (23a)

cos ω � 1 +
ω

R0
sin ωτI . (23b)
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By squaring both members in Eqs. (23a, b) and by summing homologous sides of these
equations, we obtain:

ω

R0

(
ω

R0
+ 2 sin ωτI

)
� 0. (24)

It is here worth to mention that non-trivial solutions of Eq. (24) are possible if the condition
τI 	� 0 is respected. This observation implies the absence of oscillations in the NRD model
as confirmed by numerical simulations (not reported). Discarding the trivial solution ω � 0
in Eq. (24), we focus our attention on the nonzero solutions and write:

sin ωτI

ωτI
� − 1

2R0τI
≡ −γ, (25)

where the constant γ is implicitly defined in Eq. (25). The properties of the oscillating function
sin x
x are well-known in optics [19]. In analyzing this function, we notice that solutions to

Eqs. (25) can be found if the following condition is satisfied:

γ < γ0 ≈ 0.2172, (26)

where −γ0 is the absolute minimum of the function sin x
x . By Eqs. (25) and (26), we obtain

the following threshold condition on τI

τI >
1

2γ0R0
. (27)

The above relation is an interesting result, by which we conclude that oscillatory phenomena
in the time evolution of the function i(τ ) are not present if τI is lower than the threshold value
τ

(c)
I � 1

2γ0R0
. Let us now take R0 � 2.0 and let us investigate the behavior of the functions

m(τ ) and i(τ ) as τI goes through the critical value τ
(c)
I from below. We thus expect that the

curves shown for τI < τ
(c)
I ≈ 1.151 will not show marked oscillatory behavior, contrarily

to those obtained for τI > τ
(c)
I . Therefore, in Fig. 8a, b we report the time dependence of the

quantities m(τ ) and i(τ ), respectively, for s0 � 0.99 and R0 � 2.0. While the precursors of
the oscillatory pattern are less evident in the cumulative function m(τ ) for τI � 1.20, 1.40,
shown in Fig. 8a as purple and green curves, respectively, oscillations are rather pronounced
in Fig. 8b, where the function i(τ ) is shown for the same values of τI with the same color
choice. On the other hand, the orange curves in Fig. 8a, b are only slightly undulated, since
τI � 1.00 < τ

(c)
I . Finally, the cyan curves are almost free of oscillations, given that τI � 0.80.

Having illustrated the properties of the solution of Eq. (21a) under the assumption of very
small decay of the oscillatory pattern, we now proceed by solving Eq. (21b) numerically,
by means of a rather elementary algorithm, which we shall here illustrate. We first solve
Eq. (21b) for the parameter R0 in terms of β and of the parameter τI . We then solve the same
Eq. (21b) for the parameter τI in terms of β and of the parameter R0. In this way, we obtain
the following two functions:

R0 � β

1 − e−β
eβτI ; (28a)

τI � 1

β
ln

(
1 − e−β

β
R0

)
. (28b)

We restrict our analysis to cases with β > 0, so that, by Eq. (28a), we obtain R0 > 1,
coherently with the hypothesis of epidemic regime. Therefore, we first find the R0 versus
β dependence numerically by Eq. (28a), obtaining a finite set of values (βk, R0k). It is
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Fig. 8 Time evolution of the
functions m(τ ) (a) and i(τ ) (b),
obtained by means of the NRDE
model for s0 � 0.99 and
R0 � 2.00. The incubation
period has the following duration:
τI � 0.80 (cyan curve);
τI � 1.00 (orange curve);
τI � 1.20 (purple curve);
τI � 1.40 (green curve)

then only a matter of exchanging the position of βk and R0k in the table to get the inverse
relation (R0k, βk). This dependence is shown in Fig. 9a for various value of τI . All curves
in Fig. 9a originate at R0 � 1, since we have chosen to only consider epidemic outbreaks.
The parameter τI acts as a moderating factor in the dynamics of the disease at an initial stage
of the epidemic outbreak. In fact, the values of β tend to decrease as τI increases, since the
curve in Fig. 9a tend to flatten for increasing values of τI .

Following a similar reasoning, we obtain the curves shown in Fig. 9b. This time we need
to consider Eq. (28b) and set τI > 0, since the disease cannot appear before the contact
between an infectious and a susceptible individual takes place. Therefore, in order to fulfil
this requirement, by Eq. (28b) we set:

β

1 − e−β
< R0. (29)

Taking into account this constraint and applying the same procedure indicated in getting the
R0 versus β plots, we obtain the curves shown in Fig. 9b. Naturally, we once again recover the
fact that, at fixed values of R0, the quantity τI acts as a moderating factor in the exponential
growth of the cumulative function m(τ ).

We may here mention that the observed oscillatory patterns in the curves in Fig. 8b does
not arise from stochastic or seasonal effects, as in Ref. [4], but they are intrinsic self-sustained
phenomena originated by the interplay between the two delay times present in the model.
Moreover, the memory effects introduced in the present work are rather different from those
considered in Ref. [4]. In fact, in the latter work memory effects originate from introducing
the notion of fractional derivative into the dynamics of a SIR-type model. Therefore, while
the memory effects in the NRDE model are determined by the illness characteristic times, i.e.,
the recovery time tR and the incubation time tI , fractional derivative based models induce
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Fig. 9 In (a) the parameter β is shown as a function of R0 for the following values of τI (top to bottom): 0.00,
0.05, 0.30, 0.50, 1.00, 1.50. In (b) the parameter β is shown as a function of τI for the following values of R0
(bottom to top): 1.25, 1.50, 2.00, 2.50, 3.00, 3.50

memory effects which are not directly related to these characteristic times. Despite these
differences, it could be useful to introduce, in continuous retarded compartmental models,
the seasonality properties of infectious diseases considered in Ref. [4].

6 Conclusion

The NRD model [15], describing the time evolution of non-lethal infectious diseases in a
fixed-size population of N individuals, has been reconsidered by introducing a quiescent time
tI . In this way, an NRDE model is obtained from which the NRD model can be recovered
by setting tI equal to zero. Therefore, the NRDE model can be considered as a non-trivial
extension of the NRD model, in much the same way the SEIR model generalizes the SIR
model.

We have found that the period of incubation of the illness provides new features in the
dynamics of the infectious diseases with time delay. In fact, it is seen to affect the duration
of the disease and the initial exponential growth of the cumulative function m(τ ) during an
epidemic outbreak.

When comparing the NRDE model to the SEIR model, analogies and differences between
these two deterministic compartmental models are detected. The main analogy is the estimate
of the asymptotic value r∞ of the curves describing the ratio r(τ ). In fact, despite the different
dynamic evolution of these curves, the quantity r∞ remains unaltered for epidemic outbreaks
for all values of τI . This feature is also shared by the SIR and the NRD models. As far as
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the dependence on R0 of the duration τD of the disease is concerned, both the SEIR and
the NRDE models predict similar patterns, even though the NRDE estimate of τD is slightly
lower than the value predicted by the SEIR model. Among other analogies we may also
mention the qualitative overall behavior of the curves describing the time evolution of the
number of susceptible, infectious, and recovered individuals.

Interestingly, we have found that an oscillatory pattern superimposed to the bell-shaped
profile of the i(τ ) curves is a distinctive feature of the NRDE model. Self-sustained oscil-
lations are an important dynamical fingerprint of the model, deserving further attention.
Indeed, appearance of oscillations in epidemic records can be attributed to spurious effects
or can be confused with the effects of lockdown measures, the latter playing the role of an
external time-dependent driving for the dynamical system. Systems displaying self-sustained
oscillations can evidence complicated response to a time-dependent driving. In fact, forcing
terms can stabilize oscillating solutions also when they are not expected in static conditions.
These arguments are to be taken into account in order to design optimal strategies to mitigate
the effects of the epidemic evolution. The effectiveness of such strategies, which are studied
by system control theory, is strongly dependent on the specific epidemic model considered.
Deterministic compartmental models are the natural testbed to implement optimal strategies.
In view of the dynamical richness of NRD and NRDE model, the interplay between time-
dependent forcing terms and memory effects (originated by the characteristic delay times)
could force to modify the optimality criteria of epidemic containment strategies, as done, for
example, in Ref. [4]. In view of its relevance, the forced response of delay epidemic models
needs to be investigated in future works.
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