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Abstract In this paper, we present a new approach to deterministic modelling of COVID-19
epidemic. Our model dynamics is expressed by a single prognostic variable which satisfies
an integro-differential equation. All unknown parameters are described with a single, time-
dependent variable R(t). We show that our model has similarities to classic compartmental
models, such as SIR, and that the variable R(t) can be interpreted as a generalized effective
reproduction number. The advantages of our approach are the simplicity of having only one
equation, the numerical stability due to an integral formulation and the reliability since the
model is formulated in terms of the most trustable statistical data variable: the number of
cumulative diagnosed positive cases of COVID-19. Once this dynamic variable is calculated,
other non-dynamic variables, such as the number of heavy cases (hospital beds), the number
of intensive-care cases (ICUs) and the fatalities, can be derived from it using a similarly
stable, integral approach. The formulation with a single equation allows us to calculate from
real data the values of the sample effective reproduction number, which can then be fitted.
Extrapolated values of R(t) can be used in the model to make reliable forecasts, though under
the assumption that measures for reducing infections are maintained. We have applied our
model to more than 15 countries and the ongoing results are available on a web-based platform
[1]. In this paper, we focus on the data for two exemplary countries, Italy and Germany, and
show that the model is capable of reproducing the course of the epidemic in the past and
forecasting its course for a period of four to five weeks with a reasonable numerical stability.

1 Introduction

Our primary aim is to set up a deterministic model that can be easily tuned with available
data in order to make numerically stable forecasts. We found that existing methods are not
well suited to reach this goal.

Empirical top-down modelling, i.e., approaches that start from data and make prognoses,
mostly ignores underlying dynamics. The easiest approach is curve fitting of available data.
In [2] the number of cumulative diagnosed positive COVID-19 cases P(t) was assumed to be
an error function. This is true if the number of daily new cases P ′(t) (prime denotes derivative
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with respect to t) can be described by a Gaussian distribution. As we will show, a symmetric
distribution function P ′(t) corresponds to an effective reproduction number that converges
rapidly to zero. This might be true for China data. In Italy and Germany we observed a final
(at the time of writing) value for Reff between 0.6 to 0.8, leading to an asymmetric function
P ′(t) with a long tail. Although the peak date has been predicted well in [2], the predicted
total cases and fatalities differ by more than 30%.

Current deterministic models were developed with the aim of simulating possible scenarios
and showing the effect of containment and mitigation measurements. They are “bottom-up”
in the sense that they are based on the knowledge of typical epidemiological parameters,
such as the basic reproduction number R0 or the time between contacts Tc, just to name a
few. However, three reasons make it difficult to set up these complex models for forecasting:

– The epidemiological parameters are unknown and change in time;
– For most of the compartmental model variables, such as susceptible, exposed, infected

or removed individuals, the availability of surveillance data is limited;
– Model tuning requires fitting many variables simultaneously—making it difficult to find

an optimum.

In [3] the classical SIR model has been applied to Italy, dividing the country into three
parts: north, centre and south. The problem they face, in our opinion, is that the official
number of infected individuals I contains people who are officially not cured. But in Italy
people enter the statistics as cured when they have been tested as negative twice or even three
times in a week’s distance. Thus, from a dynamic point of view they remain “infected” for
too long. The model cannot capture this feature appropriately and, in order to keep track of
the statistical data, it has to be re-tuned within days.

The German Robert Koch-Institut (RKI) uses an extended SEIR model to show vari-
ous scenarios for the course of the COVID-19 epidemic in Germany by applying different
seasonality of the epidemic and immunity of the population [4].

Another Italian team has set up a model with eight prognostic variables, SIDARTHE [5],
taking also into account asymptomatic cases and detection issues. Again, these efforts allow
precise simulation of scenarios but are difficult to be set up with real data to make forecasts.
The comparison with real data looks good but is restricted to the initial period of the epidemic
when the case numbers grew simply exponential.

In [6] statistical parameters are obtained to feed parametric models, though not explicitly
specified. Ensemble calculations using various data sources and different models allow for
evaluating the statistical spread of the obtained forecasts—a procedure which is widely used
in meteorological forecasting. The overall approach seems successful but remains complex.

Estimates of the disease transmissibility obtained through the evaluation of the time-
dependent reproduction number Rt have been proposed by various authors (see, e.g., [7–9].
Wallinga and Teunis [7] proposed a statistical approach to compute an effective reproduction
number which requires as input only the number of daily cases and the distribution of times
intervals between the appearance of symptoms in primary cases and the onset of symptoms
of secondary cases. The main drawback of this method is that in order to obtain estimates of
R at time t , incidence data from times later than t are required.

To check the efficacy of restrictive measures adopted to contrast infectious disease,
Bayesian estimation of the reproduction number Rt along with Markov chain Monte Carlo
and Monte Carlo sampling are employed in [8] to infer the temporal pattern of Rt up to the
last observation.

Cori et al. define in [9] the instantaneous reproduction number Rt as the ratio of the new
infections at time t to the total infectiousness of infected individuals at the same time. In
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this way, Rt represents the average number of secondary cases that each infected individual
would infect if the conditions remained as they were at time t . It is interesting to note that
infectiousness of each individual is modulated by a weighting infectivity function which
mainly depends on individual biological factors such as pathogen shedding (see also next
Eq. (4)). Forecasting is then based on Bayesian statistical inference which leads to a simple
expression of the posterior distribution of Rt , assuming a prior gamma distribution for Rt

[9].
If data-based forecasts are the primary scope, it seemed reasonable to us developing a

hybrid approach: a simple dynamic model that can be easily tuned with available data. This
goal is obtained with our approach based on a single prognostic variable, which is found to
satisfy an ordinary integro-differential equation.

To our knowledge, there are only a few approaches that are equally simple and effective.
In [10] a delay model is presented with a single prognostic equation that has even an analytic
solution. Arguments and results are comparable to ours, though our integral formulation is
more general and more robust when extracting parameters from available data to feed the
prognostic model. Delay models [11,12] can also be described with several variables and
many parameters, which again makes them difficult to set up as forecasting model.

The paper is organized as follows. In Sect. 2 we derive the model and show that it can be
interpreted as a generalisation of classical compartmental models, such as SIR. Section 3 is
devoted to the analysis of real data from the COVID-19 epidemic in Italy and Germany. A
summary of how the model is capable of handling data from other countries is given in Sect. 4.
We conclude the presentation of our model with some remarks on stability and numerical
robustness in Sect. 5. Finally, some conclusions are drawn in Sect. 6.

2 The model

2.1 Derivation of model equations

Many compartmental models, such as SIR, use deterministic equations for susceptible S,
removed R and currently infected individuals I—all these variables being difficult to obtain
from real data for various reasons. In our opinion, the most reliable statistic variable is the
number of cumulative diagnosed positive cases. We choose this quantity as our model variable
and denote it by P . We are aware of the fact that the diagnosed cases are only a part of all
positive cases but we assume that:

(i) They are a statistically relevant part of the population;
(ii) The fraction of diagnosed to all cases does not change through time and therefore,

(iii) The dynamics applied to the visible part of the epidemic is representative for the entire
epidemic.

Concerning point (ii), at the early stages of the epidemic the fraction of diagnosed cases obvi-
ously increased, also in response to the rapid increasing of the number of tests, reaching then
an approximate stationary value. Variations of this stationary value are, however, negligible
since it soon appeared that a large percentage (up to 80%, depending on the area) of people
testing positive for COVID-19 may be asymptomatic. Therefore, symptom-based screen-
ings, which are the most frequent epidemiologic investigations adopted in many countries,
are likely to miss a lot of them (see [13] and references therein). Though the diagnosed cases
are only a fraction of the total cases, what is important is that the proportion of asymptomatic

123



599 Page 4 of 19 Eur. Phys. J. Plus (2020) 135:599

cases be nearly constant over time (in this regard, see also the interesting simulation study
reported in Web Appendix 8 of [9]).

One of the main objectives of an epidemiological analysis is to give estimates of the repro-
duction number R after restrictive measures (e.g., confinement, social distancing) have been
adopted to limit epidemic spreading. With such constraints, assuming constant environment
and exponential increase in new case counts appears unjustified [14] and a more empirical
data-based approach is more appropriate to follow the temporal evolution of the reproducing
number. We derive our model in a discrete version, using discrete daily values as they are
given by various data sources. Successively, in Sect. 2.2 we illustrate its continuous version.

We refer to Pn as the number of cumulative diagnosed positive cases on day n and to
ΔPn as the number of newly infected COVID-19 cases on day n. We denote by ˜Rn the ratio
between the new cases ΔPn on day n and the weighted sum of new cases on the previous Nr

days:

˜Rn = ΔP̄n
∑Nr−1

i=0 gi ΔPi+n−Nr

, (1)

{gi } being a set of Nr fixed weights with the property
∑Nr−1

i=0 gi = 1, where Nr is the average
number of days until an infectious person is removed from the infection process and ΔP̄n is
a suitable average of ΔPn .

Let us first illustrate the main idea supporting our hybrid approach. The numbers ˜Rn can
be calculated easily from the existing epidemic data. Then, a regression curve R(t) can be
fitted to the set of numbers {˜R j }nj=Nr

, thus providing us with a law, purely based on data, on
how this epidemic variable evolves. The data we observed show that, prior that restrictive
measures have been adopted, ˜Rn has a nearly constant initial value corresponding to the
basic reproduction number R0. Once contact behaviour changes (due to media information,
measurements, quarantine, and so on) from a certain time TQ on, ˜Rn is no longer constant
but manifests an evident decay towards a final asymptotic value. Therefore, we are prompted
to choose the following model to describe the data ˜Rn :

R(t) =
{

R0 for t < TQ,

(R0 − R∞) e−α(t−TQ ) + R∞ for t ≥ TQ,
(2)

α, R0 and R∞ being parameters to be determined from data ˜Rn . Note the difference between
the discrete values ˜Rn , calculated from data by Eq. (1), which show sample fluctuations and
the numbers Rn ≡ R(n), which are the values of the regression curve evaluated at the sample
day t ≡ n. Also note that phases of different severity in mitigation measures lead to small
intermediate plateaus in the time course for ˜Rn . This behaviour of the data was also noted in
[15], especially for what concerns fatalities. Since the steps in ˜Rn are strongly smeared out,
we simply model data by one single step with an asymptotic decay. Obviously, in order to
gain higher accuracy, R(t) could be described with a more complicated, piece-wise defined
function but at the price of introducing additional fitting parameters. The time TQ can be
read rather easily from the course of the data and set approximately as the time when ˜Rn

starts decreasing. Moreover, we will see in the next section that in the special case of constant
weights gi = 1/Nr , the quantity R(t) is actually seen to have the meaning of an effective
reproduction number.
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Resolved for ΔP̄n , Eq. (1) turns into a prognostic model for future infection cases ΔPn
but provides also a model-based, smoothed curve for representing present and past data, i.e.:

ΔPn = Rn

Nr−1
∑

i=0

gi ΔPn+i−Nr . (3)

Introducing weights gi is sensible because clinical data show that the probability to infect
others is not equally distributed over time. The incubation time is known to be between 1 and
14 days, with an average of 5 days [4]. The infectiousness begins probably before symptoms
manifest and is maximal at the beginning of the disease. All these characteristics can be
captured with a suitable choice of the summation weights gi .

The weights gi are samples of an infectivity probability (see, e.g., Fig. 2) over the time
period of Nr days in the past (i.e., t ≤ 0) that we have assumed to be Gamma-distributed
with shape p and rate b. The corresponding probability density function then reads:

g(t) ≡ g(t; p, b) = bp

Γ (p)
(−t)p−1 ebt for t < 0, (4)

b and p being parameters to be fixed on the basis of the biological/clinical data of the disease.
Note the definition of g(t) for negative values of t in order to provide probability values for
the “past time” (see next Eqs. (5) and (6)). A Gamma distribution with suitable parameters
describes well what we know about the temporal distribution of infectiousness of the disease:
no or low infectiousness in the first few days, a rapid slope towards a maximum followed by a
slow decay. Assuming that the infectiousness of a single individual is Gamma-distributed, the
infectiousness of the sum of all individuals is again Gamma-distributed and therefore also the
average infectiousness used in our deterministic model has this characteristic distribution.
The Gamma distribution in the context of epidemic modelling was introduced in [16] for
stochastic epidemic models and later applied in [17] for the derivation of quasi-stationary
distributions of the SIS and SEIS model. The values of the parameters Nr , b and p are given
by the clinical observations and are typical of the disease. In Sect. 3, where we discuss the
epidemiologic data, we used Nr = 14, b = 0.75 and p = 4, which corresponds to the peak
of infectivity after 4 days.

Therefore, we have introduced a prognostic model with six degrees of freedom: three
degree of freedom set by the clinical information, i.e., Nr representing the infection or
removal time in days, p and b for describing the infectivity probability; the other three
degrees of freedom R0, α and R∞, obtained by fitting the regression curve R(t) in (2) to the
data ˜Rn , represent the time dependance of the effective reproduction number upon the social
restrictive measures. The logical steps associated with the proposed model are summarized
in Fig. 1.

The fitting parameters entering the model can be seen either as pure tuning numbers
and also can be interpreted in epidemiological terms. In fact, the model as a whole can be
compared to standard compartmental models, such as SIR, as we will show in the next section.

2.2 Comparison to other models

In order to compare our discrete model to classical continuous deterministic models, we write
Eq. (3) in the following continuous form:

P ′(t) = R(t)
∫ t

t−Tr
P ′(τ ) g(τ − t) dτ, (5)
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Fig. 1 Flow chart of the proposed model

where P(t) is the number of total COVID-19 cases, prime stands for derivative, R(t) repre-
sents, as we will show, an effective reproduction number, Tr is the continuous generalization
of Nr given in Eq. (1) and represents the time during which infected individuals take part in
the infection process, and g(t) is a weighting function representing the infectivity probability:

g(t) : [−Tr , 0] → R+ with
∫ 0

−Tr
g(τ )dτ = 1. (6)

Notice that g(t) is defined for negative values of t , emphasizing thus the fact that the averaging
process described by the integral in (5) works over past times or, roughly speaking, that an
individual found infected at time t (secondary case) has been actually infected some time
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before. Finally, recall that the numbers gi , which appear in (1) and (3), are samples of
probability distribution g(t). It is worth observing that Eq. (5), read as the equation ruling
R(t):

R(t) = P ′(t)
∫ t
t−Tr

P ′(τ ) g(τ − t) dτ
, (7)

can be obtained as a particular case of the renewal equation for the birth process, where P ′(t)
represents the observed birth rates and the time-varying infection rate R(t)g(−τ) refers to
the rate of production by a mother at the (positive) age τ [14,18].

The SIR model The SIR model, initiated by Kermack and McKendrick in 1927 to describe
the plague spread mechanisms in Mumbai [19], is a classic compartmental epidemic model
that works with three prognostic time-dependent variables: the susceptible individuals S(t),
the infected individuals I (t) and the people removed from the infection process r(t). There
are transitions from S to I to r , which lead to the following system of ODE’s [20]:

dS

dt
= −β I S

N
, (8)

dI

dt
= β I S

N
− γ I, (9)

dr

dt
= γ I, (10)

where N = S+ I +r is the total number of population, β = 1/Tc is the contact frequency, Tc
being the average time between contacts and 1/γ = Tr is the mean time between infection
and removal. We skip here the discussion of the SIR model (for further details, the interested
reader is referred to [21]) and ask: How does our model compare to SIR model? For this
purpose, let us rewrite the SIR model in terms of our prognostic variable P(t) = I (t)+ r(t).
If we add Eqs. (9) and (10), we obtain

d(I + r)

dt
= β I S

N
, (11)

which, in terms of P(t), becomes

dP

dt
= β(P − r)S

N
. (12)

Introducing relative susceptible number s = S/N , Eq. (12) can be written in the following
form:

dP

dt
= βsP − βsr. (13)

Now, let us rewrite our model (see Eq. (5)) by splitting the integral into two parts and replacing
g(t) with constant weights g0 = 1/Tr . We have:

dP

dt
= R(t)

1

Tr

∫ t

0
P ′(τ ) dτ − R(t)

1

Tr

∫ t−Tr

0
P ′(τ ) dτ, (14)

which, after integration, yields

dP

dt
= R(t)

Tr
P(t) − R(t)

Tr
P(t − Tr ). (15)
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Comparing the SIR model in the form (13) with our model (15), we can identify

R(t)

Tr
= βs(t), (16)

P(t − Tr ) = r(t). (17)

Recalling the standard definitions, γ = 1/Tr , β = 1/Tc and introducing the basic reproduc-
tion number R0 = Tr/Tc = β/γ , we can state the following epidemiological interpretation
of the parameters:

(i) Since R(t) = β
γ
s(t) = R0s(t), the quantity R(t) assumes indeed the meaning of a

time-dependent effective reproduction number: R(t) ≡ Reff (t) = R0s(t).
(ii) The positive cases P(t − Tr ) correspond to the removed individuals r(t); thus, Tr can be

consequently interpreted as the time until removal from the infection process.

In general, g(t) is not constant and it is typical of the disease. In this case, we can extend what
discussed in point (i) above and give to R(t) the meaning of generalized effective reproduction
number associated with the probability distribution g(t).

Delay models Delay models [22,23] follow essentially the same strategy as SIR, the main
difference being that the removal process is not modelled by a separate variable but with
a time shift in the function describing the number of cumulative cases. In fact, Eq. (15)
is identical to the functional retarded differential equation (11) in [10], with the averaging
weights gi set to the constant value gi = 1/Tr .

The SEIR models The SEIR models (see [20] for a comprehensive review of the fundamental
dynamics of these models) introduce a further group of people, the exposed E, that is, people
who are infected but not yet infectious. This effect is accounted for in our model by excluding
the first days into the integral in Eq. (5) or, equivalently, by using null weights, gi = 0, for
those days. Though, from the clinical observation of the COVID-19 epidemic it seems that
the probability that people are infectious already from the first days after infection [4].

What makes the difference?

1. First of all, our approach does not explicitly model S(t) with a coupled prognostic equa-
tion. This sounds reasonable to us because the assumption that susceptible individuals are
removed only by the infection process is wrong for the current COVID-19 epidemic. In
fact, severe quarantine measures, including lockdowns and social distancing, have been
implemented in almost all countries.

2. Other compartmental models take such measures into account by introducing, e.g., direct
transfers from S to r compartments. However, in our opinion, this makes these models
complicated and hides the fact that political measures and their effects are extremely
difficult to model. Our approach is a very practical one: we do not model S(t). We focus
on R(t), which we have seen being related to the product of the basic reproduction
number R0 and the time-dependent relative susceptible number s(t). We extract R(t)
from real data using our model assumptions and apply a curve fitting procedure to allow
for extrapolation. Therefore, our approach can be called “hybrid”: a mixture of curve
fitting and modelling.

3. By using the number of cumulative diagnosed positive cases P(t) as prognostic variable,
we automatically have the numbers of new infections as ΔPn . In our opinion, this is the
best variable to describe how the epidemic evolves. In SIR models, this number is not
automatically obtained since I represents the “currently infected people” and ΔI is a
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net difference mixing the “new positive cases”, that is, the transfer from S to I , with the
“removed cases”, i.e., the transfer from I to r .

4. By introducing the weights gi we can model the incubation time, namely, the time between
“getting infected” and “being infectious”, as well as the time before detection.

5. We define the removed people r(t), which counts the individuals that no longer take part
in the infection process, as all positive cases P(t − Tr ) at a certain previous time Tr .
Again, we have no prognostic equation for r(t). Therefore, we do not have to model
and elaborate how these individuals are removed from the infection process. We simply
assume they are removed after a certain time Tr because, prior to curing or deceasing,
people are isolated in hospitals or, in the case of weak symptoms, are put into quarantine.

6. Parameters or variables that are not known, such as Tc, R0, S(0) and N , are subsumed into
a single function R(t), which is obtained from real data, without having to speculate on
how it comes about. This makes the model simple—and setting the weights constant—
even simpler so that it can be set up quickly to produce satisfying prognoses.

7. From the comparison with the compartmental SIR models, we see that our epidemio-
logical variable R(t) assume the meaning of generalized effective reproduction number
associated with the infectivity probability g(t), which is typical of the disease.

With these assumptions we have been able to describe the infection process with a single
prognostic variable P(t) in an integro-differential equation. From our perspective, the com-
putation of deceased and cured people is a secondary process, which does not influence the
dynamics of the epidemic. Nonetheless, they are important numbers to know and, however,
they can be simply obtained from P(t), as it will be shown in the next section.

2.3 Secondary variables

The analysis of the “number of fatalities”, “number of cured” and “number of active cases”
follows mutatis mutandis the analysis presented in Sect. 2.

The number of fatalities Let Vn be the total number of deceased individuals on day n from
the beginning of the epidemic. We assume that the casualties on the nth day, i.e. ΔVn , is
related to the weighted sum of new cases over the last NV days, yielding the definition of the
following empirical ratio:

μ̃n = ΔVn
∑NV −1

i=0 hi ΔPn+i−NV

, (18)

where NV is the maximum number of days after which the people decease and the weights
hi allow for taking into account a probability distribution of deceasing. The numbers μ̃n

can be interpreted as case fatality ratios [24]. Similarly to what we have done in Sect. 2, the
values μ̃n can be computed from existing data, and then fitted to a model function μ(t) to
extrapolate future values: μn ≡ μ(tn), where tn is a day in the future. The corresponding
discrete prognostic equation reads

ΔVn = μn

NV −1
∑

i=0

hi ΔPn+i−NV . (19)
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Note that from the analysis of currently available data, it results that the peak of fatalities
lacks about 7-8 days behind the peak of the daily new infections. This has been accounted
for in the weights hi , having set a maximum value at 7-8 days prior to the current day tn .

The number of cured Let Cn denote the number of currently cured individual and ΔCn the
number of new cured individuals at day n. The empirical discrete curing ratio ν̃n can be
defined analogously (see Eqs. 1 and 18):

ν̃n := ΔCn
∑NC−1

i=0 wi ΔPn+i−NC

, (20)

where, as in the previous cases, wi denote suitable weights. Even in this case, the discrete
curing ratio can be fitted with a suitable model function ν(t) to obtain predictions: νn ≡ ν(tn),
which can be used to predict future number of cured people through the relation

ΔCn = νn

NC−1
∑

i=0

wi ΔPn+i−NC . (21)

Active cases The number of currently infected individuals I (t), also known as active cases,
is the difference between all cases P(t) and the deceased and cured cases: I (t) = P(t) −
C(t)−V (t). Note that calculating the number of removed cases in the usual way is not valid
for our model, that is, we have:

r(t) �= C(t) + V (t), (22)

since our removal process is obtained by cutting off the corresponding integral after a removal
time Tr , taking thus into account not only the usual removal processes due to curing and
deceasing, but including even other processes such as quarantine or isolation. However, we
have to guarantee by means of the suitable choice of our tuning parameters that, in the long
term,

r(t) = P(t) = C(t) + V (t) for t → ∞ (23)

since, in this limit, I (t) = 0.

3 Discussion of model results

Data for the COVID-19 epidemic are made available by the John Hopkins University [25] and
coincide, at least for Italy and Germany, with those from Worldometers [26]. The original time
series data show significant weekly fluctuations, hence we only work with 7-day averages,
which acts as a low-pass filter.

3.1 Italy

On the left of Fig. 2 we see the Γ −distributed weights gi we used to obtain the effective
reproduction numbers ˜Rn (see Eq. (1) and the figure caption for numerical details) shown
on the right of the same figure. The integration time is Nr = 14 days, i.e. only individuals
registered positive within this time period actually take part in the (model) infection process.

The effective reproduction numbers ˜Rn are shown for the time period from March, 3 to
April, 14. The data-based ˜Rn are shown with blue dots and the model-fitting curve with the
orange line. The data shows two short plateaus. The first one at R0 ≈ 3.3 represents the
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Fig. 2 Left: Γ -distributed weights used to calculate ˜Rn with p = 4 and b = 0.75 (see Eq. (4)). Right:
effective reproduction number R(t) obtained from data ˜Rn (blue line) and the fitted curve (see Eq. (2)) (orange
line) used to model the epidemic in Italy. R0 = 2.80, α = 0.12, R∞ = 0.75

Fig. 3 Daily positive diagnosed cases ΔP(t) (left) and number of cumulative positive diagnosed cases P(t)
(right) from February 26 to July 1, 2020 in Italy. Only data before the vertical black line, i.e., before April 13,
have been used to tune the model

basic reproduction number before any restrictive measures. The second plateau at R0 ≈ 2.8
represents an intermediate reproduction number before lock down. After three weeks the data
˜Rn seem to settle at a value of about ˜Rn ≈ 0.8. For simplicity we fitted this behaviour with
only one step by Eq. (2), the resulting parameters being: R0 = 2.80, α = 0.12, R∞ = 0.75.
The COVID-19 cases in Italy The daily new diagnosed cases are shown on the left of Fig. 3.
The original time series data show significant weekly fluctuations; therefore, we show only the
7-day average. The model is capable of reproducing the exponential growth in the beginning
of the epidemic, as well as the peak and the slow decay of the curve afterwards. The deviation
of the curve ΔP(t) from the data Δ˜Pn is the consequence of the deviation between ˜Rn and
fitting curve R(t). The cumulative number of diagnosed positive cases P(t) is shown on the
right of Fig. 3. The model curve P(t) follows rather accurately the data ˜Pn . Note that the
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Fig. 4 Left: Gaussian weights hi used to calculate μ̃n with σ = 5 and tshift = 6. Right: case fatality rate μ(t)
obtained from data μ̃n (blue points) and the fitted curve (orange line) used to model the epidemic in Italy

Fig. 5 Daily new fatalities ΔV (t) (left) and cumulative number of fatalities V (t) (right) from February 26 to
July 1, 2020 in Italy. Only data before the vertical black line, i.e., before April 13, have been used to tune the
model

last model-tuning was made on April 13, 2020. Two weeks later the relative deviation of the
cumulative number of cases is about 2%. Approximately 2.5 months later, at the moment of
revision, using the tuning of April, 13 we had a deviation of less than 10%.

Fatalities in Italy On the left of Fig. 4 we see the Gaussian weights hi (see Eq. (18)) used to
obtain the model case fatality rate μ̃n shown on the right of the same figure. The integration
time is Nr = 18 days, i.e., only individuals diagnosed positive within the last 18 days are
considered in the model calculation of fatalities. Note that setting the Gaussian time-shift,
that is the location of the Gaussian peak, at tshift = 6 puts the maximum weight on patients
that have been diagnosed positive 6 days before. This is sensible because the peak of daily
fatalities occurs 6 days after the peak of daily new infections. The number of daily ΔV (t)
and cumulative fatalities V (t) is shown in Fig. 5. The course of fatalities is well represented
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Fig. 6 Left: Γ -distributed weights used to calculate ˜Rn with p = 4 and b = 0.75 (see Eq. (4)). Right:
effective reproduction number R(t) obtained from data ˜Rn (blue line) and the fitted curve (see Eq. (2)) (orange
line) used to model the epidemic in Germany. R0 = 4.10, α = 0.12, R∞ = 0.64

by the model and 14 days after the last model-tuning the relative deviation for the cumulative
number of fatalities is about 2%.

3.2 Germany

On the left of Fig. 6 we see the Γ −distributed weights gi we used to obtain the effective
reproduction numbers ˜Rn shown on the right panel. Again, the integration time is Nr = 11
days.

The effective reproduction number R(t) is shown for the time period from March, 3 to
April, 14. The most restrictive measure in Germany was the school closing on March, 14.
Note that some days before the ˜Rn show a short plateau at R0 ≈ 4.0, which can be interpreted
as the initial basic reproduction number R0 of COVID-19 in Germany.
After three weeks, ˜Rn tends to the asymptotic value of about R∞ ≈ 0.6. We modelled this
behaviour from day March 3, 2020 according to Eq. (1), the parameters being: R0 = 4.10,
α = 0.12, R∞ = 0.64. If we compare this to the analysis of Italy, we note that

1. The initial effective reproduction number R0 was higher in Germany;
2. Its final value R∞ is higher in Italy;
3. The rate parameter α is in both countries approximately the same.

A tentative interpretation can be the following: The initial reproduction number in Germany
was higher because at the beginning of the epidemic the disease spread mainly among young
people coming from skiing resorts in the Austrian Alps. If we assume that social contacts
among young and sporty people are more frequent, this could be an explanation.

Although the measures taken by Italian politicians were more restrictive than in Germany,
the effective reproduction number R∞ at mid April was 30% higher in Italy, leading to a
much slower decay of daily new positive cases ΔP(t).

The COVID-19 cases in Germany The number of daily positive diagnosed cases is shown
on the left of Fig. 7. Original data are shown as a 7-day averages (blue dots). The model
function (orange line) is capable of reproducing the course of the epidemic correctly but
the peak value at March, 30 is underestimated. On the right panel the model function for
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Fig. 7 Daily positive diagnosed cases ΔP(t) (left) and number of cumulative positive diagnosed cases P(t)
(right) from February 26 to July 1, 2020 in Germany. Only data before the vertical black line, i.e., before April
13, have been used to tune the model

Fig. 8 Left: Gaussian weights hi used to calculate μ̃n with σ = 2 and tshift = 10. Right: case fatality rate
μ(t) obtained from data (blue points) and the fitted curve (orange line) used to model the epidemic in Germany

the cumulative number of positive diagnosed cases P(t) reproduces almost exactly the time
course of the data ˜Pn .

Fatalities in Germany On the left of Fig. 8 we see the Gaussian weights we used to obtain
the case fatality rates μ̃n shown on the right panel. The integration time is Nr = 18 days.
Note a time shift of the Gaussian by tshift = 10 days putting a maximum weight on patients
that have been diagnosed positive 10 days earlier, which corresponds to the average time in
hospital before deceasing given by the Robert-Koch Institut [4].

The number of daily and cumulative fatalities for Germany is shown in Fig. 9. The course
of fatalities was not well represented due to a sudden rise in case fatality rate about April,
15. This effect is also visible on the right panel of Fig. 8, where there is a sudden increase
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Fig. 9 Daily new fatalities ΔV (t) (left) and cumulative number of fatalities V (t) (right) from February 26 to
July 1, 2020 in Germany. Only data before the vertical black line, i.e., before April 13, have been used to tune
the model

in the mortality rate. For simplicity we assumed a constant value μ(t) = 0.045 representing
the mean value between the two phases.

Other variables Once the function describing the cumulative positive diagnosed cases P(t)
is known, other variables can be derived, such as the number of:

– Cured individuals,
– Hospital beds needed,
– Intensive care units (ICU’s) needed,
– Active and closed cases,

and so forth. Forecasting these variable is made with an analogous weighted-integral-
approach as for the fatalities, see Sect. 2.3. In Fig. 10 we show an example for the number
of cumulative cured and active cases for Germany. Note that the same diagram for Italy (not
shown) was difficult to obtain because the data of cured cases appeared not to be reliable.
In fact, cured individuals were registered with a very long time delay (as to date of writing,
cured cases made up only 65% of all closed cases).

4 Other countries

We have applied our model to the COVID-19 data made available for other countries by
the European Centre for Disease Prevention and Control [27]. The corresponding graphs are
available on a web platform [1]. Here, we simply summarise the fitting parameters in Table 1.
The date of fitting was April 28, 2020.

The following facts can be observed:

– The lowest final reproduction number is 0.5.
– Some countries, such as Brazil and Sweden, still had R(t) > 1.
– The highest slope can be seen with South Korea, that has quickly introduced severe

measures.
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Fig. 10 Number of cumulative
cured cases Cn from data (yellow
circles) and the model simulation
C(t) (green line), along with the
number of active cases from data
In (blue squares) and the model
simulation I (t) (red line) from
February 26 to June 5, 2020 in
Germany

Table 1 Fitting parameters for
the effective reproduction number
R(t)

Country R0 α R∞

Austria 3.4 0.065 0.50

Belgium 3.2 0.045 0.64

Brazil 3.6 0.075 1.04

France 3.4 0.046 0.52

Germany 4.1 0.12 0.64

Iran 4.7 0.12 0.93

Italy 2.8 0.12 0.75

Russia 3.0 0.018 0.50

South Korea 2.3 0.34 0.76

Spain 2.9 0.074 0.63

Sweden 3.4 0.18 1.14

Turkey 3.9 0.10 0.84

UK 3.2 0.032 0.50

USA 2.8 0.12 0.91

5 Stability of the model

Concerning the numerical error propagation for our model, we expect a high stability due
to its integral formulation. This is important when applying the model to noisy time series
data because the parameters that govern the overall dynamic are not obtained from a single
data point but from a weighted sum of data points, see Eq. (1). We cannot make a theoretical
stability analysis and therefore we limit ourselves to show empirically how P(t) reacts to
small changes in the curve fitting parameters. To this purpose, we individually disturb each
of the parameters R0, α and R∞ associated with the fitting curve R(t) in Eq. (2) by 5% and
observe the resulting change δP in P(t) after 2, 4, 6 and 8 weeks. The results are given in
Table 2.
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Table 2 Model reaction to a 5%-perturbation of the fitting parameters

δP(2 weeks) δP (4 weeks) δP (6 weeks) δP (8 weeks)

δα = +5% 1% 15% 21% 22%

δR0 = +5% 20% 21% 21% 21%

δR∞ = +5% 0% 4% 7% 9%

Table 3 Model reaction to a 10%-perturbation of the fitting parameters

δP(2 weeks) δP (4 weeks) δP (6 weeks) δP (8 weeks)

δα = +10% 2% 26% 35% 38%

δR0 = +10% 43% 46% 47% 47%

δR∞ = +10% 0% 8% 16% 21%

Model deviations remain reasonably limited for mid-term forecasts up to two months. If we
double the perturbation to 10% we observe changes in the cumulative number of diagnosed
positive cases P(t) as shown in Table 3.

It can be noted that doubling the perturbation roughly leads to the doubling of the deviation
of the function. Thus, the model can be seen as numerically robust. The same results are
expected for secondary variables, such as fatalities because they depend linearly on P(t).

6 Conclusions

The main advantage of our approach is the simplicity of its formulation, the precision with
which the real course of significant variables can be reproduced and the effectiveness to make
mid-term forecasts.

We were able to show that our model has similarities to classic compartmental models, in
particular:

– The variable R(t) can be interpreted as an effective reproduction number.
– The limited integration interval in the deterministic equation models the removal process.
– The Gamma−distributed weights account for infectiousness within a latency period,

corresponding to the exposed state of the SEIR model.

Since our model consists of only one deterministic equation it is simpler compared to most
approaches but is nevertheless able to capture the time course of the epidemic. In addition,
the integral formulation leads to a good numerical robustness.

The model contains six parameters: three parameters related to infectiousness, Nr , b and
p, can be set from biological/clinical data typical of the disease; three free parameters, α, R0

and R∞ that can be obtained by the fitting procedure of the set of sample data R̃n . In the case of
extinction of the epidemic outbreak, the parameter R∞ is expected asymptotically to vanish.
A non-null value of R∞ indicates that the epidemics remain “latent”, with a relative small
number of daily positive diagnosed cases for a very long time. This is indeed what seems
to happen in various countries where the primary outbreak has been contained by adopting
(even severe) social restrictive measures. Hence, deviations from a reliable forecasted value
of R∞ could be interpreted as a warning signal of oncoming second epidemic wave [28].
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We applied our model to many countries with a special focus on the data of Italy and
Germany. After extracting the three fitting parameters we have been able to model the course
of the epidemic in both countries rather well. We found it interesting how the parameters
R0 and R∞ differ between the two countries—inviting us to interpret them in terms of
effectiveness of measures, social organisation (in Italy elderly vulnerable people are more
likely found to live with the younger part of the family) as well as the organisation of the
health system.

We set up the hypothesis that three parameters suffice to model the epidemic from the
outbreak, over the period of social distancing measures until the end—under the assumption
that the measures remain effective with respect to infections till the end, i.e., zero new
infections. It remains to be shown that this hypothesis remains valid for longer periods of
time, especially when mitigation measures are loosened.

We hope that our approach facilitates forecasting of ongoing epidemics for long term
periods, providing early warnings of further epidemic waves. Updating the model and re-
tuning is very easy and we collect the results on the website [1].
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