Skip to main content
Log in

The explicit approximation approach to solve stiff chemical Langevin equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The chemical Langevin equations are reputable simulation schemes to explore the dynamics of chemical systems. We propose a new approach to simulate stochastic equations in stiff chemical reactions. The solution procedure is based on the Euler–Maruyama scheme and exponential term. The efficiency and accuracy of our method are studied by two numerical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: No associated data are related to this manuscript.]

References

  1. A. Duncan, R. Erban, K. Zygalakis, J. Comput. Phys. 326, 398 (2016). https://doi.org/10.1016/j.jcp.2016.08.034

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Gao, D. Jiang, Physica A 524, 601 (2019). https://doi.org/10.1016/j.physa.2019.04.218

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Gao, L. Zhang, H. Liu, B. Kan, Eur. Phys. J. Plus 132, Article ID 2 (2017). https://doi.org/10.1140/epjp/i2017-11273-7

  4. X. Han, M. Valorani, H.N. Najm, J. Chem. Phys. 150, Article ID 194101 (2019). https://doi.org/10.1063/1.5093207

  5. B. Kafash, R. Lalehzari, A. Delavarkhalafi, E. Mahmoudi, MATCH Commun. Math. Comput. Chem. 71, 265 (2014)

    Google Scholar 

  6. N.A. Khan, F. Riaz, F. Sultan, Eur. Phys. J. Plus 129, Article ID 18 (2014). https://doi.org/10.1140/epjp/i2014-14018-2

  7. P. Kim, H.C. Lee, MATCH Commun. Math. Comput. Chem. 71, 57 (2014)

    MathSciNet  Google Scholar 

  8. T. Li, J. Li, MATCH Commun. Math. Comput. Chem. 78, 281 (2017)

    ADS  MathSciNet  Google Scholar 

  9. S.V. Mousavi, S. Miret-Artés, Eur. Phys. J. Plus 134, Article ID 311 (2019). https://doi.org/10.1140/epjp/i2019-12672-4

  10. T. Perez-Acle, I. Fuenzalida, A.J.M. Martin, R. Santibañez, R. Avaria, A. Bernardin, A.M. Bustos, D. Garrido, J. Dushoff, J.H. Liu, Biochem. Biophys. Res. Commun. 498, 342 (2018). https://doi.org/10.1016/j.bbrc.2017.11.138

    Article  Google Scholar 

  11. S. Qureshi, S. Aziz, Physica A 542, Article ID 123494 (2019). https://doi.org/10.1016/j.physa.2019.123494

  12. M. Taheri, K. Nouri, Y. Asgari, Z. Zabihinpour, M. Sadeghi, MATCH Commun. Math. Comput. Chem. 81, 177 (2019)

    Google Scholar 

  13. J. Wang, X. Guo, H. Yu, C. Liu, B. Deng, X. Wei, Y. Chen, Chaos Solitons Fractals 60, 40 (2014). https://doi.org/10.1016/j.chaos.2014.01.005

    Article  ADS  MathSciNet  Google Scholar 

  14. D.A. Mc Quarrie, J. Appl. Probab. 4, 413 (1967). https://doi.org/10.2307/3212214

    Article  Google Scholar 

  15. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, New York, 2004)

    Book  Google Scholar 

  16. F. Zhang, L. Chen, Y.N. Li, B.X. Wu, Z.S. Cai, X.Z. Zhao, Chaos Solitons Fractals 15, 679 (2003). https://doi.org/10.1016/S0960-0779(02)00163-7

    Article  ADS  Google Scholar 

  17. D.T. Gillespie, J. Chem. Phys. 113, Article ID 297 (2000). https://doi.org/10.1063/1.481811

  18. S. Smith, C. Cianci, R. Grima, J. Chem. Phys. 143, Article ID 214105 (2015). https://doi.org/10.1063/1.4936394

  19. S.S. Ahmad, N. Chandra Parida, S. Raha, J. Comput. Phys 228, 8263 (2009). https://doi.org/10.1016/j.jcp.2009.08.002

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Dana, S. Raha, J. Comput. Phys. 230, 8813 (2011). https://doi.org/10.1016/j.jcp.2011.07.032

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Reshniak, A.Q.M. Khaliq, D.A. Voss, G. Zhang, Appl. Numer. Math. 89, 1 (2015). https://doi.org/10.1016/j.apnum.2014.10.005

    Article  MathSciNet  Google Scholar 

  22. S. Ilie, A. Teslya, J. Chem. Phys. 136, Article ID 184101 (2012). https://doi.org/10.1063/1.4711143

  23. V. Sotiropoulos, Y.N. Kaznessis, J. Chem. Phys. 128, Article ID 014103 (2008). https://doi.org/10.1063/1.2812240

  24. H. Lu, P. Li, Comput. Phys. Cmmun. 183, 1427 (2012). https://doi.org/10.1016/j.cpc.2012.02.018

    Article  ADS  Google Scholar 

  25. M. Rathinam, L.R. Petzold, Y. Cao, D.T. Gillespie, J. Chem. Phys. 119, 12784 (2003). https://doi.org/10.1063/1.1627296

    Article  ADS  Google Scholar 

  26. M.J. Salehi, H.R. Baghshahi, S.Y. Mirafzali, Eur. Phys. J. Plus 133, Article ID 471 (2018). https://doi.org/10.1140/epjp/i2018-12261-1

  27. D.J. Wilkinson, Stochastic Modelling for Systems Biology (Chapman & Hall/CRC, London, 2006)

    Book  Google Scholar 

  28. D.T. Gillespie, J. Chem. Phys. 115, 1716 (2001). https://doi.org/10.1063/1.1378322

    Article  ADS  Google Scholar 

  29. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992). https://doi.org/10.1007/978-3-662-12616-5

    Book  MATH  Google Scholar 

  30. G.N. Milstein, M.V. Tretyakov, Stochastic Numerics for Mathematical Physics (Springer, Berlin, 2004). https://doi.org/10.1007/978-3-662-10063-9

    Book  MATH  Google Scholar 

  31. B. Øksendal, Stochastic Differential Equations: An Introduction with Applications (Springer, Berlin, 2010). https://doi.org/10.1007/978-3-642-14394-6

    Book  MATH  Google Scholar 

  32. K. Nouri, H. Ranjbar, L. Torkzadeh, Int. J. Comput. Math. 97, 818 (2020). https://doi.org/10.1080/00207160.2019.1589459

    Article  MathSciNet  Google Scholar 

  33. K. Nouri, H. Ranjbar, L. Torkzadeh, Commun. Nonlinear Sci. Numer. Simul. 68, 336 (2019). https://doi.org/10.1016/j.cnsns.2018.08.013

    Article  ADS  MathSciNet  Google Scholar 

  34. D.A. Voss, A.Q.M. Khaliq, Int. J. Comput. Math. 92, 995 (2015). https://doi.org/10.1080/00207160.2014.915963

    Article  MathSciNet  Google Scholar 

  35. X. Wang, S. Gan, D. Wang, BIT 52, 741 (2012). https://doi.org/10.1007/s10543-012-0370-8

    Article  MathSciNet  Google Scholar 

  36. A. Abdulle, A. Blumenthal, Lect. Notes Comput. Sci. Eng. 103, 537 (2015). https://doi.org/10.1007/978-3-319-10705-9_53

    Article  Google Scholar 

  37. A. Abdulle, S. Cirilli, SIAM, J. Sci. Comput. 30, 997 (2008). https://doi.org/10.1137/070679375

  38. A. Abdulle, G. Vilmart, K.C. Zygalakis, SIAM, J. Sci. Comput. 35, 1792 (2013). https://doi.org/10.1137/12088954X

  39. Y. Komori, K. Burrage, BIT 54, 1067 (2014). https://doi.org/10.1007/s10543-014-0485-1

    Article  MathSciNet  Google Scholar 

  40. Z. Yin, S. Gan, Appl. Math. Comput. 256, 630 (2015). https://doi.org/10.1016/j.amc.2015.01.067

    Article  MathSciNet  Google Scholar 

  41. J. Alcock, K. Burrage, BIT. 46, 689 (2006). https://doi.org/10.1007/s10543-006-0098-4

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was in part supported by the Research Council of Semnan University (139704271060) and in part by the Grant 97007950 from Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Nouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, K., Ranjbar, H. & Torkzadeh, L. The explicit approximation approach to solve stiff chemical Langevin equations. Eur. Phys. J. Plus 135, 758 (2020). https://doi.org/10.1140/epjp/s13360-020-00765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00765-2

Navigation