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Abstract Modeling of infectious diseases is essential to comprehend dynamic behavior for
the transmission of an epidemic. This research study consists of a newly proposed math-
ematical system for transmission dynamics of the measles epidemic. The measles system
is based upon mass action principle wherein human population is divided into five mutu-
ally disjoint compartments: susceptible S(t)—vaccinated V (t)—exposed E(t)—infectious
I (t)—recovered R(t). Using real measles cases reported from January 2019 to October 2019
in Pakistan, the system has been validated. Two unique equilibria called measles-free and
endemic (measles-present) are shown to be locally asymptotically stable for basic repro-
ductive number R0 < 1 and R0 > 1, respectively. While using Lyapunov functions, the
equilibria are found to be globally asymptotically stable under the former conditions on R0.
However, backward bifurcation shows coexistence of stable endemic equilibrium with a stable
measles-free equilibrium for R0 < 1. A strategy for measles control based on herd immunity
is presented. The forward sensitivity indices for R0 are also computed with respect to the
estimated and fitted biological parameters. Finally, numerical simulations exhibit dynami-
cal behavior of the measles system under influence of its parameters which further suggest
improvement in both the vaccine efficacy and its coverage rate for substantial reduction in
the measles epidemic.

1 Introduction

Measles is a highly contagious respiratory disease caused by a virus in the Paramyxoviridae
family [1,2]. Clinical symptoms include high fever, cough, conjunctivitis, rhinitis, Koplik’s
spots and maculopapular rash. The incubation period for measles is 10–14 days, and the
infected individuals usually recover in three weeks of illness without undergoing any com-
plications. However, people suffering from malnutrition or vitamin A deficiency are prone
to diarrhea, pneumonia, ear infection, blindness and inflammation of brain [3].

Despite being vaccine preventable, measles continues to pose a serious concern for global
health management. The disease has been a primary cause of morbidity and mortality among
young children under five years of age. The world has faced measles epidemic several times.
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California faced measles epidemic between 1988 and 1990 with over 16,000 cases and
more than 70 deaths reported [4]. In 2018, Madagascar was affected by measles outbreak
which infected 50,000 people and resulted in about 300 deaths, majority of them being
children [5]. According to World Health Organization (WHO), measles caused more than
140,000 deaths in 2018. Although vaccination has resulted in a 73% drop in measles deaths
worldwide between 2000 and 2018, measles is still prevalent in the developing countries in
Asia and Africa [6]. The majority of measles-related deaths occur in countries with poor
health infrastructures and low per capita incomes.

Pakistan is among the highly measles burdened countries in WHO’s Eastern Mediterranean
Region [7]. There are recurrent measles outbreaks in the country every 8–10 years. In 2016,
there were 2845 confirmed measles cases in Pakistan. This number surged to 6791 in 2017
and 33,007 in 2018. These figures account for about 44%, 20% and 51% of the total number
of cases reported in the respective years in the Eastern Mediterranean Region comprising 22
countries. Around 130 children died from the disease in 2017, while the number rose to over
300 in 2018 [8].

Immunization is regarded as one of the most cost-effective and successful public health
interventions. The WHO recommends two doses of measles vaccine for all children. The
first dose given to infants at nine months provides 85% immunity, while a second dose
at the age of twelve months imparts 95% immunity to the disease. A Demographic and
Health Survey conducted in Pakistan during 2017–2018 indicated the nationwide coverage
of the first and second dose of measles vaccine at 73% and 67%, respectively. The survey
illustrated the significant variation in the estimates of vaccine coverage among different
provinces and federal areas in the country with Sindh (61%, 60%), Punjab (85%, 82%),
Khyber Pakhtunkhwa (63%, 50%), Baluchistan (33%, 34%), Azad Kashmir (83%, 75%),
Gilgit Baltistan (66%, 62%) and Federally Administered Tribal Areas (35%, 21%). These
figures are well below the WHO recommended coverage of ≥ 95% for both doses of the
vaccine [9].

The epidemic models help to describe the mechanism of disease spread and evaluate
strategies for the disease control. In recent decades, there has been a growing interest in the
use of deterministic compartmental models to study the dynamics of measles and finding
ways for its control and prevention. For example, in [10], the authors have taken into account
the impact of asymptomatic individuals on measles dynamics. In [11], the authors have shown
that wider distancing between measles-infected and non-infected people proves effective in
controlling the disease spread. Smith et al. [12] and Peter et al. [14] examined the role of
vaccination on measles dynamics. Garba et al. [13] designed a deterministic model to assess
the effect of vaccination and treatment on measles transmission. The effect of quarantine and
treatment on measles spread is studied in [15]. Other significant contributions can be found
in [16–19]. There are a number of case studies found in the literature related to mathematical
study of measles, using deterministic models, focusing different regions of the world, for
example, Madagascar [20], London [21], China [22,23], Kenya [24], Cape Coast [25], Ontario
[26], Italy [27], Taiwan [28], Senegal [29] and Afghanistan [30].

The objective of present study is to find, via mathematical modeling, a public health
strategy based on using vaccine for efficient control of measles in Pakistan. In particular, we
aim to analyze the effect of vaccine efficacy and its coverage in preventing the disease spread
in the country. Our motivation derives from a few studies [31–34] in the literature focused
on deterministic modeling of measles disease in Pakistan. Each of these studies is based on a
four-compartmental SEIR (S-susceptible, E-exposed, I-infectious and R-recovered) model,
and none investigates the role of vaccine efficiency and its coverage rate on the disease
control. The model in this study is an extension of SEIR model that includes a separate
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compartment V for the vaccinated class. The SVEIR model is based on the assumption of
continuous vaccination. The findings of present study may assist government and public
health authorities in formulating strategic vaccination plans to deal with the immunization
gaps and thus prevent measles outbreaks.

This paper is organized as follows. In Sect. 2, model is formulated and estimates are
obtained for the model parameters. Model equilibria are obtained in Sect. 3 along with analysis
of backward bifurcation, local and global stability. Section 4 discusses herd immunity, while
a discussion on sensitivity analysis is carried out in Sect. 5. In Sect. 6, numerical simulations
are presented to study the effects of various model parameters on the dynamics of measles
infection. Conclusion and future research directions are given in Sects. 7 and 8, respectively.

2 Model description

We formulate a deterministic mathematical model comprising five ordinary differential equa-
tions. The total population is divided into five compartments that denote the sub-populations:
susceptible (S), vaccinated (V ), asymptomatic or exposed (E), symptomatic or infectious (I)
and recovered (R). A flow diagram for the model is given in Fig. 1.

The equations describing the model are:

dS

dt
= � − βSI − (ξ + μ)S,

dV

dt
= ξ S − (1 − τ)βV I − μV,

dE

dt
= βSI + (1 − τ)βV I − (α + μ)E,

dI

dt
= αE − (δ + μ)I,

dR

dt
= δ I − μR,

(2.1)

S E

V

I R
β

ξ
β(1 − τ)

α δΠ

μ μ μ μ

μ

Fig. 1 Flow diagram for measles model specified in (2.1)
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with force of infection λ = β I . In (2.1), � denotes the recruitment rate and keeps the total
population N a constant, β the effective contact rate, ξ the vaccination coverage rate, τ the
vaccine efficiency, μ the natural mortality rate, α the rate of developing clinical symptoms
and δ the recovery rate . In this study, the vaccine is assumed to be imperfect, i.e., it does not
provide a 100% prevention of infection. Thus, vaccinated individuals also become infected via
contact with symptomatic individuals. Note that, 0 < τ < 1 (τ = 1 means perfect vaccine,
while τ = 0 represents a vaccine that offers no protection at all). The initial conditions of
the model (2.1) are of the form

S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, I (0) ≥ 0, R(0) ≥ 0. (2.2)

It can be easily shown that the solution of model (2.1) subject to the initial conditions (2.2)
exists and is nonnegative for all t ≥ 0. Further,

	 =
{
(S, V, E, I, R) ∈ R5+ : S(t) + V (t) + E(t) + I (t) + R(t) ≤ �

μ

}
(2.3)

is the positively invariant region for the model (2.1).

2.1 Parameters estimation and curve fitting

One of the most important steps to be taken during model validation is the use of real data
(if available) which assists to get values of some unknown biological parameters used in the
epidemiological model under study. In this connection, real measles incidence cases as given
in Table 1 are used for validation of the proposed measles model and also to obtain best
fitted values of some unknown biological parameters that occur in the model. For the model
in present research analysis, there are seven parameters among which four are to be fitted,
whereas remaining three are estimated such as the natural mortality rateμof a Pakistani is 66.5
years (1.253133e−03 per month) according to WHO data (year-2018) and the population
of Pakistan in 2018 is 207862518 and in this way, the recruitment rate is estimated to be
� = 207862518×μ ≈ 260479. Further, it is also known from [35] that the measles vaccine
is about 97% effective; therefore, the vaccine efficacy τ is estimated to be 0.97. In addition
to these estimated values, values of other parameters are mentioned in Table 2 where the
parameters β (contact rate), δ (recovery rate), α (rate of developing clinical symptoms) and
ξ (vaccination coverage rate) are obtained through parameter estimation technique under
lsqcurvefit routine via MATLAB software. The simulation results obtained for the measles
incidence cases by fitting the proposed model (2.1) with the real statistics of the first 10
months of 2019 are shown in Fig. 2 along with the respective residuals as depicted in Fig. 3.
Figure 2 presents a reasonably good fit thereby including reality to the predictions obtained
from the proposed measles model (2.1). The associated average relative error of the fit using

the formula
1

10

∑10
k=1

∣∣∣ x real
k − xapproximate

k

x real
k

∣∣∣ ≈ 1.4685e − 01 is used to measure goodness of

the fit which is further confirmed by reasonably small relative error’s value (1.4685e−01).

Table 1 Real statistics of measles infected cases from January to October 2019 in Pakistan [36]

Jan Feb Mar Apr May June July Aug Sep Oct

237 252 397 399 276 168 70 28 23 19
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Table 2 Biological parameters used in the proposed epidemic model of measles

Parameter Description Value Source

� Recruitment rate of susceptible humans 260,479 Estimated

μ Natural mortality rate 1.253133e−03 Estimated

τ Efficacy of vaccine 0.97 Estimated

β Measles contact rate 1.60056e−07 Fitted

δ Recovery rate 9.3408 fitted

α Rate of developing clinical symptoms 9.2373e−01 Fitted

ξ Vaccination coverage rate 5.8306e−01 Fitted
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Fig. 2 Fitting the proposed measles model to the real statistical data using parameters from Table 2

3 Equilibria and stability

3.1 Disease-free and endemic equilibrium points

Given that the total population N is a constant, it is possible to obtain disease-free equilibrium
X0 by equating to zero the right side of equations in system (2.1) as

X0 = (S0, V0, E0, I0,R0) =
(

�

ξ + μ
,

ξ�

μ(ξ + μ)
, 0, 0, 0

)
. (3.1)

Next, we compute the basic reproductive ratioR0 using only the two equations corresponding
to compartments E and I from system (2.1) using the next-generation matrix method [37].
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Fig. 3 Residuals for the proposed model using parameters from Table 2

The next-generation matrix is the product of matricesF andV−1 where the matrixF represents
the rate of infection transmission in these compartments, and the matrix V describes all other
transfers across the compartments. The matrices F,V and V−1 are given as

F =
[

0 β�[μ+(1−τ)ξ ]
μ(ξ+μ)

0 0

]
,

V =
[
μ + α 0
−α μ + δ

]
,

V−1 =
[

1
μ+α

0
α

(μ+α)(μ+δ)
1

μ+δ

]
.

The basic reproductive ratio, defined as the spectral radius of the matrix FV−1, is obtained
as

R0 = ρ(FV−1) = αβ�[μ + (1 − τ)ξ ]
μ(ξ + μ)(μ + α)(μ + δ)

. (3.2)

It is easy to prove that if R0 > 1, in addition to the disease-free equilibrium point X0, system
(2.1) also has an endemic equilibrium point X∗ = (S∗, V∗, E∗, I∗, R∗), with
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S∗ = �

β I∗ + ξ + μ
,

V∗ = ξ�

(β I∗ + ξ + μ)[(1 − τ)β I∗ + μ] ,

E∗ = δ + μ

α
I∗,

I∗ =
−A2 +

√
A2

2 − 4A1A3

2A1
,

R∗ = δ

μ
I∗,

(3.3)

where

A1 = β2(1 − τ),

A2 = βμ

(
1 + (1 − τ)

μ + (1 − τ)ξ

(
1 − R0 + (1 − τ)

ξ

μ

))
,

A3 = μ(ξ + μ)(1 − R0).

(3.4)

3.2 Backward bifurcation analysis

In this section, we analyze the model (2.1) for backward bifurcation [38,39]. The phenomenon
occurs in models having multiple endemic equilibria forR0 < 1. Evaluating force of infection
λ at the endemic equilibrium yields following quadratic equation:

aλ2 + bλ + c = 0, (3.5)

with

a = 4β2(1 − τ)2(ξ + μ)(α + μ)(δ + μ),

b = 2β2μ(1 − τ)(ξ + μ)(α + μ)(δ + μ) + 2β2(1 − τ)2(ξ + μ)(α + μ)(δ + μ) − 2αβ3�(1 − τ)2,

c = 4β2μ(1 − τ)(ξ + μ)2(α + μ)(δ + μ)(1 − R0).

Hence, the following theorem is established:

Theorem 3.1 The model (2.1) has

(i) a unique endemic equilibrium state if c < 0,
(ii) a unique endemic equilibrium if b < 0 and c = 0 or b2 − 4ac = 0,

(iii) two endemic equilibria if b < 0, c > 0 and b2 − 4ac > 0,
(iv) no endemic equilibrium otherwise.

Clearly, a > 0 and c > or < 0 according to R0 < or > 1, respectively. Note that case (i)
of Theorem 3.1 suggests the existence of a unique endemic equilibrium for R0 > 1. Further,
case (iii) of the theorem describes the condition for occurrence of backward bifurcation, i.e.,
coexistence of a disease-free and an endemic equilibrium point. To determine whether the
model (2.1) has this phenomenon, the discriminant of Eq. (3.5) is equated to zero and the
resulting equation is solved for critical value of R0, denoted as Rc

0, given by

Rc
0 = 1 − b2

4ak
,

where k = β2μ(1 − τ)(ξ + μ)2(α + μ)(δ + μ). Therefore, backward bifurcation occurs for
Rc

0 < R0 < 1.
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3.3 Stability of equilibrium points

3.3.1 Local stability

Theorem 3.2 The disease-free equilibrium X0 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Proof The Jacobian matrix of the system (2.1) at X0 =
(

�
ξ+μ

,
ξ�

μ(ξ+μ)
, 0, 0, 0

)
is

J (X0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(ξ + μ) 0 0 −β�
ξ+μ

0

ξ −μ 0 −(1−τ)βξ�
μ(ξ+μ)

0

0 0 −(α + μ)
β�(μ+(1−τ)ξ)

μ(ξ+μ)
0

0 0 α −(μ + δ) 0

0 0 0 δ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to verify that three of the eigenvalues of J (X0) are λ1 = −(ξ +μ) < 0, λ2 = λ3 =
−μ < 0 (recall that 0 ≤ τ ≤ 1 and remaining parameters are nonnegative). The remaining
two eigenvalues λ4 and λ5 can be obtained from the equation

∣∣∣∣∣
−(α + μ) − λ

β�(μ+(1−τ)ξ)
μ(ξ+μ)

α −(μ + δ) − λ

∣∣∣∣∣ = 0,

which gives a quadratic equation

λ2 + (α + δ + 2μ)λ + (α + μ)(δ + μ)(1 − R0) = 0, (3.6)

with λ4 and λ5 as its roots satisfying the following:

λ4 + λ5 = −(α + δ + 2μ) < 0,

λ4λ5 = (α + μ)(δ + μ)(1 − R0).
(3.7)

The two conditions stated in (3.7) imply that both λ4 and λ5 have negative real parts provided
R0 < 1. This proves stability of X0. If R0 > 1, one of λ4 and λ5 has positive real part. In
this case, X0 is unstable. ��

Theorem 3.3 The endemic equilibrium X∗ is locally asymptotically stable if R0 > 1.

Proof The Jacobian matrix of system (2.1) at X∗ = (S∗, V∗, E∗, I∗, R∗) is

J (X∗)=

⎡
⎢⎢⎢⎢⎣

−β I∗ − (ξ + μ) 0 0 −βS∗ 0
ξ −(1 − τ)β I∗ − μ 0 −(1 − τ)βV∗ 0

β I∗ (1 − τ)β I∗ −(α + μ) βS∗ + (1 − τ)βV∗ 0
0 0 α −(μ + δ) 0
0 0 0 δ −μ

⎤
⎥⎥⎥⎥⎦ .
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The characteristic equation for J (X∗) is given by

(λ + μ)(λ4 + P3λ
3 + P2λ

2 + P1λ + P0) = 0, (3.8)

where

P3 = α + δ + ξ + 4μ + (2 − τ)β I∗,
P2 = (α + μ)(δ + μ) − αβ(S∗ + (1 − τ)V∗) + (ξ + (2 − τ)β I∗ + 2μ)(α + δ + 2μ)

+ (μ + ξ + β I∗)(μ + (1 − τ)β I∗),
P1 = (ξ + (2 − τ)β I∗ + 2μ)((α + μ)(δ + μ) − αβ(S∗ + (1 − τ)V∗))

+ (μ + ξ + β I∗)(μ + (1 − τ)β I∗)(α + δ + 2μ) + αβ2(S∗ − (1 − τ)2V∗)I∗,
P0 = (μ + ξ + β I∗)(μ + (1 − τ)β I∗)((α + μ)(δ + μ) − αβ(S∗ + (1 − τ)V∗))

+ αβ2((ξ(1 − τ) + (1 − τ)β I∗ + μ)S∗ − (1 − τ)2(μ + ξ + β I∗)V∗).
(3.9)

From (3.8), an eigenvalue of J (X∗) is λ = −μ < 0. Further, it is easy to verify from the
four equations in (3.9) that

P3 > 0, P0 > 0, (P3P2 − P1)P1 − P2
3 P0 > 0.

Hence, by Routh–Hurwitz stability criterion, the endemic equilibrium point X∗ is locally
asymptotically stable for R0 > 1. ��

3.3.2 Global stability

Theorem 3.4 The disease-free equilibrium X0 is globally asymptotically stable in	 ifR0 ≤
1.

Proof Consider the Lyapunov function

L1 = αE + (α + μ)I. (3.10)

The derivative of this function is

L ′
1 = (αβ(S + (1 − τ)V ) − (α + μ)(δ + μ))I,

= (α + μ)(δ + μ)(R0 − 1)I.

Clearly, L ′
1 ≤ 0 if R0 ≤ 1 with L ′

1 = 0 only for I = 0. The largest compact invariant set
in 	 is the singleton set {X0}. Hence, by LaSalle’s invariance principle [40], X0 is globally
asymptotically stable in 	. ��
Theorem 3.5 The endemic equilibrium X∗ is globally asymptotically stable in	 forR0 > 1.

Proof Consider the following function

L2 = S − S∗ − S∗ log
S

S∗
+ V − V∗ − V∗ log

V

V∗
+ E − E∗ − E∗ log

E

E∗

+α + μ

α

(
I − I∗ − I∗ log

I

I∗

)
. (3.11)

Taking derivative of this function, we obtain
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L ′
2 =

(
1 − S∗

S

)
S′ +

(
1 − V∗

V

)
V ′ +

(
1 − E∗

E

)
E ′ + α + μ

α

(
1 − I∗

I

)
I ′,

=
(

1 − S∗
S

)[
� − βSI − (ξ + μ)S

]

+
(

1 − V∗
V

)[
ξ S − (1 − τ)βV I − μV

]

+
(

1 − E∗
E

)[
βSI + (1 − τ)βV I − (α + μ)E

]

+ α + μ

α

(
1 − I∗

I

)[
αE − (δ + μ)I

]
.

It may be noted that

� = β I∗S∗ + ξ S∗ + μS∗, ξ S∗ = (1 − τ)βV∗ I∗ + μV∗,
αE∗ = (δ + μ)I∗, (α + μ)E∗ = β I∗S∗ + (1 − τ)βV∗ I∗.

(3.12)

Substituting the equilibrium relations from (3.12) in the above expression for L ′
2, we obtain

L ′
2 = μS∗

[
2 − S∗

S
− S

S∗

]
+ μV∗

[
3 − S∗

S
− V

V∗
− V∗

V

S

S∗

]
+ β I∗S∗

[
3 − S∗

S
− I∗

I

E

E∗
− I∗

I

S

S∗
E∗
E

]

+ (1 − τ)βV∗ I∗
[

4 − S∗
S

− S

S∗
V∗
V

− I∗
I

E

E∗
− I

I∗
V

V∗
E∗
E

]
.

(3.13)

Using the inequality of arithmetic and geometric means, one can show that

2 − S∗
S

− S

S∗
≤ 0,

3 − S∗
S

− V

V∗
− V∗

V

S

S∗
≤ 0,

3 − S∗
S

− I∗
I

E

E∗
− I∗

I

S

S∗
E∗
E

≤ 0,

4 − S∗
S

− S

S∗
V∗
V

− I∗
I

E

E∗
− I

I∗
V

V∗
E∗
E

≤ 0.

(3.14)

From (3.13) and (3.14), it follows that L ′
2 ≤ 0 for R0 > 1. Furthermore, the equality holds

if and only if S = S∗, V = V∗, I∗
I = E

E∗ . Substituting S = S∗ in the first equation of
(2.1), we get V = V∗, I = I∗, E = E∗ and thus R = R∗. Hence, by LaSalle’s invariance
principle [40], (S, V, E, I, R) → (S∗, V∗, E∗, I∗, R∗) as t → ∞. Therefore, X∗ is globally
asymptotically stable in 	 for R0 > 1. ��

4 Herd immunity

Not everyone in a given population needs to be immunized in order to eliminate the disease.
The fraction of individuals with immunity in the population required to prevent an epidemic
is called herd immunity. Let ρ denote the fraction of population which is vaccinated at X0

(the disease-free equilibrium). Then,

ρ = V0

N0
= ξ

ξ + μ
.
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Table 3 Percent values of ρc corresponding to various values of τ and R̄0

τ R̄0

12 13 14 15 16 17 18

0.95 96.5 97.2 97.7 98.2 98.7 99.1 99.4

0.97 94.5 95.2 95.7 96.2 96.6 97.0 97.4

0.99 92.6 93.2 93.8 94.3 94.7 95.1 95.4

In the absence of vaccination, i.e., when ξ = 0, the basic reproductive number given in
(3.2) reduces to

R̄0 = αβ�

μ(μ + α)(μ + δ)
.

Hence, we can write

R0 = R̄0

(
μ + (1 − τ)ξ

ξ + μ

)
= R̄0(1 − ρτ). (4.1)

It must be noted that R0 ≤ R̄0. The equality holds only when ρ = 0 (i.e., ξ = 0) or
τ = 0. This implies that the vaccine, even not 100% efficient, will certainly diminish the
basic reproductive number of the disease. As R0 ≤ 1 is a necessary and sufficient condition
for the elimination of measles (Theorems 3.2 and 3.4 ), it follows from Eq. (4.1) that

ρ ≥ 1

τ

(
1 − 1

R̄0

)
= ρc (4.2)

is also a necessary and sufficient condition for measles control. Here, ρc denotes herd immu-
nity. Combining Theorems 3.2 and 3.4, we get the following result:

Corollary 4.1 Measles can be eliminated from the population if ρ ≥ ρc.

Table 3 illustrates the threshold values for the herd immunity ρc subject to different values
for τ and R̄0. For instance, if R̄0 = 14 and τ = 0.97, this implies that at least 95.7% of the
population must be vaccinated in order to be a measles-free community. This highlights the
equally important roles of vaccine efficiency and the vaccinated proportion of population in
the disease control. It further suggests that both these parameters must be significantly high
for the disease to be eliminated.

5 Sensitivity analysis of R0

As the initial transmission and persistence of a disease are both dependent on the basic
reproductive number R0, we perform a sensitivity analysis to identify the model parameters
that have the greatest and the least impact on R0. There are various techniques available to
carry out the required sensitivity analysis including the sensitivity heat map method [41],
scatter plots [42], Latin hypercube sampling–partial rank correlation coefficient [43], the
Morris [44] and Sobol’ [45] methods and the normalized forward sensitivity index technique
[46]. In the present study, this is done by computing sensitivity indices of R0 known as
normalized forward sensitivity indices using the following formula:
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Table 4 Sensitivity indices for
R0

Parameters Sensitivity indices

� + 1

μ −0.936782

τ −30.1718

β + 1

δ −0.999866

α 0.00135476

ξ −0.0647072

	
R0
θ = ∂R0

∂θ
× θ

R0
, (5.1)

where θ denotes the model parameter. It has been observed that the basic reproduction number
is highly sensitive to the efficacy of vaccine that requires the most attention in order to stop
the spread of measles epidemic. On the other hand, the parameter α (rate of developing
clinical symptoms) is observed to be least effective parameter toward the basic reproduction
number during forward sensitivity analysis. The sensitivity index of R0 with respect to each
parameter in the model (2.1) is given in Table 4.

	
R0
� = +1 > 0,

	R0
μ = α

α + μ
+ δ

δ + μ
+ μξτ

(μ + ξ)(μ − ξτ + ξ)
− 3 < 0,

	R0
τ = − ξτ

μ + ξ(1 − τ)
< 0,

	
R0
β = +1 > 0,

	
R0
δ = − δ

δ + μ
< 0,

	R0
α = + μ

α + μ
> 0,

	
R0
ξ = − μξτ

(μ + ξ)(μ + ξ(1 − τ))
< 0.

(5.2)

6 Numerical simulations and discussion

Various numerical simulations are carried out in this section to observe impacts of different
biological parameters on the proposed measles model (2.1). In Fig. 4, the burden of the
measles epidemic is observed to have declining behavior if the vaccination coverage rate (ξ)

is improved, whereas this burden is substantially reduced for reasonably small value of the
measles contact rate (β) as shown in Fig. 5. However, these measures are not easy to be taken
in a developing country like Pakistan. Therefore, an effective step could be the improvement
in the efficacy of the vaccine (τ ) which reduces the burden of the epidemic as shown in Fig. 6,
but the government of Pakistan will have to strive for making the vaccine cost-effective in
order to be affordable by people living near the poverty line. On the other hand, improvement
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Fig. 4 Dynamical behavior of infectious population for increasing values of vaccination coverage rate (ξ)

while using parameters from Table 2

in the recovery rate (δ), as shown in Fig. 7, does reduce the epidemic’s burden, but this measure
is not as effective as taking efforts to reduce contacts among infectious and the susceptible
ones. Moreover, the higher the rate of developing clinical symptoms (α) more will be the
number of infectious individuals as theoretically predicted. This theoretical observation is
further confirmed by the infectious population in Fig. 8, but the infection seems to vanish as
time goes by.

In order to further support the analysis and observation regarding the proposed measles
model (2.1), contour plots (Figs. 9, 10, 11 and 12) for the basic reproductive number are
obtained as function of some biological parameters wherein the contact rate (β) is kept
on the vertical axis in an increasing fashion and the parameters τ, ξ, δ, α are set on the
horizontal axis with their increasing values. The most significant observation from these
contour plots is that the burden of the measles epidemic can effectively be reduced by
reasonably increasing the values of τ, ξ, δ, α among which the vaccine’s efficacy (τ ) and
vaccine’s coverage rate (ξ) play important roles. Finally, the small value for the vaccine’s
coverage rate (ξ) is not as bad as the equally small value of the vaccine’s efficacy (τ ) as
depicted in Fig. 13; however, larger value of (τ ) is capable enough to bring R0 straight
toward 0, whereas R0 is not exactly 0 even for the maximum value of (ξ). Thus, the vac-
cine’s efficacy (τ ) plays the most significant role to reduce the burden of the measles epi-
demic.

7 Conclusion

These research findings are about development of a new continuous time-invariant system
for the measles epidemic under vaccination approach. In this regard, we divided the popu-
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Fig. 5 Dynamical behavior of infectious population for decreasing values of measles contact rate (β) while
using parameters from Table 2

lation into five classes of susceptible, vaccinated, exposed, infectious and recovered human
population. Parameters involved in the system are obtained with assistance of parameter
estimation technique under nonlinear least squares fitting strategy which later produced best
fitted curve for the infectious class of the system to the curve of real experimental measles
cases obtained from WHO from the month January 2019 to October 2019, in Pakistan. Thus,
the proposed measles system is validated having reasonably small relative error value of
1.4685e−01.

Two unique steady-state solutions are computed for the measles system which are shown
to be locally and globally asymptotically stable via Routh–Hurwitz stability theory and
Lyapunov functions, respectively, under different constraints imposed upon R0. Thus, the
epidemic is said to have died out for R0 < 1, whereas it persists in the case when R0 > 1.

In addition, the measles system undergoes backward bifurcation wherein a stable endemic
equilibrium is found to coexist with a stable measles-free equilibrium for R0 < 1. The mini-
mum fraction of population that must be vaccinated to achieve herd immunity is determined
which shows that both the vaccine efficiency and the vaccinated fraction must be sufficiently
high for elimination of measles. The sensitivity analysis shows that the parameter for vaccine
efficacy (τ ) is the one taken to be care of which is further confirmed in various numerical
simulations carried out. In addition, there is need to attain higher vaccine coverage rate which
is vital to preventing the disease spread. Hence, vaccine efficacy and its coverage both seem
to have substantially positive roles for effective control and elimination of measles burden in
the suffering community.
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Fig. 6 Dynamical behavior of infectious population for increasing values of vaccine efficacy (τ ) while using
parameters from Table 2
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Fig. 7 Dynamical behavior of infectious population for increasing values of recovery rate (δ) while using
parameters from Table 2
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Fig. 8 Dynamical behavior of infectious population for increasing values of rate of developing clinical
symptoms (α) while using parameters from Table 2

0.2
0.2

0.2

0.2

0.
2

0.4
0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

1

1

1

1.2

1.2

1.4

1.4

1.6

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 10-7

0

0.5

1

1.5

2

Fig. 9 Contour plot of the basic reproductive number R0 as a function of vaccine efficacy (τ ∈ [0, 1]) and
measles contact rate (β ∈ [0, 1e − 07]), whereas the remaining parameters are taken from Table 2

123



Eur. Phys. J. Plus (2020) 135:378 Page 17 of 21 378

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.8

0.
8

1
1

1.
2

1.
4

1.
6

1.
8

2

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1 10-7

0

0.5

1

1.5

2

Fig. 10 Contour plot of the basic reproductive number R0 as a function of vaccine coverage rate (ξ ∈
[0, 0.01]) and measles contact rate (β ∈ [0, 1e − 07]), whereas the remaining parameters are taken from
Table 2

Fig. 11 Contour plot of the basic
reproductive number R0 as a
function of recovery rate
(δ ∈ [0.5, 1]) and measles contact
rate (β ∈ [0, 1e − 07]), whereas
the remaining parameters are
taken from Table 2
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8 Future directions

In future, we aim to work on fractional-order versions of the measles model proposed in this
paper and solve them using the techniques followed in [47–50]. Fractional-order operators
including Weyl, Riesz, Riemann–Liouville, Caputo, Caputo–Fabrizio, Atangana–Baleanu,
Atangana–Gomez, fractal–fractional and others have capability to capture complex and
anomalous behavior of dynamical systems that describe a physical or natural phenomenon.
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Fig. 12 Contour plot of the basic
reproductive number R0 as a
function of rate of developing
clinical symptoms (α ∈ [0, 1])
and measles contact rate
(β ∈ [0, 1e−06]), whereas the
remaining parameters are taken
from Table 2
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Fig. 13 Behavior of the basic reproductive number R0 for increasing values of a vaccine coverage rate
ξ ∈ [0.2, 1] and b efficacy of vaccine τ ∈ [0.2, 1]

The non-local nature of these operators retains memory of the underlying processes which
proves to be fruitful in case of epidemiological models since such models are designed to
comprehend transmission dynamics of an epidemic which, in turn, has characteristics of
memory. Thus, the future works will be devoted to the use of the above operators from frac-
tional calculus for improving the measles system introduced in the present research study.
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