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of Hořava–Lifshitz gravity

Nils A. Nilssona

National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

Received: 13 January 2020 / Accepted: 30 March 2020 / Published online: 15 April 2020
© The Author(s) 2020

Abstract We discuss implications on the H0 tension due to preferred-frame effects in the
context of Hořava–Lifshitz gravity. By using a combination of low-redshift data (Sne1a,
elliptical and lenticular galaxies, GRB’s, and quasars) we discuss the H0 tension and its
appearance as a preferred-frame effect, as well as present new constraints on the model
parameter λ; moreover, from the structure of the Friedmann equations, we argue that up to
36% of the Hubble tension can be explained by Lorentz-violating effects in a Hořava–Lifshitz
scenario, and we briefly discuss the cosmographic behaviour of this model.

1 Introduction

A long-standing problem in theoretical physics is the issue of quantum gravity, how to merge
general relativity with quantum field theory. Although substantial effort has been put forth for
several decades, there is to date no clearly compelling candidate model. The main problem
is that general relativity is not perturbatively renormalisable, which is a serious obstacle
for standard quantisation techniques, leading to the breakdown of general relativity at small
scales. Many models have been proposed to deal with this problem, such as string theory and
loop quantum gravity, and while these theories do resolve some of the problems of general
relativity, there are few avenues available to test them [1,2]. Indeed, the fact that general
relativity has passed every test so far indicates that it is an excellent model for the infrared
(IR) behaviour or quantum gravity. This is natural since quantum gravitational effects are
expected to emerge at energies close to the Planck energy. A natural course of action is
then to study ultraviolet (UV) completions of general relativity, for example [3,4]. Another
interesting proposal for a UV-complete theory of gravity is Hořava–Lifshitz gravity, which
contains general relativity as an IR fixed point [5]. The original formulation had problems such
as ghost modes and instabilities, which were subsequently addressed in a series of papers,
see for example [6–8]. Since then, much work has been done on the subject, ranging from
cosmological studies [9–16], dark energy [17,18], bouncing scenarios [19,20], and strong
coupling [21] among others. Hořava–Lifshitz gravity is a perturbatively renormalisable theory
of gravity, which is accomplished by introducing a Lifshitz scaling between space and time in
the UV [5] which explicitly breaks Lorentz invariance. It is important to mention that Lorentz
invariance is a building block of modern physics, and breaking it may seem counterintuitive;
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however, since the Planck scale and quantum gravity likely will contain completely new
physics on quantum scales it is useful to not a priori assume Lorentz invariance, which is a
continuous symmetry, in this sector.

Recently, various measurements of the Hubble constant, H0, have revealed a discrepancy
between the value at high and low redshift, respectively. In fact, this discrepancy has been
confirmed by many independent observations (using ΛCDM as a background model) at
low (quasars [22], gravitational waves [23–25], Cepheid stars [26–28]) and high (Cosmic
Microwave Background [29], Baryon Acoustic Oscillations [30,31], the inverse distance
ladder [32,33]) redshift. The difference in the value of the H0 from these different observations
lies around 4–9%. Many scenarios have been put forth as explanations or alleviations of the
H0 tension, for example dynamical dark energy [34], screened fifth forces [35], the late
decay of dark matter [36] and more, but the H0 tension has proved difficult to resolve. In this
paper, we investigate the presence of a preferred frame in the Universe and its effect of the
H0 tension. Working in a Hořava–Lifshitz model, we constrain the discrepancy between our
local frame and the preferred frame; moreover, we suggest that part of the Hubble constant
discrepancy is due to Lorentz violation in the ultraviolet regime.

2 Hořava–Lifshitz gravity

Hořava–Lifshitz gravity is a proposal for a nonrelativistic theory of gravity, which breaks
Lorentz invariance in the UV regime by introducing an anisotropic Lifshitz scaling between
space and time of the form t → b−z t , xi → b−1xi (breaking Lorentz invariance), where z is
a critical exponent [5]. Lorentz invariance is restored for z = 1, but in order to obtain power-
counting renormalisability it is necessary to have z ≥ 3 (for 3 spatial dimensions) [37],
and we will set z = 3. The theory is power-counting renormalisable and is a candidate
theory of quantum gravity. In the IR, the theory reduces to that of general relativity. Much
work has been done on this theory, including some early contributions to cure some of the
original inconsistencies [7–9,11,12,14,18,19,21,38–45]. The presence of the anisotropic
scaling in the theory leads to a natural description using the Arnowitt–Deser–Misner (ADM)
formulation, in which the metric reads:

ds2 = −N 2dt2 + gi j
(

dxi + Nidt
) (

dx j + N jdt
)

, (1)

where N and N j are the lapse function and the shift vector, which determine the foliation
of spacetime by constant-time spacelike hypersurfaces. The breaking of Lorentz invariance
in ultraviolet Hořava–Lifshitz gravity manifests as the appearance of a preferred foliation of
spacetime, and the symmetry is most commonly assumed to be broken down to t → ξ0(t),
xi → ξ i (t, xk). Then, the theory is endowed with the foliation-preserving diffeomorphism
group, denoted Diff[M,F], where M is the manifold and F is the preferred frame. Given
this, we can write down the most general form of the theory as:

S =
∫

d3xdt N
√
g

[
Ki j Ki j − λK 2 − V(gi j )

]
, (2)

where g is the determinant of the spatial metric,λ is a running coupling andV is a potential. Ki j

represents the extrinsic curvature of the foliation. The potential term contains only dimension
4 and 6 operators which can be constructed from the spatial metric gi j . Under the so-called
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detailed balance and projectability conditions, the action reads [43]:

S =
∫

dtd3x
√
gN

[
2

κ2

(
Ki j K

i j − λK 2
)

+ κ2

2w4 Ci jC
i j − κ2μ

2w2

εi jk√
g
Ril∇ jRi

k

+ κ2μ2

8
Ri jRi j + κ2μ2

8(1 − 3λ)

(
1 − 4λ

4
R2 + ΛR − 3Λ2

)]
(3)

where ∇ j is the spatial covariant derivative, ε is the totally antisymmetric tensor, and μ,w,
and κ are dimensionful constants (mass dimension 1, 0, −1, respectively). Any higher-order
terms are assumed to be Planck suppressed by M−n

Pl (at order n), where MPl is the Planck
mass. Ci j is the Cotton tensor, and Ri j is the Ricci tensor related to the spatial metric. This
action has been obtained from (2) by analytic continuation of the parameters μ and ω2, which
enables positive values of the bare cosmological constant Λ, which does not occur in the
original formulation of Hořava–Lifshitz gravity.

Although the detailed-balance condition leads to a succinct action, there is an ongoing
debate in the literature whether this formulation is too restrictive. In fact, there are a number
of problems with the detailed-balance scenario, such as instabilities, strong coupling at low
energies, as well as problems with the value of the cosmological constant [9,11,37,44]. As
such, we choose to focus our efforts on the so-called beyond detailed balance scenario [21,
43,46–48], where it is possible to include more terms in the potential V . Then, using the
FLRW line element and populating the Universe with the canonical matter fields, the first
Friedmann equation can be written:

(
ȧ

a

)2

= 2σ0

3λ − 1
(ρm + ρr ) + 2

3λ − 1

[
Λ

2
+ σ3K 2

6a4 + σ4K

6a6

]
+ σ2K

3a2(3λ − 1)
. (4)

Here, the objects σi are arbitrary constants.

3 Bounds on Hořava–Lifshitz gravity from the H0 tension

3.1 H0 tension as a preferred-frame effect

In [49], the authors suggest that the discrepancy [26,50] between the value of the Hubble
parameter H0 from CMB measurements and from local data is in fact a reference-frame
artefact. Since Hořava–Lifshitz gravity is based on a preferred frame is it natural to also pose
this question in this model. Following [49], we use a flat FLRW metric and define a geodesic
observer in the CMB frame as vμ = (

√
1 + (ζ/a)2, 0, 0, ζ/a2), where ζ is a parameter and

a is the FLRW scale factor. For this observer, the metric takes the form:

ds2 = −dT 2 + a2(T ; Z)
(
dX2 + dY 2 + (1 + (ζ/a)2)/(1 + ζ 2)dZ2) . (5)

Following [49], we use the transformation which relates the Hubble constant in the local
geodesic frame to that in the CMB frame:

HCMB
0

H local
0

= 1√
1 + ζ 2

. (6)

Hence, the local measurement has to be larger than or equal to its CMB counterpart. The two
values will coincide when ζ → 0. We find the low and high-redshift values of the Hubble
parameter using a Markov-Chain Monte Carlo analysis. Here, we adopt a methodology
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similar to [51] by using several different data sets from a wide, yet local, redshift range.
For the local value of the Hubble constant, we use the PANTHEON dataset of supernovae
type Ia [52], along with expansion rates of elliptical and lenticular galaxies [53], gamma-ray
bursts [54] and quasars [55]. These sources are all within redshift range 0.01 < z < 8.2, a
large redshift range with multiple sources which we define as our “local“ frame, as compared
to the z ∼ 1040 for the CMB frame. For details of the method, see [9] and for a detailed
discussion of how to obtain cosmological parameters in Hořava–Lifshitz gravity, see [56].
We find that H local

0 = 70.18±0.02 km s−1 Mpc−1 at 99.7%. Moreover, for the high-redshift
(early Universe) value of the Hubble parameter we use Planck CMB data [29]. We find that,
at 99.7%, the Hubble constant is 67.21+5.1

−4.4 km s−1 Mpc−1, and using these two values of the
Hubble constant in (6) we find that the parameter ζ , quantifying the discrepancy between the
local frame and CMB frame, is (disregarding any negative values in order to keep ζ real):

0 ≤ ζ 2 ≤ 0.25. (7)

As suggested in [49], we have found bounds on the parameter ζ from observations of the
Hubble parameter. Thus, ζ defines a geodesic reference frame where the observed H0 tension
would emerge naturally.

3.2 The H0 tension and the Hořava parameter λ

It is known that in Lorentz-violating field theories, the gravitational constant measured locally,
G local does not coincide with the cosmological one [57]. In fact, we will show that also the
gravitational constant can be thought of as frame dependent, and we will give it a superscript,
GCMB, to show that this is the value in the CMB frame. We may derive from Eq. (4) that
the value of the gravitational constant at different energy scales is related by a single Hořava
parameter [48]:

GCMB = 2

3λCMB − 1
G local, (8)

where the superscript on λ is to highlight that it is the value of λ at the time of recombination.
The infrared fixed point λ → 1 represents General Relativity, which is also when GCMB =
G local. Clearly, in this scenario, dynamics will be different on cosmological scales. This
also has implications for the Hubble tension. We can write down a general form of the first
Friedmann equation in the two frames as:

(HCMB
0 )2 = 8π

3
GCMBρ0 (9)

(H local
0 )2 = 8π

3
G localρ0 (10)

where ρ0 is the total energy density, which is the same in the two frames. On this basis we
arrive to the same as (8) by dividing (9) by (10):

(
HCMB

0

H local
0

)2

= GCMB

G local = 2

3λCMB − 1
. (11)

In the above relation, we have to assume that Lorentz violation only contributes to the Hubble
tension rather than being the only cause of it. In light of this, it would be more accurate to
write the right-hand side as 2/(3λCMB − 1) + f (θ), where f (θ) is an unknown function of
one or more parameters. We can now use available Hubble constant data to put constraints
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on the parameter λ, and also estimate the contribution of Lorentz violation to the Hubble
tension.

3.2.1 Constraints on λCMB

Currently, the most accurate measurements of the Hubble constant come from the local
distance ladder (74.03 ± 1.42 km s−1 Mpc−1 [26,50,58]) and Planck CMB (67.4 ±
0.5 km s−1 Mpc−1 [29]). Ignoring any model dependence of these bounds, we use Eq. (11)
to find that λCMB = (0.86, 0.92) at 99.7%. Note that overlooking the model dependence of
these constraints is a strong assumption (especially for the CMB value). Also note that all
bounds on λ (with one exception) are derived constraints; in [56] we consider λ a free param-
eter and place constraints on it from cosmological data. This can be compared to the limits
on H0 which we obtained in Hořava–Lifshitz using the beyond detailed balance formulation
(H local

0 = 70.18 ± 0.02 km s−1 Mpc−1, HCMB
0 = 67.21+5.1

−4.4 km s−1 Mpc−1). Indeed, using
those values of the Hubble parameters we arrive at 0.95 ≤ λCMB ≤ 1.16 at 99.7% confidence
level. The bounds on λCMB from local distance ladder and Planck data are problematic, since
1/3 < λ < 1 generally leads to ghost instabilities in the IR limit [47], whereas the limit from
the Hubble parameters found from MCMC analysis of Hořava–Lifshitz still overlap with a
non-pathological region.

From the same MCMC analysis which provided the bounds on the Hubble parameters,
we also obtained direct constraints on λCMB = 1.06 ± 0.024. This is encouraging, since
the whole range lies in the non-pathological region for λ; however, these constraints are less
stringent than those in [56] and should be seen as indicative only. A summary of all derived
limits can be seen in Table 1.

3.2.2 Constraints on the Hubble parameter

Using available constraints on λ, we can get a value of the Hubble tension through
Eq. (11). To our knowledge there is only one bound in the published literature, namely
λ = (0.97, 1.01) [48]. Using this we find that HCMB/H local = (0.98, 1.01). This can be
compared to the value from local distance ladder and Planck CMB measurements, where the
same ratio works out to HCMB/H local = (0.89, 0.94). The central value of this interval is
0.915, leading to a Hubble tension of 8.5%. Taking a conservative approach, we use the upper
bound of the calculated Hubble ratio from [48] and comparing to the observed 8.5% Hubble
tension means that in this scenario, Lorentz violation can be the source of up to 12% of the
Hubble tension. It is important to keep in mind that the constraints on λ in [48] were derived
using a large set of cosmological data from both high and low redshift, and the resulting
value must be considered an average λ. However, since it is the only (to our knowledge)
published constraint on λ so far, we have used it, keeping in mind the above discussion.
Since λ runs with energy, we can assume that it was larger in the early Universe and therefore
likely contributes more to the observed Hubble tension than our bound of ≤ 12% indicates.

We may also use our derived constraints on λCMB = (0.95, 1.16) and assuming Lorentz
violation is the only source of the Hubble tension, the corresponding tension is 3.8%. By
again comparing to the observed 8.5% this we can infer that, at 99.7% confidence level,
Lorentz violation can be the source of up to 44.7% of the Hubble tension.

Finally, we may also use our direct constraint λCMB = 1.04 ± 0.024. In order to find
the most conservative estimate, we use the upper bound of λCMB, which combined with the
measured Hubble tension of 8.5% leads to a possible contribution of Lorentz violation of up
to 38%. This is our main result.
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Table 1 Summary table of constraints on preferred-frame effects on the Hubble tension, as well as constraints
on λ and the Lorentz violation contribution to the Hubble tension

Preferred fram Constraint

Hořava model + Planck CMB [29] 0 ≤ ζ 2 ≤ 0.25

Constraints on λCMB from HCMB
0 Constraint

Hořava model + Planck CMB [29] λCMB = 1.06 ± 0.024

Derived from Hořava bounds on HCMB
0 0.95 ≤ λCMB ≤ 1.16

Hubble tension data Lorentz violation contribution

λ from [48] + MCMC analysis ≤ 12%

Derived from HCMB
0 + MCMC analysis ≤ 44.7%

Hořava model + Planck CMB [29] ≤ 38%

4 Cosmographic analysis

Cosmography is a model-independent method for approximating the luminosity distance
and scale factor as a series expansion. In doing this, one can obtain constraints on the expan-
sion coefficients directly from data, without any of the underlying assumptions except for
homogeneity, isotropy, and fixed spatial curvature [59] (for a discussion on cosmography in
Hořava–Lifshitz gravity, see [60]). From the expansion of the scale factor, it is convenient to
define the following quantities:

q = − 1

aH2

d2a

dt2 , j = a

H3

d3a

dt3 , s = a

H4

d4a

dt4 , l = a

H5

d5a

dt5
, (12)

called deceleration, jerk, snap, and lerk, respectively. These quantities can be directly bounded
by observation, serving as a model-independent way of characterising the cosmological
behaviour of the Universe. For example, the deceleration parameter measured today (denoted
by index 0) is q0 < 0, indicating that the Universe is currently dominated by some kind of
repulsive dark energy-type field, whereas s0 and l0 characterise the dynamics of the early
Universe.

We can rewrite Eq. (4) (in the flat case) to

(
ȧ

a

)2

= 2

3λ − 1

[
Ωma

−3 + Ωr a
−4 + ΩΛ

]
, (13)

where we have also neglected the dark-radiation term since it will be of order 10−3 even in
the very early Universe. As such, this simplified model represents flat ΛCDM scaled by the
parameter λ. Given Eqs. (12) and (13), and using that Ωm = 0.324, Ωr = 9.24 · 10−3 [56],
we find the values of the cosmographic parameters for this model, which are presented in
Table 2, for both λCMB = 1.06 and λCMB = 1.04 (we set λlocal to unity). Here, we have
used the central values for λ. The values for q0 and j0 are the same since those expressions
are independent of λ. All of these values lie within the 1σ likelihoods presented in [59];
therefore, they deviate very little from the ΛCDM model. The cosmological behaviour of
the cosmographic parameters can be seen in Fig. 1.
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Table 2 Values of the
cosmographic parameters using
the central values for λCMB

Using λCMB = 1.06 Using λCMB = 1.04

q0 − 0.50 − 0.50

j0 1.02 1.02

s0 − 0.44 − 0.45

l0 3.28 3.31

Fig. 1 Cosmological behaviour of the cosmographic functions over time. Here, t = 1 represents the value
today

Fig. 2 General behaviour of the luminosity distance dL as a function of redshift

We now wish to examine the behaviour of luminosity distance, which can be written as:

dL(z) = 1 + z

H0

∫ z

0

[
2

3λ − 1

(
Ωm(1 + z′)3 + Ωr (1 + z′)−4 + ΩΛ

)]−1/2

dz′. (14)

Here, we do not use a cosmographic expansion; instead, we wish to investigate how the
behaviour of dL(z) differs when using different values for H0 and λ. This can be seen in
Fig. 2 along with flat ΛCDM for comparison. At redshift z = 8.2, which is the upper limit
for our non-CMB data, the two Hořava models differ from ΛCDM by 3.6% and 9%, for the
different values of λCMB, where the CMB frame discrepancy is to be expected. The Hořava
model approaches ΛCDM as λ → 1.
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In light of the above discussion we note the following: our Hořava–Lifshitz model for
flat FLRW is merely a scaling of the ΛCDM model, but with a running scaling parameter;
indeed, using the CMB value for λ to characterise all of cosmic evolution is something of a
worst-case scenario which gives rise to the discrepancy in the luminosity distance as shown
in Fig. 2. This difference in luminosity distance functions should actually make the Hubble
tension even worse in Hořava–Lifshitz gravity, since the discrepancy between the two Hořava
curves is larger than compared to the ΛCDM case.

Standard cosmography where one uses a Taylor expansion of dL is only accurate for very
low redshift; however, it is possible to use Padé or Chebyshev polynomials to get expansions
valid out to redshift z ∼ 2−3 [59,61,62]. Since we have used analytic expressions for dL
in this analysis (integrated numerically), it is unlikely that using a series expansion will
improve upon the situation, as our local data reaches well beyond the convergence radius of
the cosmographic method. Since our expressions allow for the possibility of a tension in the
Hubble parameter, and since the cosmographic parameters in Table 2 are in agreement with
data, we expect similar behaviour as for ΛCDM, albeit with a larger Hubble tension. This
may shrink to that of ΛCDM if one consider the case of a dynamical λ.

5 Discussion and conclusions

In this article, we have provided new bounds on preferred-frame effects and Hořava–Lifshitz
gravity through the H0 tension. Using a value for H0 in the CMB frame for Hořava–Lifshitz
gravity along with a local value, we were able to place bounds on ζ , which determines the
transformation from the CMB frame to the local geodesic frame. In [63], the authors point
out an interesting consequence of a preferred frame. If the frame F moves relativistically
with respect to the CMB frame, there would be an observable effect in the form of a dipole
anisotropy of high-energy cosmic rays in the sky. In fact, according to [64], there are indi-
cations of this at intermediate scales at 3.4σ significance, with no known specific sources
in the direction of the hotspot. These results are based on the observation of the northern
hemisphere from May 2008 to May 2013, yielding 72 cosmic-ray events with energies higher
than 57 EeV.

We have also founds tentative bounds on the Hořava–Lifshitz parameter λ using Hubble
constant data; we find that some of these bounds overlap significantly with regions known
to lead to ghost instabilities in the infrared limit of the theory, but that some bounds also
cover a non-pathological parameter space of this model and discussed their implications.
Furthermore, we have used available bounds on λ to estimate how much Lorentz-violating
effects could contribute to the Hubble tension. Most significantly, we find that Lorentz vio-
lation can contribute to up to 38% of the Hubble tension when using our own bounds on λ

from the beyond detailed balance scenario along with Planck CMB data. We also derived
the cosmographic parameters for our model in a simple case. In light of this discussion it
would make sense to also consider Lorentz-violating field theories in the search to find an
explanation for the Hubble tension.
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