Skip to main content
Log in

The generalized Klein–Gordon oscillator in a cosmic space-time with a space-like dislocation and the Aharonov–Bohm effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, we investigated the quantum behavior of a charged particle that is under the effect of a uniform magnetic external field. We assumed that space-time has a space-like dislocation with an internal magnetic flux. We examined two different types of potential energies that are known as the pseudoharmonic and Cornell-type potential energies, with the nonminimal coupling. We observed the Aharonov–Bohm effect in both cases. We extended the analysis on the energy spectrum functions to the different limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Bruce, P. Minning, Nuov. Cim. A 106, 711 (1993)

    ADS  Google Scholar 

  2. V.V. Dvoeglazov, Nuov. Cim. A 107, 1413 (1994)

    ADS  Google Scholar 

  3. F. Ahmed, Adv. High Energ. Phys. 2020, 5691025 (2020)

    Google Scholar 

  4. R.L.L. Vitória, K. Bakke, Int. J. Mod. Phys. D 27, 1850005 (2018)

    ADS  Google Scholar 

  5. R.L.L. Vitória, K. Bakke, Gen. Relativ. Gravit. 48, 161 (2016)

    ADS  Google Scholar 

  6. R.L.L. Vitória, K. Bakke, Eur. Phys. J. Plus 133, 490 (2018)

    Google Scholar 

  7. K. Bakke, C. Furtado, Ann. Phys. (N. Y.) 355, 48 (2015)

    ADS  Google Scholar 

  8. R.L.L. Vitória, C. Furtado, K. Bakke, Ann. Phys. (N. Y.) 370, 128 (2016)

    ADS  Google Scholar 

  9. A. Boumali, N. Messai, Can. J. Phys. 92, 1460 (2014)

    ADS  Google Scholar 

  10. M. Hosseini, H. Hassanabadi, S. Hassanabadi, P. Sedaghatnia, Int. J. Geom. Methods Mod. Phys. 16, 1950054 (2019)

    MathSciNet  Google Scholar 

  11. R.L.L. Vitória, K. Bakke, Eur. Phys. J. Plus 131, 36 (2016)

    Google Scholar 

  12. J. Carvalho, A.M.M. Carvalho, E. Cavalcante, C. Furtado, Eur. Phys. J. C 76, 365 (2016)

    ADS  Google Scholar 

  13. F. Ahmed, Eur. Phys. J. C 80, 211 (2020)

    ADS  Google Scholar 

  14. J. Carvalho, A.M.M. Carvalho, C. Furtado, Eur. Phys. J. C 74, 2935 (2014)

    ADS  Google Scholar 

  15. Z. Wang, Z. Long, C. Long, M. Wu, Eur. Phys. J. Plus 130, 36 (2015)

    Google Scholar 

  16. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    ADS  MathSciNet  Google Scholar 

  17. M. Peshkin, A. Tonomura, The AharonovBohm Effects (Springer-Verlag, Berlin, 1989)

    Google Scholar 

  18. V.R. Khalilov, Phys. Rev. A 71, 012105 (2005)

    ADS  Google Scholar 

  19. A.V. Turbiner, Commun. Math. Phys. 118, 467 (1988)

    ADS  Google Scholar 

  20. A.G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics (IOP, Bristol, 1994)

    MATH  Google Scholar 

  21. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhäuser, Basel, 1988)

    MATH  Google Scholar 

  22. A.V. Turbiner, Phys. Rep. 642, 1 (2016)

    ADS  MathSciNet  Google Scholar 

  23. M. Znojil, Phys. Lett. A 380, 1414 (2016)

    ADS  MathSciNet  Google Scholar 

  24. C. Quesne, Eur. Phys. J. Plus 132, 450 (2017)

    Google Scholar 

  25. C. Quesne, J. Phys.: Conf. Ser. 1071, 012016 (2018)

    Google Scholar 

  26. M. Znojil, J. Phys. A: Math. Gen. 27, 7491 (1994)

    ADS  Google Scholar 

  27. M. Znojil, Phys. Lett. A 359, 21 (2006)

    ADS  Google Scholar 

  28. B. Gonul, K. Koksal, Phys. Scr. 75, 686 (2007)

    ADS  MathSciNet  Google Scholar 

  29. C. Cari, A. Suparmi, Application of Nikiforov–Uvarov method for non-central potential system solution, in Recent Trends in Physics of Material Science and Technology. Springer Series in Materials Science, vol. 204, ed. by F. Gaol, K. Shrivastava, J. Akhtar (Springer, Singapore, 2015)

    Google Scholar 

  30. O. Bayrak, E. Aciksoz, Phys. Scr. 90, 015302 (2015)

    ADS  Google Scholar 

  31. R.A. Puntigam, H.H. Soleng, Class. Quantum Grav. 14, 1129 (1997)

    ADS  Google Scholar 

  32. W.A. Hiscock, Phys. Rev. D 31, 3288 (1985)

    ADS  MathSciNet  Google Scholar 

  33. B. Linet, Gen. Relativ. Grav. 17, 1109 (1985)

    ADS  MathSciNet  Google Scholar 

  34. E.R.F. Medeiros, E.R.B. de Mello, Eur. Phys. J. C 72, 2051 (2012)

    ADS  Google Scholar 

  35. M.O. Katanaev, I.V. Volovich, Ann. Phys. 216, 1 (1992)

    ADS  Google Scholar 

  36. H. Kleinert, Gauge Fields in Condensed Matter, vol. 2 (World Scientific, Singapore, 1989)

    MATH  Google Scholar 

  37. S. Sargolzaeipor, H. Hassanabadi, W.S. Chung, Comm. Theor. Phys. 71, 1301 (2019)

    ADS  Google Scholar 

  38. K.C. Valanis, V.P. Panoskaltsis, Acta Mechanica 175, 77 (2005)

    Google Scholar 

  39. S. Zare, H. Hassanabadi, M. de Montigny, Gen. Relativ. Grav. 52, 25 (2020)

    ADS  Google Scholar 

  40. R.L.L. Vitória, Eur. Phys. J. C 79, 844 (2019)

    ADS  Google Scholar 

  41. A.L.C. de Oliveira, E.R. Bezerra de Mello, Class. Quantum Grav. 23, 5249 (2006)

    ADS  Google Scholar 

  42. A. Boumali, H. Aounallah, Adv. High Energ. Phys. 2018, 1031763 (2018)

    Google Scholar 

  43. B. Mirza, M. Mohadesi, Commun. Theor. Phys. 42, 664 (2004)

    ADS  Google Scholar 

  44. H. Hassanabadi, S. Sargolzaeipor, B.H. Yazarloo, Few-Body Sys. 56, 115 (2015)

    ADS  Google Scholar 

  45. C. Furtado, F. Moraes, J. Phys. A: Math. Gen. 33, 5513 (2000)

    ADS  Google Scholar 

  46. J.D. Stack, Phys. Rev. 29, 1213 (1984)

    ADS  Google Scholar 

  47. G.S. Bali, K. Schilling, A. Wachter, Phys. Rev. 56, 2566 (1997)

    ADS  Google Scholar 

  48. J.-L. Domenech-Garret, M.A. Sanchis-Lozano, Comput. Phys. Comm. 180, 768 (2009)

    ADS  Google Scholar 

  49. C. Quigg, J.L. Rosner, Phys. Rep. 56, 167 (1979)

    ADS  MathSciNet  Google Scholar 

  50. M. Chaichian, R. Kögerler, Ann. Phys. 124, 61 (1980)

    ADS  Google Scholar 

  51. G. Plante, A.F. Antippa, J. Math. Phys. 46, 062108 (2005)

    ADS  MathSciNet  Google Scholar 

  52. G. Maitland, M. Righby, E.B. Smith, W.A. Wakeham, Intermolecular Forces: Their Origin and Determination (Oxford University Press, Oxford, 1987)

    Google Scholar 

  53. T. Chakraborty, Commun. Cond. Math. Phys. 16, 35 (1992)

    Google Scholar 

  54. S. Erkoc, R. Sever, Phys. Rev. 37, 2687 (1988)

    ADS  Google Scholar 

  55. A. Shigeru, J. Math. Chem. 41, 3 (2007)

    Google Scholar 

  56. K.J. Oyewumi, K.D. Sen, J. Math Chem. 50, 1039 (2012)

    MathSciNet  Google Scholar 

  57. S. Ikhdair, R. Sever, J. Mol. Struct. (Theochem) 806, 155 (2007)

    Google Scholar 

  58. K.J. Oyewumi, F.O. Akinpelu, A.D. Agboọla, Int. J. Theor. Phys. 47, 1039 (2008)

    Google Scholar 

  59. O. Aydoğdu, R. Sever, Few-Body Syst. 47, 193 (2010)

    ADS  Google Scholar 

  60. A. Cetin, Phys. Lett. A 372, 3852 (2008)

    ADS  Google Scholar 

  61. M. de Montigny, S. Zare, H. Hassanabadi, Gen. Relat. Grav. 50, 47 (2018)

    ADS  Google Scholar 

  62. V.B. Bezerra, J. Math. Phys. 30, 2895 (1989)

    ADS  MathSciNet  Google Scholar 

  63. P. Sedaghatnia, H. Hassanabadi, F. Ahmed, Eur. Phys. J. C 79, 541 (2019)

    Google Scholar 

  64. H. Panahi, S. Zarrinkamar, M. Baradaran, Chin. Phys. B 24, 060301 (2015)

    ADS  Google Scholar 

  65. M. Baradaran, H. Panahi, Few-Body Syst. 59, 42 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for a thorough reading of our manuscript and for constructive suggestion. This work is supported by the Internal Project, [2020/2209], of Excellent Research of the Faculty of Science of University Hradec Králové. One of the author, B.C. Lütfüoğlu, was partially supported by the Turkish Science and Research Council (TÜBİTAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Lütfüoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lütfüoğlu, B.C., Kříž, J., Sedaghatnia, P. et al. The generalized Klein–Gordon oscillator in a cosmic space-time with a space-like dislocation and the Aharonov–Bohm effect. Eur. Phys. J. Plus 135, 691 (2020). https://doi.org/10.1140/epjp/s13360-020-00721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00721-0

Navigation