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Abstract We demonstrate how quantum walk can simulate exotic cell-like structures for
topological phases and boundary states. These cell-like structures contain the three known
boundary states of Dirac cone, Fermi arc and flat bands alongside of all trivial and non-trivial
phases of BDI family of topological phases. We also characterize the behavior of boundary
states through Bloch spheres. In addition, we investigate the topological phase transitions
and critical behavior of the system that take place over boundary states through curvature
function. We confirm that critical behavior of the simulated topological phenomena can be
described by peak-divergence scenario. We extract the critical exponents and length scale,
establish a scaling law and show that band crossing is 1. Furthermore, we find the correlation
function through Wannier states and show that it decays as a function of length scale.

Topological phases are symmetry-preserving phases of matter that are described by global
topological orders (topological invariants) [1]. Due to these global orders, topological phases
exhibit exotic properties including integer Hall effect [1], fractional charges and magnetic
monopoles [2] and existence of topological insulators [3,6]. The topological phenomena first
were reported in condensed-matter materials such as topological insulators and supercon-
ductors [3–7], and later, they were observed in cold atoms in optical lattices [8,9], phononic
states in mechanical oscillators [10] and photons in quantum walks [11–18]. Specially, the
topological phenomena observed in quantum walks have attracted a lot of attentions. This
is because the controllability over walker’s behavior in quantum walk makes them versatile
simulators of topological phenomena which can be used to suppress limits on the dynamics
of strongly driven systems and observe new features such as the robust edge states [11].

Quantum walks are universal frameworks [19] developed in quantum information and
computation to simulate other quantum systems and phenomena [20,21]. The quantum walk
is the result of driving its protocol. Generally, this protocol consists of coin and shift operators
which are applied on a state of a walker (i.e., a fermion or a photon) repeatedly. The coin
operators modify the internal state of the walker (i.e., spin or polarization), while the shift
operators change walker’s external state (i.e., position or orbital angular momentum) based
on internal states. So far, the quantum walks were utilized to realize all known kinds of
topological phases in one and two dimensions [22–26] and some of three-dimensional ones
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[27] extract topological invariants [28] and investigate bulk-boundary correspondence [29,30]
and topological phase transitions [31,32].

In previous study [33], we confirmed that by utilizing step-dependent coins [34] in split-
step quantum walk, we can simulate exotic cell-like structure for topological phenomena
[33]. In this paper, we mainly focus on these cell-like structures and address the following
issues. First of all, we determine the types of phases and boundary states that are present in
each cell. We confirm that each cell contains two non-trivial phases with different topological
invariants and two trivial ones alongside of two Fermi arc, two flat band and one Dirac cone
boundary states. In addition, we use Bloch spheres to specify the differences in behavior
of different boundary states. Lastly, we investigate the critical behavior of the simulated
topological phenomena through curvature function. We extract critical exponent and length
scale and establish that band crossing is one and a scaling law is valid. Additionally, we show
that characteristic behavior of the curvature and correlation functions highly depends on the
type of the boundary state and the energy of the gap-closer.

T. Kitagawa et al showed that by changing the protocol of the quantum walk from simple-
step (shift-coin operation) into split-step (shift-coin–shift-coin operation), one can further
enrich the phase space and simulates all possible phases in one and two dimensions [22].
Here, we use this modification in the protocol of the walk as well. The walker has one external
degree of freedom (one-dimensional position space) with two internal states. The split-step
protocol of the quantum walk with step-dependent coin is

̂U = ̂S↑̂Cα
̂S↓̂Cβ, (1)

which indicates that one step of quantum walk comprises rotation of internal states with ̂Cβ ,
displacement of its position with ̂S↓, a second rotation of internal states with ̂Cα and finally,

its displacement with ̂S↑. The step-dependent coins are ̂Cβ = e− iTβ
2 σy and ̂Cα = e− iTα

2 σy

with σy being Pauli matrix, T number of the step and α and β rotation angles. The shift

operators are in diagonalized forms of ̂S↑ = e
ik
2 (σz−1) and ̂S↓ = e

ik
2 (σz+1) in which we have

used discrete Fourier transformation (|k〉 = ∑

x e
− ikx

2 |x〉).
Since the quantum walk is done by successive application of its protocol, it is possible

to map the unitary evolution of its protocol to a stroboscopic evolution under an effective
Hamiltonian given by

̂H(k) = i ln ̂U (k) = E(k)n(k) · σ , (2)

where E(k) is the (quasi-) energy dispersion, σ is the Pauli matrices, and n(k) defines the coin
eigenstates at each (quasi-) momentum k. The Hamiltonian has periodicity of H(k + 2π) =
H(k) which enables us to limit momentum to first Brillouin zone, [−π, π]. The protocol
of quantum walk (1) is Hermitian, and its determinant is 1. Consequently, ̂H(k) is traceless
which results in the symmetry of E(k) = E(−k) and E(k) being limited to [−π, π].

There are two internal states; therefore, there are two bands of energy which we obtain as

E(k) = ± cos−1(κακβ cos(k) − λαλβ), (3)

in which cos( T j
2 ) = κ j and sin(

T j
2 ) = λ j where j could be α, β. The energy bands are

gapped, and the gap between them could close. The topological phases are characterized by
gapped bands of energy. In contrast, the boundary states are recognized by gapless energy
bands. Next, we find n(k) in form of

n(k) = ζ

|ζ | , (4)
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in which ζ = (καλβ sin(k), λακβ + καλβ sin(k),−κακβ sin(k)).
The Hamiltonian has particle-hole (̂P ≡ ̂K with ̂K being the complex conjugation opera-

tor), chiral (̂	 = κβσx +λβσz) and time-reversal (̂T ≡ ̂	̂P) symmetries with the symmetries
square to +1. Therefore, the protocol of the quantum walk (1) can simulate BDI family of
topological phases in one dimension. Additionally, due to these symmetries, n(k) is con-
strained to lie on a great circle of the Bloch sphere and winding number becomes topological
invariant. The winding number is specified by number of times n(k) winds around the ori-
gin as k varies in the first Brillouin zone. Since our Hamiltonian is Hermitian, the winding
number is integer in which zero corresponds to a trivial topological phase, while nonzero
indicates non-trivial topological phases [37,38]. The winding number is calculated by

w =
∫ π

−π

[n(k) × ∂kn(k)] · A dk

2π
, (5)

in which A = (κβ, 0, λβ).
To fully characterize the simulated topological phenomena by quantum walk, we obtain

the group velocity as V (k) = ∂k E(k) = ±|nz | which has indication that the value of group
velocity spans [−1, 1]. b) group velocity becomes ill-defined if energy bands close their gap.

Overall, we can set down the following guidelines for distinguishing different simulated
topological phenomena; topological phases are characterized by gapped energy bands with
well-defined n(k), winding number and group velocity. In contrast, the boundary states have
gapless energy bands and ill-defined n(k), winding number and group velocity. The type of
a topological phase is determined by its winding number. On the other hand, different types
of boundary states are categorized based on how the energy bands close their gap. Generally,
we have three types of the boundary states known as Dirac cone (linear dispersive behavior),
Fermi arc (nonlinear dispersive behavior) and flat bands (dispersionless behavior) [35].

To investigate simulable edge states by the protocol of the quantum walk (1), we replace
the second rotation angle, α with a position-dependent one [22]

α = 1

2
(α1 + α2) + 1

2
(α1 − α2) tanh(x/3). (6)

The resultant protocol has all three symmetries of particle-hole, time-reversal and chiral
with the symmetries square to +1. Therefore, we can simulate BDI family of the topological
phases. The new protocol provides a spatially inhomogeneous quantum walk. For our study,
we consider α2 = −α1. Using this scheme, we can create boundaries which has distinctive
topological phases on each side of it. In such cases, a single localized state with energy E = 0
or E = ±π will reside at the boundary. Therefore, we have an edge state with energy E = 0
or E = ±π .

Generally, the topological invariant C for one-dimensional systems can be calculated
using [39]

C =
∫ π

−π

F(k, M)
dk

2π
, (7)

where F(k, M) is referred to as the curvature function and M is a certain parameter deter-
mined by the system under investigation. The topological phase transition is defined as
a certain jump in topological invariant as M tunes up to a critical point Mc. The curvature
function is an even function (F(k0+δk, M) = F(k0−δk, M)) around the point where energy
gap closes. The topological invariant C remains fixed in a topological phase in parameter
space of M , while the profile of F(k, M) modifies. This property is the key ingredient to
investigate topological phase transitions, critical exponent, etc., for topological phenomena.
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The critical behavior of the curvature functions falls into two categories [39]: a) Peak-
divergence scenario in which the curvature function peaks at the gapless point. This is done by
the peak narrowing and increasing its height as the system approaches the critical point (M →
Mc) and eventually the peak diverges and flips sign across the transition. b) Shell-divergence
scenario in which the extremum of the curvature function forms a d − 1-dimensional shell
around gapless point. As M → Mc, the radius of the shell reduces and extremum gradually
diverges and flips the sign across transition point. The first critical behavior happens for linear
band crossing of m = 1, while the second case takes place for higher order of band crossing.

For BDI family of topological phases, the crossing band is m = 2Z+ 1 [39]. Comparing
(7) with (5), we find the curvature function as

F(k, M) = [n(k) × ∂kn(k)] · A, (8)

and the M is parameterized by rotation angles of the coin operators and step number of the
walk.

In our simulation of topological phases, we consider one of the rotation angles to be
linearly related to each other through β = (α + π)/3. The existence of step-dependent coin
introduces dynamicality as a feature for simulated topological phenomena by our quantum
walk. This means at each step, the number of the topological phases, boundary states, edge
states, their types and their places could be controlled by step number of the walk. We focus
on two specific step of the walk: 6th and 8th steps.

In simulation, cell-like structures for topological phases and boundary states emerge (see
Fig. 1a). Each cell is characterized by two flat bands boundary states that act as cell’s walls.
Inside these walls, there are two Fermi arcs with a Dirac cone between them. Each cell
contains two non-trivial phases with winding number +1 and −1, and two trivial phases
(see Fig. 1c). Therefore, each cell contains all three topological phases of the BDI family in
addition to all three types of boundary states available for one-dimensional systems.

The phase structure at each side of boundary states uniquely depends on type of the
boundary state. The neighboring topological phases of flat bands boundary states are non-
trivial ones with the same winding number. In contrast, the Dirac cone boundary states
reside at the border of two trivial phases. Only the Fermi arcs boundary states separate two
distinctive topological phases from one another. Therefore, the topological phase transitions
taking place at flat bands and Dirac cones are between two identical phases, whereas at Fermi
arcs, the type of topological phase changes. It should be noted though that two non-trivial
phases with different winding numbers cannot be in neighboring of each other.

The behavior of the n(k) as k traverses the first Brillouin zone differs for each type of
boundary state (see Fig. 1e). For flat bands, the n(k) would reside only in the origin of the
Bloch sphere. If the boundary state is Dirac cone type, n(k) will span the diameter of the
sphere. Finally, for Fermi arc-type boundary states, n(k) passes the origin and lies on half of
the greatest circle on Bloch sphere.

In case of inhomogeneous quantum walk (position-dependent rotation angle), the bound-
ary states could host edge states with E = 0 and ±π . If we fix the position and vary the
rotation angle through [−π, π], we observe the formation of the cell-like structure for edge
states and topological phases (see Fig. 1b). The cells are identical to previously discussed
ones with the same structure for topological phases, boundary (edge) states and their types
(see Fig. 1d). The only differences lie in the fact that locations (the value of rotation angle)
of boundary (edge) states are modified. It is also possible to invoke bulk-boundary corre-
spondence for picturing the edge states at the interfaces between two phases using guidelines
provided in Ref. [24]. To do so, we use a set of numbers Q0 and Qπ . We choose a point in
parameter space of phase A, connect it to a point in phase B and count the number of times
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(a) (b)

(c)

(e)

(d)

Fig. 1 In a and b, energy as a function of momentum and rotation angle α (β = (α + π)/3) for steps six
(left panels) and eight (right panels) is plotted. In a, we consider the rotation angle to be position-independent.
We recognize cell-like structure in energy diagrams by two gapless flat bands (walls of cell). The interior of
this cell contains one gapless Dirac cone located between two gapless Fermi arcs. In b, we consider rotation
angle to be position-dependent (α = α1 tanh(x/3)) with x = 5. We observe that cell-like structure appears
here as well for boundary (edge) states. In c and d, the winding number (topological invariant) and boundary
(edge) states for two cases of position-independent c and position-dependent d rotation angle α are plotted.
We observe that each cell contains two non-trivial phases with different winding numbers and two trivial ones.
Only for Fermi arc boundary (edge) states, two distinct topological phases reside at neighboring of each other.
In contrast, the phases around flat bands and Dirac cone boundary states are identical. The topological phases
around flat bands are non-trivial ones, while for Dirac cones, they are trivial ones. In e, we have the Bloch
sphere presentation of n(k) (blue curves) as k traverses the first Brillouin zone in a plane orthogonal to A
for 6th step with β = (α + π)/3. The characteristic behavior of n(k) significantly differs for each boundary
states. For flat bands, n(k) resides only at the origin, while in Dirac cone case, it spans the diameter of the
sphere. In case of Fermi arcs, it forms a closed loop passing the origin and over half of the great circle on the
sphere

that the gap around E = 0 and E = ±π closes to obtain Q0 and Qπ . Using the results, we
can recognize differences in both invariants of Q0 and Qπ for gapped phases in different
regions of α1.

In general, we can find the curvature function for these quantum walks as

F(k, α) = − cos(k)λ2ακβ − 2κ2
αλβ

2 sin2(k)κ2
α + 2

(

cos(k)καλβ + λακβ

)2 . (9)

For Fermi arcs and Dirac cones, the energy bands close their gaps at k = kc = 0 and
k = kc = ±π . This indicates that to investigate the limiting behavior of the curvature
function, we should set k = 0 or k = ±π . We consider the k = 0 with β = (α +π)/3 which
leads to followings for critical rotation angles

lim
α→0+ F(kc, α) = lim

α→ π
4

+ F(kc, α) = −∞, (10)
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(a)

(b)

Fig. 2 Curvature function as a function of momentum for different rotation angle of α with β = (α + π)/3,
T = 6 a and T = 8 b. As rotation angle approaches the critical rotation angles (α → αc), the curvature
function peaks and for α = αc , the peak diverges and flips its signs. The critical rotation angles are α = 0
and π/4. Since only one peak emerges in our diagrams, the critical behavior of the system can be described
by peak-divergence scenario and band crossing is equal to one. If the gap-closer happens for E = 0, the peak
of curvature function is negative (positive) before (after) the critical point. The opposite is observed for if the
energy of gap-closer is E = ±π

lim
α→0− F(kc, α) = lim

α→ π
4

− F(kc, α) = ∞, (11)

Additionally, we can confirm that as rotation angles approach to critical rotation angle
where energy gap closes (α ← αc), the curvature function starts to peak at gapless point in
k space parameter (see Fig. 2). The peak diverges when rotation angle becomes the critical
rotation angle and flips its sign as it passes critical point. This is consistent with the results
in Ref. [39]. Since the number of peaks is only one, the critical behavior of the system is
peak-divergence type and the crossing band is one (m = 1). The curvature function has a
Lorentzian shape. This indicates that we can use the Ornstein–Zernike formula to fit its peak

F(kc + δk, α) = F(kc, M)

1 ± ξ2δk2 , (12)

where ξ is length scale. The quantum walk simulates BDI family of topological phases,
and this essentially means Su–Schrieffer–Heeger model. For k = 0, the curvature function
reduces to

F(k = 0, α) = −κα csc

(

T (α + β)

2

)

, (13)

which consequently gives us the length scale as

ξ2 = −1

8
κβ csc2(

T (α + β)

2
)[sin(

T (3α + 2β)

2
)

+3 sin(
T (α + 2β)

2
) + 2λα]. (14)

The length scale and curvature function are both divergent for α = αc. The critical
exponents for this system are read as γ = ν = 1 since F(k = 0, α) ∝ |α − αc|−1 and
ξ ∝ |α − αc|−1. This indicates that the scaling law will be given by γ = ν. In the next step,
we investigate the correlation function for our quantum walks. The correlation function is
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(a)

(b)

(c)

(d)

Fig. 3 Curvature function as a function of momentum for different rotation angle of α with β = (α + π)/3,
T = 6 a and T = 8 b. The correlation function decays as a function of R. The decay rate depends how close
α is to critical point. The characteristic behavior of correlation function depends on type of boundary state;
for Dirac cone boundary state, the decay happens through a strong and slower damped oscillation, while for
Fermi arc boundary state, it happens faster. In addition, the correlation function for Dirac cone boundary state
admits F̃(R, αc − α) = −F̃(R, αc + α), while the same does not hold for Fermi arc boundary state

Fourier transformation of the curvature function using Wannier state which is given by

F̃(R, α) =
∫ 2π

0

dk

2π
F(k, α)eikR, (15)

in which we have used

|R〉 = 1

N

∑

k

eik(r̂−R)|ψk−〉, (16)

where |ψk−〉 is the eigenstate of the Hamiltonian. Using Eq. (12), it is a matter of calculation

to show that the correlation function decays through F̃(R, α) ∝ e− R
ξ . The plotted diagrams

for the correlation function confirm the decay (see Fig. 3). The type of the decay depends
on the type of the boundary state. For Dirac cone boundary state, the decay happens through
a strong damped oscillation and it happens rather slower comparing to Fermi arc boundary
state. For Fermi arc boundary state, the decay happens faster and it is through non-damped
oscillation. The presence of the damped oscillation is rooted in the fact that for Dirac cone
boundary states, the curvature function forms additional peaks at k = ±π due to simultaneous
gap-closer at k = 0 and ±π . In addition, the correlation function for Dirac cone boundary
state admits F̃(R, αc −α) = −F̃(R, αc +α) which is also evident from plotted diagrams in
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Fig. 3a and 3c. In contrast, such equality does not hold for correlation function of the Fermi
arc boundary states (see Fig. 3b, d).

As final remarks, we should address phase transition points located at flat bands boundary
states. The peak-divergence scenario and curvature function cannot be applied for investigat-
ing the critical behavior of the system with flat bands. At the heart of method using curvature
function lies the dependency on the momentum, k. The flat bands in one-dimensional systems
are independent of the k [33]. Therefore, we cannot use this method to investigate critical
behavior. All of the discussions that we have presented here for T = 6 can be applied for
T = 8 and also in the case of position-dependent rotation angle. The results would be similar
to those discussed for T = 6 with consideration of modifications in gapless energy bands
that would take place.

In conclusion, we showed that utilization of the step-dependent coins in quantum walk
could result in formation of novel cell-like topological structures. These cell-like topological
structures contain all possible boundary (edge) states alongside of all topological phases of
BDI family. Due to dynamicality introduced by step-dependent coins, the cell-like struc-
ture would emerge in different steps. This enables us to use the step number as a mean to
simulate desirable number of cell-like structures with optimized interior topological phases
and boundary (edge) states. In addition, we used the Bloch sphere presentation of n(k) to
highlight differences between different boundary states. Next, we used curvature function
to investigate topological phase transitions and the critical behavior of the simulated topo-
logical phenomena. We confirmed that critical behavior of the system could be described by
peak-divergence scenario. In addition, we showed that the band crossing for these critical
behaviors is one. We calculated length scale, extracted critical exponents and validate the
scaling law. Finally, we obtained the correlation function through Fourier transformation of
Wannier states and showed that it decays as a function of the length scale. The characteristic
behavior of decay for Fermi arc and Dirac cone boundary states was quite different due to
the geometry of their gap-closer.
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