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Abstract Asymptotic AdS Riemann space-times in five dimensions with a black brane
(horizon) sourced by a fully back-reacted scalar field (dilaton) offer—via the holographic
dictionary—various options for the thermodynamics of the flat four-dimensional boundary
theory, uncovering Hawking–Page, first-order, and second-order phase transitions up to a
cross-over or featureless behavior. The relation of these phase structures to the dilaton poten-
tial is clarified and illustrating examples are presented. Having in mind applications to QCD,
we study probe vector mesons with the goal to figure out conditions for forming Regge-type
series of radial excitations and address the issue of meson melting.

1 Introduction

The advent of the insight into AdS/CFT correspondence [1–3] offered the option of having
an alternative access to strongly coupled systems, e.g., to various facets of QCD in the non-
pertubative regime, for instance. Phenomenologically interesting problems, e.g., the hadron
spectrum or properties of the quark–gluon plasma, become treatable within a framework
called holographic approaches. Most desirably would be to have a holographic QCD dual at
our disposal, from which statements on QCD-related quantities can be derived in a unique
manner. However, such a dual is presently not available [4–7]. Therefore, in practice, field-
theory quantities in a five-dimensional asymptotic Anti-de Sitter (AdS) are often related to
observables (or expectation values of operators) in four-dimensional Minkowski space-time
in the spirit of the field-operator duality ([8], see also Sect. 5.3 in [9], Sect. 10.3 in [10],
for instance). Top-down approaches attempt to use input from string theory constructions—
or elements thereof. These are to be contrasted with bottom-up approaches which aim at
starting with an appropriate model on the field-theory side to mimic certain selected features
of the boundary theory side, with the latter being connected to the quantum field theory in
Minkowski space, while the former includes the dynamics in the bulk.

Besides early emphasis on accessing principal features of strongly coupled systems with
many extensions to higher or lower dimensions than mentioned above, one can also take the
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attitude of adjusting sufficiently simple and thus transparent bottom-up models to a certain
input and then employ them for predictions. Of course, the predictive power becomes a
relevant issue here. Moreover, the foundations of the AdS/CFT correspondence, namely a
very large number Nc of gauge degrees of freedom and a very large ’t Hooft coupling, are
often argued only to hold under special conditions, too. For instance, w.r.t. QCD, one knows
[11] that certain thermodynamic observables of the Yang–Mills gauge theory obey the proper
scaling with Nc and hopes that the physics case of Nc = 3 is adequately captured.

Holographic modeling of QCD-related problems became popular due to some particularly
striking findings. Among them are the Regge-type spectrum of hadronic and glue ball states,
e.g., within the soft-wall model [7], the famous ratio of shear viscosity η to entropy density
s, η/s = 1/4π [12], and the phase diagram with a critical point [13,14], to mention a few
ones.

Besides gravity, the dilaton plays an important role as a breaker of the conformal symmetry,
since it introduces an energy scale. Obviously, the holographic models with gravity coupled
to and sourced by a dilaton field—including the negative cosmological constant to ensure the
asymptotic AdS geometry—represent some minimalistic set-up. To be specific, we restrict
ourselves here to Einstein gravity. What remains is fixing the dilaton self-interaction. This
may refer to roots in string theory, as recently put forward, e.g., in [15,16], in a top-down
approach, or to shape the dilaton self-interaction—encoded in the dilaton potential—by
reproducing a certain set of wanted results within the dilaton engineering to reproduce lattice
QCD thermodynamics results of [17,18].

The resulting set-up is called Einstein-gravity-dilaton model. It continues numerous previ-
ous studies in cosmology, most notably in inflationary scenarios. Analogously, in holography,
such gravity–dilaton models enjoy some popularity due to their conceptual simplicity. There
is an overwhelming number of studies, e.g., [15,19–66], based on that type of model: [19,20]
represent an in-depth analysis and review of the model in detail and [21] touches the issue
of consistency. References [15,22–44] focus on thermodynamics, where [22] can be consid-
ered to be the prototype of modeling thermodynamics with a dual black hole. The authors of
[23,24] claim a bound of the speed of sound and [25] derived a relation between the speed of
sound and the single heavy-quark free energy. Discussions about different phase structures
can be found in [26–29], and for quantitative comparisons and parameter fits to results on
Lattice QCD thermodynamics in case of vanishing and finite baryo-chemical potential, we
refer to [30–34]. There are investigations about the temperature dependence and the behav-
ior during phase transitions of related quantities, e.g., [35] calculates string tension at finite
temperature, [36] chooses an approach based on the beta function, [37–39] deal with electric
and magnetic quantities, and [15,40] calculate the Debye screening mass; transport coeffi-
cients and bulk viscosities are the topics of [41,42] and [43,44], respectively. A holographic
approach to the broad field of hydrodynamics and thermalization is given, e.g., by [45–47]
within the gravity–dilaton model class.

The soft-wall model [7] developed into a role model for computing particle spectra holo-
graphically. While in the original model, the metric background is fixed by ad hoc ansätze,
the main idea of its generalizations [48–60] is to obtain the metric background as a solution
of the Einstein equations. The particles are considered then as test particles. [48–52] give
particular attention to Regge-type spectra, [54] investigates the case of finite temperature,
and [55,56] focus on chiral symmetry breaking. Due to the various applications of Ein-
stein gravity–dilaton models (see, as well, [61] for a braneless approach, [62] for fluctuating
branes, [63] for a real-time formulation, [64] for cosmological discussions, [65] for scalar
condensates, or [66] for a generalization to higher dimensions), this list does not purport to
be complete.
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Finite temperature effects are generated by plugging a black hole in the originally AdS
and deform it accordingly. Thus, a Hawking temperature and a Bekenstein–Hawking entropy
density link to thermodynamics. In the present paper, we also stay within such a framework:
holographic gravity-dilaton model with the goal to elaborate the emerging thermodynamics
w.r.t. conditions for the dilaton potential to catch certain phase structures with relevance to
QCD.1 The Columbia plot (cf. [68] for an updated version) provides several options for 2+1
flavor QCD: in dependence on the quark masses, first- and second-order phase transitions
may show up as well as a cross-over and some others. We try to answer the question which
properties of the dilaton potential must have to enable these phase properties related to
deconfinement and chiral restoration in QCD. On top of thermodynamic aspects, we consider
holographic probe vector mesons. That is, the gravity and dilaton background resulting from
the field equations and equation of motion governs—besides the thermodynamic features—
the behavior of vector mesons. We thus extend our previous studies [69] and investigate to
which extent the disappearance of vector mesons as a possible indicator of deconfinement
occurs at the QCD cross-over temperature. This is important for a holographic realization
of the thermo-statistical interpretation of hadron multiplicities in ultra-relativistic heavy-ion
collisions, e.g., at LHC [70]. The ultimate goal of such investigations, which, however, is
beyond the scope of the present paper, is an extension to non-zero chemical potential, e.g.,
to address the issues of the QCD phase diagram and the chemical freeze-out curve therein.

Our paper is organized as follows. In Sect. 2, we recall the holographic settings, that is
the gravity–dilaton model, its field equations and equation of motion as well as the emerging
thermodynamics and the access to phase structure. Also, the holographic description of vector
mesons probing the background is recalled. Section 3 deals with thermodynamic scenarios
by presenting a series of selected examples of transition types characterized by entropy
density, sound velocity, and pressure. This is supplemented by showing the Schrödinger
equivalent potential which governs the existence or non-existence of vector mesons. After
some general remarks on shaping the dilaton potential, we try to elucidate the conditions on
the dilaton potential to enforce a first-order phase transition or a cross-over. In Sect. 4, we
explain a relation between the Schrödinger equivalent potential at zero temperature and the
thermodynamic features. Both ones are linked by the field equations; details can be found in
Appendices A and B. In the second part of Sect. 4, we reverse our view: instead of starting
with a dilaton potential, we model a certain shape of the Schrödinger equivalent potential
which allows for a certain wanted hadron spectrum (ideally of a Regge type) and derive–
again via field equations—the resulting dilaton potential.2 We conclude part by considering
the vector meson melting upon temperature increase. The summary and a discussion of
possible extensions towards the goal of a consistent scenario of QCD thermodynamics with
the chemical freeze-out model in the LHC energy regime can be found in Sect. 5.

1 Such an investigation is timely, since a systematic study relating the dilaton potential and the emerging
thermodynamics is currently lacking [67], see, however, [46], where selected cases are considered.
2 Alternatively, one could also start with an ansatz for the dilaton profile and derive all other quantities via field
equations, cf. [53] and further references therein. Obviously, one could start equally well with other quantities
or combinations thereof and derive the remaining functions from the field equations. [50] is an example for
starting with the warp factor, defined below.
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2 Holographic settings

2.1 Thermodynamics from Einstein-gravity-dilaton model

We consider the action3

S = 1

2κ

∫
d5x

√
g

[
R − 1

2
(∂�)2 − V (�)

]
(1)

over the five-dimensional Riemann space-time with special ansatz of the metric given by the
line element squared as:

ds2 = eA(z)
[
f (z)dt2 − d�x2 − 1

f (z)
dz2

]
, (2)

where A denotes the warp factor with A(z) → −2 ln(z/L) as z → 0 to ensure an asymptotic
Anti-de Sitter (AdS) and f denotes the blackness function with f (z) → 1−O(z4) as z → 0
which encodes the temperature via:

T (zH ) = − 1

4π
f ′(zH ) (3)

with the horizon position zH and the simple zero f (zH ) = 0.
The vacuum case, T = 0, is equivalent to f = 1. The dilaton � in the action (1) is

a dimensionless real-valued scalar bulk field with � ∝ z� + z4−� if z → 0, where the
conformal dimension � as the larger solution of �(4 − �) = L2m2

� is related to the dilaton
mass m�. Its potential V (�) has the asymptotic small-� form L2V = −12 − 1

2 L
2m2

��2

+ · · · , where the first term refers to the negative cosmological constant and the second one
has to obey the Breitenlohner–Freedman (BF) bound −4 ≤ m2

�L2 ≤ 0 [71,72]; L sets a
scale, as κ in (1), to make the action dimensionless in natural units. From (1) and (2), the
field equations are as follows:

f ′′ + 3

2
A′ f ′ = 0, (4)

A′′ − 1

2
A′2 + 1

3
�′2 = 0, (5)

(A′2 − 1

6
�′2) f + 1

2
A′ f ′ + 1

3
eAV = 0, (6)

and the equation of motion:

�′′ +
(

3

2
A′ + f ′

f

)
�′ − eA

f
∂�V = 0 (7)

which is redundant, since it follows from (6) with (4, 5). A prime means derivative w.r.t. the
bulk coordinate z. Equations (4–6) can be solved for a given V (�) with the above side

3 The rational is concisely formulated in [22]: “We would like to find a five-dimensional gravitational theory
that has black hole solutions whose speed of sound as a function of temperature mimics that of QCD. We will
not try to include chemical potentials or to account for chiral symmetry breaking. We will not try to include
asymptotic freedom, but instead will limit our computation to T < 4Tc and assume conformal behavior in
the extreme UV. We will not even try to give an account of confinement, except insofar as the steep rise in the
number of degrees of freedom near the cross-over temperature Tc is recovered in our set-up, corresponding
to a minimum of cs near Tc . We will not try to embed our construction in string theory, but instead adjust
parameters in a five-dimensional gravitational action to recover approximately the dependence cs (T ) found
from the lattice. ... We will not include higher derivative corrections, which would arise from α′ and loop
corrections if the theory ... were embedded explicitly in string theory.”
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conditions. Note that the integration constants have a higher degree of freedom in the vacuum
case (T = 0) than in case of finite temperature due to the side condition f = 0 at the horizon
zH . That can be seen, for instance, by series expansions in various coordinates, exhaustively
done in the literature, e.g., [13,14,19,20,73]. The request of the continuous embedding of
the vacuum quantities in the set of the finite temperature quantities for all choices of V allows
for picking up the admissible vacuum solution.

In such a way, the dilaton potential V (�) determines the temperature via (3) and the speed
of sound squared via:

c2
s = d ln T

d ln s
, (8)

where s(zH ) = 2π
κ

exp{ 3
2 A(zH )} stands for the entropy density. The quantities T , c2

s , and s
refer to the boundary theory according to the holographic dictionary. The pressure is calcu-
lated via p = ∫

dT s(T ) with the side condition p(T = 0) = 0.

2.2 Probe vector mesons

Additionally, we study the behavior of “probe vector mesons” which are not back-reacted,
since they are solely meant to probe the background. We use the standard action in the Einstein
frame (cf. [7,40,74,75]; note the difference to the string frame action where an additional
factor e−� shows up):

SV ∝
∫

d5x
√
gF2, (9)

where F2 is the squared field strength tensor of aU (1) vector fieldA . The equation of motion
follows, after some manipulations [76], as one-dimensional Schrödinger-type equation [69]:

(
∂2
ξ − (UT − m2

n)
)
ψ = 0, (10)

where ∂ξ ≡ (1/ f )∂z and

UT = uT f 2 + 1

2
ST f f ′ (11)

with the Schrödinger equivalent potential:

uT = 1

2
S ′
T + 1

4
S2
T , ST ≡ 1

2
A′ − 2

3
�′. (12)

In general, A and � depend on both, z and zH . To distinguish the vacuum case (T = 0:
A0(z), �0(z), f (z) = 1) from the non-zero temperature case (T > 0: A(z, zH ), �(z, zH )

and �H ≡ �(zH , zH ), f (z, zH ) ≤ 1), we add the label 0 to A and �. In case of zero
temperature, ξ = z, the Schrödinger equivalent potential U0 := UT=0 is given by:

U0 = u0 := 1

2
S ′

0 + 1

4
S2

0 , S0 ≡ 1

2
A′

0 − 2

3
�′

0. (13)

Furthermore, mn denotes the masses of normalizable modes as solutions of (10) with n =
0, 1, 2, · · · as the quantum number of radial excitations. Of course, one has to be aware that
the limit UT (zH → ∞) → U0 is continuous as stressed above.

The action (9) is obviously flavor-blind, i.e., it is not specific for light-quark or heavy-
quark or light–heavy-quark vector mesons. Instead, to describe different flavors, one must
have different holographic backgrounds, e.g., adjusted at T = 0. From (10, 12), one infers that
onlyU0, that is a special combination of A0(z) and �0(z), is relevant. Thus, [7,40,74,75] tune
different shapes and parameters of U0(z) accordingly to receive the wanted vector meson
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spectra—partially also decay widths—for ρ/ω mesons and charmonia and bottomonia at
T = 0 and employ them afterwards to meson melting phenomena at T > 0.

In contrast, in our approach, the background is generated dynamically with an emphasis on
thermodynamics encoded in p(T ), s(T ), c2

s (T ), etc., at T > 0. The wanted thermodynamics
thereby can refer to various QCD scenarios with various flavor contents and/or chiral limit or
heavy-quark limit as well. Therefore, it is a priori not clear to which of the flavor contents the
action (9) can be attributed or whether it is a purely fiducial test quantity. Nevertheless, despite
the mentioned drawback of (9), we are going to analyze whether and which normalizable
solutions of (10) exist on backgrounds generated by a few-parameter dilaton potential V (�).4

By employing the field equations, we find the following relation for U0(z):

U0 = 17

48
A′

0
2 + 1

3
A′

0�
′
0 + 1

3
eA0(∂�V − 1

6
V ). (14)

In Sect.4.1, we study the probe vector meson spectrum over the background determined
by solutions of (4–7) within U0 from (14), while in Sect. 4.2, an ansatz for U0(z), which
facilitates a certain mass spectrum, is used as an input for (4–7) to figure out the related
thermodynamics and phase structure.

3 Thermodynamic scenarios

3.1 Selected examples

To illustrate the systematics of the thermodynamics related to the dilaton potential V , we
choose the three-parameter ansatz5

− L2V (�) = 12 cosh(γ�) + a�2 + b�4, (15)

because we can go through several thermodynamic scenarios (see Supplementary Fig. 1) by
changing smoothly the values of parameters γ , a and b, which are related by −L2m2

� =
12γ 2 + 2a to the dilaton mass parameter m2

�. The conformal dimension � is accordingly

� = 2 + √
4 − 12γ 2 − 2a.

As already remarked in [22], quite featureless dilaton potentials V (�) can lead to fairly
different thermodynamic features. Since the field equations (4–6) can be rearranged to display
only a sensitivity to ∂�V/V as a function of �, we plot this key quantity in the left column
of Supplementary Fig. 1. Example (a) does not exhibit any features: T (zH ) is monotonously
decreasing, c2

s (T ) is increasing, andU0 has no minimum, meaning that normalizable modes as
probe vector mesons do not exist at all. Examples (b)–(d) exhibit ∂�V/V with a pronounced
maximum which becomes gradually higher. In case (b), T (zH ) is monotonously dropping,
albeit with a shallow near-flat section; it causes a pronounced minimum of the sound velocity
squared; U0 does not allow for any normalizable states due to the lacking minimum. That

4 A minimalistic way to include a scale in (9), which may be linked to light or heavy flavors, would be to
add a gauge symmetry breaking term ∝ M2A 2 [74]. A much more refined improvement of (9) is required to
suitable flavor dependent quark masses and condensates.
5 We follow [22,43,77]. The relation to [19,20,26–28] is discussed in [73]. Two generalizations of (15) are
considered in Appendix C. Further parameterizations within that bottom-up approach have been considered,
e.g., in [15,46] for selected (fixed) coefficients. Our intention is to study the impact of the coefficients on
the emergent phase structures. For that purpose, a three-dimensional parameter space is suitable for an easy
illustration. The 1-R charge black hole model is an example of a top-down approach, which, however, is
considered in [78] as not suitable for direct applications to relativistic heavy-ion collisions.
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Fig. 1 Scaled pressure κp/T 4 as a function of LT for the selected examples shown in Supplementary Fig. 1
and listed in Table 1. The red lines in panel e are for the thermal gas solution ( f = 1), where p = 0 is
employed (red lines). Meta (unstable) sections are depicted by thin (dotted) curves

Table 1 Parameter selection
yielding the examples in
Supplementary Fig. 1 and the
characterization of the
thermodynamic features

Example γ a b � Transition

(a) 0.56 −0.077 0 2.63 None

(b) 0 1.155 0.18 3.3 Cross-over

(c) 0 1.155 0.20 3.3 Second-order

(d) 0 1.155 0.25 3.3 First-order

(e) 0.83 −2.69 0 3.06 Hawking–Page

case is classified as cross-over. Case (c) features a lifted maximum of ∂�V/V , resulting
in a flat section of T (zH ), and the sound velocity drops at a certain temperature to zero,
thus representing an example of a second-order phase transition. The Schrödinger equivalent
potential U0(z) has here a very shallow minimum, i.e., probe vector mesons as normalizable
modes cannot show up. Lifting the maximum of ∂�V/V further (case d), T (zH ) shows a
local minimum that is connected to an inflection point, implying metastable states, unstable
states, and spinodales, as well. That becomes most evident by the sound velocity squared
c2
s (T ) (see Supplementary Fig. 1) and the pressure p(T ) (see Fig. 1): metastable states are

depicted by thin solid curve sections and the unstable ones by dotted sections. Clearly, states
with c2

s < 0 cannot be realized in nature. All these features classify a first-order phase
transition, for which U0(z) exhibits a local minimum; it is—for the given parameters—
still too shallow to accommodate vector mesons. Only if ∂�V/V exceeds

√
2/3 (case e)),

the global minimum of U0(z) allows for meson states, depicted by horizontal lines. At the
same time, T (zH ) has a global minimum pointing to a Hawking–Page (HP) phase transition.
Let be Tmin = min T at zmin

H . Then, the branch for zH < zmin
H is stable (for p > 0) and

metastable (for p < 0), while the branch for zH > zmin
H is unstable, and its free energy

is above the thermal gas solution (see [26] for the related construction) which applies for
0 < T < Tmin < Tc < ∞, where Tc (slightly above Tmin) is the first-order phase transition
temperature. (While Tmin follows as minimizer of (3) over zH , Tc is obtained by the loop
construction sketched in the rightmost graphs of Fig. 1.) The velocity of sound drops to zero
at Tc.

These examples are selected to have a survey on the thermodynamics and holographic
quantities which can be uncovered by (15). This information is refined in Sect. 4.1, where
we provide a systematic scan through the planes γ =constant and b =constant.

Figures 2 and 3 exhibit that region in the γ -a-b parameter space, where a first-order or
HP-phase transition occurs; and in Fig. 3, curves on which a second-order phase transition
happens are depicted too. Thanks to the three-parameter potential (15), the visualization of
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Fig. 2 Plot of the region in the
γ -a-b parameter space, where an
HP or first-order phase transition
in the BF allowed range occurs
for the dilaton potential (15).
Cross sections of constant values
of γ , a, and b are exhibited in
Fig. 3

Fig. 3 Plot of parameter ranges of the dilaton potential (15) for first-order phase transition (blue areas) or
HP transition (yellow areas) for a series of selected constant values of γ = 0, . . ., 1 (left), a = −6, . . . , 2
(middle) and b = 0, . . . , 0.4 (right). The red curves mark the second-order phase transition ranges; beyond,
the transition turns into a cross-over, followed by a featureless behavior (dark gray areas). The BF bound
restricts the values of a to the strip −6γ 2 < a < 2 − 6γ 2 (depicted by the two black solid curves in left and
middle panels). The panels continue to larger values of b and γ without changes

the parameter space structure is quite straightforward, while multi-parameter ansätze may
lead to intricate structures. In the present case, the HP transition happens for γ ≥ 0.8 for all
BF permitted values of a and b as well, as exhibited in the left panel of Fig. 3. For γ < 0.8,
the blue areas depict the first-order phase transition, which are limited by the second-order
transition (red curves). Further left (gray parts of the panels with constant γ or a or b cross
sections), a cross-over occurs, which turns smoothly into a featureless behavior for smaller
values of b.

3.2 Shaping the dilaton potential

For γ = 0.568, a = −1.92, and b = −0.04, the potential (15) reproduces the Lattice QCD
data [18] of c2

s (T ) fairly well when adopting the scale setting parameter L−1 = 1990 MeV.
These data and our fit are restricted to the range 125 MeV< T <450 MeV. The dependence
LT vs. zH/L looks nearly the same as in Supplementary Fig. 1, case b), while the combination
∂�V/V as a function of � exhibits a local maximum at � ≈ 1.4 and a local minimum at
� ≈ 5 and stays below 0.6, i.e., these details are somewhat different from that displayed in
Supplementary Fig. 1, case b), left panel. The successful description of the sound velocity
squared can be taken as argument for considering the potential (15) useful for catching
essential QCD features.

We refrain from further quantitative comparison with QCD thermodynamics and refer
the interested reader to [15,22,26,32,33], for example, where the thermodynamics of Yang-
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Mills and 2+1 flavor QCD with physical quark masses is considered. The essence is to
employ multi-parameter ansätze of the dilaton potential with the aim to reproduce the Lattice
QCD thermodynamics results as good as possible.6 Information of QCD is thus imported
and mapped in a cumulative manner on V (�) within such a bottom-up approach without
explicit reference to quarks and gluons and their masses, colors, flavors, couplings, etc.7

Having successfully accomplished the shaping of V (�), one can proceed to derive further
quantities, such as viscosities [43,44], diffusion constants [41,42], etc. as predictions. By
extending the model (1) by further fields, e.g., a Maxwell-type U (1) gauge field [13,33,85],
one may address non-zero chemical potential effects to access the phase diagram and issues
of a critical point. Here, susceptibilities serve as crucial further information to be imported
from QCD too.

However, our present goal here is to answer the question whether one can describe—
within the modeling (1, 9)—at the same time the LHC relevant QCD thermodynamic features,
i.e., a cross-over at about 155 MeV [17,18], and a proper in-medium behavior of hadrons,
i.e., probe vector mesons as representatives thereof. By a proper “in-medium behavior”, we
mean that at chemical freeze-out temperature of about 155 MeV [70], hadrons do exist with
hardly medium-modified properties. Otherwise, the famous thermo-statistical interpretation
of hadron multiplicities in ultra-relativistic heavy-ion collisions [70] would be invalidated.

The answer to the posed problem seems to be negative. Hints come, for example, from [76,
86–89], where the melting (disappearance) of hadrons was found to happen at temperatures
significantly below 155 MeV. While [69] offers an avenue to remedy such an insanity, the
given framework of (1, 9) seems to be too restricted and calls for extensions. Leaving the
latter ones for separate work, we try to find a loophole to join the cross-over thermodynamics
and suitable probe vector meson states. Prior to that, however, we attempt to clarify the
systematics of thermodynamic features in the spirit of the last column of Table 1 in relation
to the dilaton potential.

3.3 Beyond the adiabatic approximation

The authors of [22] derived the relation (henceforth called Gubser’s adiabatic criterion):

c2
s ≈ 1

3
− 1

2

(
∂�V

V

)2

, (16)

where ‘≈‘ indicates the validity in adiabatic approximation.8 The formula implies that for
∂�V/V >

√
2/3, the sound velocity becomes imaginary, thus pointing to a first-order phase

transition, either as a standard construction à la example d) or the HP transition à la example

6 For a more generic study of the potential and the related RG flow, cf. [79].
7 In contrast, the IHQCD model [19,20,26–28] aims at anchoring fundamental QCD features in the chosen
ansatz from the beginning; the approaches in [15,16], following the 1-R charge black hole (1RCBH) model
[80–84], in turn are string theory driven.
8 One may exploit (16) to get a suitable form of V (�) by adjusting a parameterized ansatz for h(T ) = 1

3 −c2
s .

As an example, we mention h(T ) = (T/T1)n/[1+(T/T2)n+2] with optimum parameters (T1/MeV, T2/MeV,
L−1/MeV, n) = (141.1, 126.7, 1799, 11.17) for the data [18] and (139.5, 115.5, 1714, 5.5) for [17]. V (�)

is then determined by Eq. (17) assuming ∂A/∂zH = ∂�/∂zH = 0. The combination ∂�V/V as a function
of � exhibits then a maximum of about 0.6 at � ≈ 3 and declines towards zero at � ≈ 5. The according
shape of V (�) can be obtained by (15) for γ = 0, a = 2, and b = −0.03. Clearly, this finding corroborates
our above statement at the beginning of Sect. 3.2. Otherwise, one sees that quite different shapes of V (�) are
suitable for reproducing the lattice QCD data within the given uncertainty range and, in particular, within the
restricted temperature interval. Forthcoming precision data are needed to constrain better the dilaton potential
in such a bottom-up approach.
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Fig. 4 Left: comparison of the dilaton potentials of examples a)–e) in Supplementary Fig. 1 for � = 0 · · · 5.
The horizontal line is the adiabatic criterion (16). Right: comparison of Gubser’s criterion and the Tmin curve
which shows the minimum value of ∂�V/V as a function of �H for which T (zH ) displays a minimum
pointing to a first-order or HP transition. If ∂�V/V as a function of � exceeds the Tmin curve, then T (�H )

exhibits a minimum; otherwise, if ∂�V/V stays below the Tmin curve, T (�H ) decreases monotonously which
points to a cross-over transition or to featureless thermodynamics. (In detail, for the dilaton potential (15) with
γ = b = 0 and a given value of a with 0 ≤ a ≤ 2, T (�H ) is computed as well as the position of its minimum

�min
H (a). The Tmin curve then is the connection of all points

(
�min

H , ∂�V/V (�min
H )

)
for running values of

a)

e) in Fig. 1. To systematize the various thermodynamic scenarios, we plot ∂�V/V of the
above examples a)–e) in one diagram, see Fig. 4. Based on such a comparison, the impact
of ∂�V/V on the thermodynamics can be summarized qualitatively as follows: If ∂�V/V
reaches the value

√
2/3 (or somewhat below, depending on the concrete V (�)), T (zH ) forms

a local extremum, where the nearest one to the boundary becomes a minimum. Therefore, if
∂�V/V intersects the

√
2/3 line once, we have a global minimum of T (zH ) and an HP-phase

transition. Otherwise, if ∂�V/V intersects twice, T (zH ) forms a local minimum followed by
a local maximum and we have a first-order phase transition. A second-order phase transition
arises if ∂�V/V touches the

√
2/3 line. Additionally, each extreme point of ∂�V/V implies

an inflection point of T (zH ), i.e., a cross-over is generated by a maximum of ∂�V/V whose
altitude stays below

√
2/3.

To formalize these findings, we derive in Appendix A the relation:

1

T

dT

dzH
= 1

2

V

∂�V

((
∂�V

V

)2

− 2

3

)
�′

+ ∂A

∂zH
+

(
3

2

∂A′

∂zH
+ �′ ∂�

∂zH

)
∂�V

V
, (17)

where �′ ≡ (∂z�(z, zH )) |z=zH , A′ ≡ (∂z A(z, zH )) |z=zH .
Given the facts that (i) T (zH → 0) → 1

π zH
[23,24], (ii) the monotonous behavior of

�(z, zH ) as a function of z with �′ > 0, and (iii) the above quoted asymptotic behavior of
V (�) at small � (implying ∂�V/V = m2

�L2�/12), one recognizes from the first line of
(17) that the slope dT/dzH , which is negative at small zH , can turn into a positive one, once
∂�V/V >

√
2/3 is reached, indicating a local or global minimum of T (zH ). Understanding

“adiabatic approximation” as a situation where ∂A/∂zH , ∂A′/∂zH and ∂�/∂zH are small,
one thus recovers Gubser’s adiabatic criterion. Otherwise, the second line of (17) provides
corrections. In fact, in example d), ∂�V/V stays below the

√
2/3 line, but facilitates a first-

order phase transition. (The relation of T (zH ) to transitions is discussed in [19,20]: in essence,
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Fig. 5 Projection of border lines (for b = 0 and b = 0.2) of parameter regions on γ vs. a plane, where
T (zH ) has a minimum (blue hatched regions, left and above to solid blue curves),U0 has a minimum (left and
above to red curves), and ∂�V/V is greater than

√
2/3 (left and above to dashed blue curves) for the dilaton

potential (15); if b and, therefore, the slope of ∂�V/V increase, the difference between Gubser’s adiabatic
criterion (blue dashed) and the Tmin curve (solid blue) becomes larger. In the blue double-hatched region, γ is
great enough to have a first-order phase transition for all a and b. The region of an HP transition is in yellow.
The green hatched regions are excluded due to BF

a minimum of T (zH ) points to a first-order phase transition, since s(zH ) is a monotonously
increasing function.) The corrections give eventually a border line (called Tmin curve) for
each type of dilaton potential which is determined by calculating the minimum value of
∂�V/V (as a function of � and depending on all parameters denoted shortly by �p ), such
that T (zH ) forms a minimum. Systematic numerical analyses with the dilaton potential (15)
show that this line is shifted down if ∂�V/V as a function of � becomes steeper when
varying the parameters �p in V (�; �p). The right part of Fig. 4 shows an example of such a
line and the dependence of the difference between Gubser’s criterion and the Tmin curve as
a function of �. This is further visualized in Fig. 5 for two special parameters, b = 0 and
2, in the projections on the γ -a plane: the offset of the regions determined by (16) and the
true onset of a first-order phase transition increases with b; in addition, the region where the
Schrödinger equivalent potential U0 displays a minimum is shown by the red curves.

4 Schrödinger potential

4.1 Adiabatic approximation to Schrödinger equivalent potential

The relationship between the situation of T = 0 and features at T > 0 has been stressed
in [19,20]. Here, we envisage a relation of U0(z) and T (zH ) in adiabatic approximation. In
Appendix B, we derive the relation:

9U0 ∼= 17

12

T ′2

T 2 + 28

3
πT ′+ 44

3
π2T 2+2

(
2πT − T ′

T

) √
8

3

(
T ′2
T 2 + 5πT ′ + 4π2T 2

)
. (18)

It is valid if, in a decomposition, A(z, zH ) = A0(z) + a(z, zH ) and �(z, zH ) = �0(z) +
ϕ(z, zH ), where A0 and �0 denote the solutions of (4)–(6) in case of f = 1 and the terms
a(z, zH ) and ϕ(z, zH ) are sub-leading and can be neglected. The Chamblin–Reall solution
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[90] with V (�) ∝ exp{γ�} is an example, where a = ϕ = 0 can be chosen despite
f (z, zH ) ≤ 1.

Equation (18) is exact for the AdS-BH metric, i.e., A = −2 ln(z/L), �(z) = 0 and
f (z, zH ) = 1 − (z/zH )4 which is generated by V (�) = −12/L2. Moreover, the left side
converges against the right side, if (i) z → 0, because A(z → 0, zH ) → −2 ln(z/L) and
�(z → 0, zH ) → 0 for all zH and (ii) z → ∞ due to A → A0, � → �0 and the implied
large values of zH .

If we assume that T (zH ) has a minimum at zH = zmin
H , (18) yields U ′

0(z = zmin
H ) =

π
3 (43 − 8

√
6)T ′′ > 0 meaning that U0 increases at the minimum position of T . Due to

the AdS asymptotics of the Schrödinger potential, U ′
0(z → 0) ∝ −z−3 < 0, there has to

be a minimum of U0(z) as well, at a position nearer to the boundary, i.e., in the interval
0 < z < zmin

H . While derived within the above approximations, and thus not as rigorous
as a no-go-theorem, one could argue that a minimum of T (zH ) (which is related to an HP
or first/second-order transition) is consistent with a minimum of U0(z). The reversed clue
(though not necessarily true in any case, cf. Supplementary Fig 1c) is demonstrated by an
example in the next subsection.

Before requiring a minimum of U0(z), let us consider the reason for the disappearance of
the U0 minimum for certain parameter settings. The UV region of U0(z) is supposed to be
determined by the near boundary behavior of A0(z), while the IR behavior is supposed to
be determined essentially by the dilaton field. If true, then a piecewise shape �0(z) ∝ z p+1

generates a contribution ∝ z2p to leading order U0 in the IR. If such a term is dominating,
then U0 ∝ z2p , i.e., p > 0 is needed arrive at a shape of U0 in the IR with ∂U0/∂z > 0. To
quantify such a rough consideration [which ignores the coupling of � and A via (5)], we have
scanned through the parameter space of (15) on two representative directions, see Fig. 6. In
doing so, we see in fact that only in the region of a first-order or second-order or Hawking–
Page phase transition (cf. Fig. 3), the rise of the dilaton field in z direction is strong enough to
enforce also the IR rise of U0, meaning that only in such cases, U0 can exhibit a pronounced
minimum which is the prerequisite to allow for normalizable solutions of (10) at T = 0.
Figure 6 offers a better understanding of the deformations of the various quantities, e.g.,
c2
s (T ) or T (�(zH )) or U0(z), under continuous changes of the dilaton potential parameters,

thus supplementing Fig. 1.

4.2 Requiring a minimum of U0(z)

The above examples demonstrate that for many parameter choices of the dilaton potential
V (�), the Schrödinger potentialU0(z) does not exhibit a minimum and thus does not allow for
modes which can be interpreted as probe vector mesons. Instead of deriving the background
(warp factor and dilaton profile at T = 0) from given dilaton potential, we start now with
an ansatz for U0(z) such as to have a minimum. Assuming the latter one is sufficiently deep,
normalizable modes would then be expected. Our ansatz for demonstrative purposes is:

U0(z) = 3

4z2 +
( z

L

)p 1

L2 , (19)

where the first term comes from the asymptotic warp factor at z → 0; the second term

facilitates the required minimum at zmin/L = (3/2p)
1

p+2 with L2Umin
0 = (3/2p)

p
p+2 (1 +

p/2). Equation (12) is solved at f = 1 by:

S0 = 2
d

dẑ
ln

(
c1 ẑ

− 1
2 0F1

(
p

p + 2
,

ẑ p+2

(p + 2)2

)
+ c2 ẑ

3
2 0F1

(
p + 4

p + 2
,

ẑ p+2

(p + 2)2

))
(20)
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Fig. 6 A scan through the planes γ = 0.5, a = 0 (left column, compare Fig. 3-left) and b = 0.2, � = 2
(right column, compare Fig. 3-right) by selecting a few values of the remaining parameters of (15) to exhibit
the induced change of ∂�V/V as a function of �, LT as a function of �(zH ), c2

s as a function of LT , � as
a function of z/L , and L2U0 as a function of z/L (from top to bottom)

The line style is as in Supplementary Fig. 1; values of the remaining parameters:

Line color Blue Green Red Cyan

b (left column) 0.3 0.18 0.1 0
a (right column) 0.83 0.65 0.5 0.3
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Fig. 7 L2U0 as a function of z/L (left panel), LT as a function of zH /L (middle panel), and ∂�V/V as a
function of � (right panel) for the input (19). Red solid/green dashed/black dotted curves are for p = 2/1/0.5

with ẑ ≡ z/L and c1 = 1 (due to AdS behavior at boundary z → 0) and c2 =
− 1

2 (p + 2)
p−2
p+2 �(

p
2+p )/�( 2

p+2 ) (due to the assumption that (19) is globally valid). The
field equations (4–6) must be solved numerically to get A(z), �(z) and V (�). The same
V (�), which is supposed to be independent of T , is then used to derive UT (z, zH ) and
T (zH ). Figure 7 exhibits such solutions for p = 0.5, 1 and 2, where the latter value repro-
duces the soft-wall model [7] with a strictly linear Regge-type spectrum L2m2

n = 4(n+1) for
n = 0, 1, 2 · · · . The left panel is for U0(z) according to (19), while the middle panel shows
T (zH ); the right panel displays ∂�V/V as a function of �. There is a striking similarity of
the curves T (zH ) andU0(z) (isotopy referring to the monotony behavior) which we interpret
as follows: a minimum of U0(z) is related to a minimum of T (zH ), i.e., a first-order phase
transition—here, an HP transition, since it is a global minimum. The behavior of ∂�V/V as
a function of � is in agreement with our assessments in Sects. 3.1 and 3.3.

To get an idea on the related scale, the left-hand plot of Fig. 8 shows the first three states,
that is L2m2

n as a function of p for n = 0 (ground state) and n = 1, 2 (first two radial
excitations). For comparison, the middle plot of Fig. 8 displays LTmin also as a function of
p. Both figures can be combined to Tmin/mn as a function of p (right-hand plot of Fig. 8).
Having in mind applications to QCD and identifying Tmin with 155 MeV (see above) and
m0 with the ρ meson ground-state mass of 770 MeV, one arrives at Tmin/m0 ≈ 0.20, i.e., a
value not too far from the range of values shown in the right-hand plot of Fig. 8. However,
2+1 flavor QCD with physical quark masses does not provide a first-order phase transition.
Insofar, the present set-up is more appropriate for 2+1 flavor QCD in the chiral limit, which in
fact enjoys a first-order phase transition [68,92], but detailed information on thermodynamic
quantities as well as the vector meson spectrum is lacking (cf. [91] for a search for the
delineation curve in the Columbia plot where cross-over and first-order phase transitions
touch each other; very preliminary first estimates [93] point to a ratio of Tc/m0 in the same
order of magnitude as for the case of physical quark masses); Tc becomes in the chiral limit
≈ 132 MeV [92].

The temperature dependence of UT (not shown) is such to cause the instantaneous dis-
appearance (melting) of vector meson states at Tc ≈ Tmin (see Fig. 9). Denoting the dis-
appearance temperature by Tdis and choosing m0 = mρ as scale, Fig. 9 translates into
Tdis = mρ

LTdis
Lm0

, meaning that Tdis = 116 MeV for LTdis = 0.27 (0.3) and Tm0 = 1.7 (2).
That value of Tdis does not apply to 2+1 flavor QCD with physical quark masses, since, as
stressed above, the present scenario is more suitable for the chiral limit where a first-order
phase transition occurs.
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Fig. 8 Scaled vector meson masses squared L2m2
n as a function of p (left panel), scaled minimum temperature

LTmin as a function of p (middle panel), and ratio Tmin/mn as a function of p for the ansatz (19). Blue
solid/green dashed/red dotted for ground-state/first excitation/second radial excitation (there is an infinite
tower of excitations for all p)

Fig. 9 Vector meson masses
squared L2m2

n of the first three
states (color code as in Fig. 8) as
a function of the temperature for
the parameter p = 2 (solid) and
p = 1 (dashed). The masses are
constant during the thermal gas
phase and all excitations
disappear at Tc, where the black
hole solution begins to apply

5 Summary and discussion

We focus here on the QCD relevant cross-over transition and its discrimination against the
first-order and second-order transitions. Obviously, more complicated structures are possible,
e.g., a sequence or nested first-order transitions for functions T (zH ) with multiple local
minima (see [26] for the case of a double transition). These require further shaping of the
dilaton potential. This can be easily done by combining the elements of our systematics
presented in this paper: an extreme point of ∂�V/V generates an inflection point of T (zH )

which points to a cross-over or a second-order phase transition (if it is a horizontal turning
point) or to a first-order phase transition if the temperature exhibits additional extreme points
which can be controlled by the altitude of ∂�V/V .

We did not touch such issues as good and bad curvature singularities [94], adding further
(e.g., charged scalar) fields which can bridge to order parameters and/or condensation [95],
larger classes of dilaton potentials (e.g., Liouville potentials or linear combination thereof
[96]) and fluctuations.

Unfortunately, the Einstein-gravity-dilaton model seems to be not flexible enough to allow
simultaneously for a cross-over and probe meson states, because the existence of the latter
ones requires a minimum in T (zH ). The obvious idea to construct a dilaton potential, such
that T (zH ) has a minimum at a horizon z∗H with T (z∗H ) being small (to ensure the existence
of the mesons) and a cross-over at the QCD critical temperature of about 155 MeV does not
work very well, since all probe mesons’ states disappear already at the minimum temperature
T (z∗H ). However, keeping the background, as determined in Sect. 3, a refinement of the action
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(9) has the capability of describing properly (i) probe vector mesons at low temperatures and
(ii) the pattern of meson melting at high temperatures, consistent with lattice QCD. The
details will be reported elsewhere.

A first step further on the road to a fully consistent approach could be the consideration of
a U (1) Maxwell-type gauge field. Such a field has been used to address the question of the
behavior of probe vector mesons in relation to the thermodynamics: ρ mesons are described
through the U (1) gauge field (see (9)) and putting together the actions (1) and (9) would
yield a model with full back reaction from the mesons to the gravity background.

Since QCD thermodynamics is not driven by vector mesons alone, another step is adding
systematically flavor, e.g., by including the pseudo-scalar and scalar sectors via the bulk
fundamental fields and its vacuum expectation values. Some works point directly in this
direction: the authors of [97] introduce a second scalar field (glue ball field) and solve the
field equations for the case T = 0; many other investigate the behavior of hadron species in a
given background without back reaction (see, e.g., [76,86,98–104]). [105,106] give a study
of phase transitions in relation to a flavor containing model with given metric background.
Back reactions are accounted for in the V-QCD model class pioneered in [107], where the
flavor sector supplements the gluon (dilaton) sector, thus catching many desired features in
relation to QCD, up to the equation of state adapted to the 2+1 flavor case for T > Tc (cf.
[108] and further references therein). Bringing the characteristic features of the mentioned
works together would be an improvement. The Holy Grail would be a model with parameters
steering quark masses and condensates for different flavors separately with proper hadron
spectra in all (scalar, pseudo-scalar, vector, axial-vector, tensor, and axial-tensor) sectors.

All mentioned extensions point to the leading question, which framework is needed to
have a QCD consistent thermodynamics and proper in-medium modifications of the hadron
species. However, increasing the variety of a model means increasing its complexity and
requires much follow-up work.
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Appendix A: Derivation of (17)

We use f ′(zH , zH ) = −4πT (zH ) and f (zH , zH ) = 0 to evaluate (6) and (7) at z = zH
which imply:

T (zH ) = 1

6π

eA(zH ,zH )

A′(zH , zH )
V (�(zH , zH )), (A1)
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T (zH ) = − 1

4π

eA(zH ,zH )

�′(zH , zH )
∂�V (�(zH , zH )), (A2)

respectively. Differentiating (A1) w.r.t. zH yields:

1

T

dT

dzH
= A′ + ∂A

∂zH
− 1

A′

(
A′′ + ∂A′

∂zH

)
+ ∂�V

V

d�

dzH
, (A3)

where all functions are to be taken at (zH , zH ). Equating (A1) and (A2) yields A′ at z = zH
as:

A′ |z=zH = −2

3
�′ V

∂�V
|z=zH . (A4)

By inserting (A4) in (A3) and eliminating A′′ via (5), we find:

1

�′T
dT

dzH
= 1

2

∂�V

V
− 1

3

V

∂�V
+ 1

�′
∂A

∂zH
+ 1

�′

(
3

2�′
∂A′

∂zH
+ ∂�

∂zH

)
∂�V

V
(A5)

at z = zH . This leads directly to (17). The next step is to solve the field equation (4):

f (z, zH ) = 1 − h(z, zH )

h(zH , zH )
, (A6)

where h(z, zH ) := ∫ z
0 exp(−3/2A(z̃, zH )) dz̃. This solution is well defined and can be

employed to compute the temperature for a third time:

T (zH ) = 1

4π

e− 3
2 A(zH ,zH )

h(zH , zH )
. (A7)

After differentiating (A1) w.r.t. zH and some manipulations, we end at:

1

T

dT

dzH
+ 4πT = −3

2
(A′ + ∂A

∂zH
) |z=zH + 3

2h

zH∫

0

∂A

∂zH
(z̃, zH )e− 3

2 A(z̃,zH ) dz̃, (A8)

which we will use in Appendix B.

Appendix B: Derivation of (18)

We start with (14). To relate U0 with T , we evaluate (A1, A2, A5, A8) in leading order,
i.e., neglecting a and ϕ:

T = 1

6π

eA0

A′
0
V (�0), (B1)

T = − 1

4π

eA0

�′
0
∂�V (�0), (B2)

1

�′
0T

dT

dzH
= 1

2

∂�V

V
− 1

3

V

∂�V
, (B3)

1

T

dT

dzH
+ 4πT = −3

2
A′

0. (B4)

These four equations allow for eliminating all A’s and �’s in (14). Finally, we arrive at (18).
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Fig. 10 Left: Tmin curve (solid black) generated by the potential (C1) under variation of p2 at pi≥3 = 0,
analog to Fig. 4. By varying a second parameter (here p3 = −0.01 · · · 0.01 and pi≥4 = 0), the Tmin curve
becomes a strip (red area), where a negative (positive) value of p3 belongs to the lower (upper) part, since
increasing p3 means increasing the slope of ∂�V/V and therefore increasing also the difference between
Gubser’s adiabatic criterion and the Tmin curve. If ∂�V/V as a function of � with given parameter set �p
has a section within the corresponding Tmin area (here only displayed for a p3 interval), then a first-order or
HP-phase transition is facilitated. Right: border lines of parameter regions in −L2m2

� = p2/24 vs. p4 space,
where either T (zH ) has a minimum (right to blue curve), or U0(z) has a minimum (right to red curve), or
∂�V/V is greater than

√
2/3 (right to green curve) for the dilaton potential (C1) with p3 = 0 and pi≥5 = 0;

if m�, and therefore, the slope of ∂�V/V increase, the difference between Gubser’s adiabatic criterion and
the Tmin curve becomes larger

Appendix C: Towards a systematic dilaton potential expansion analysis

Another useful form of the dilaton potential is:

− L2V (�) = 12 exp
(∑

i=2
pi�

i
)

, (C1)

since ∂�V/V runs over all BF permitted and AdS conform polynomials if �p = (p2, p3, · · · )
runs over all vectors. The case pi≥3 = 0 characterizes the leading order (straight lines) in
the spirit of an expansion of ∂�V/V in powers of �. The left panel in Fig. 10 shows the
influence of the varying p3-depending term (red strip) on the Tmin curve (black curve) which
is generated with running p2 analogously to Fig. 4. The parameter regions in the −L2m2

�

vs. p4 plane, where T (zH ) (blue curve) or U0(z) (red curve) exhibits a minimum, as well as
the area, where ∂�V/V is greater than

√
2/3 (green curve), are also shown (see right panel

and compared with Fig. 5). In such a manner, one can study, piece by piece, the impact of
the individual terms in (C1) on the issue of phase structure and capabilities to permit vector
meson modes in the probe limit.

We complement the ansatz (C1) by a purely polynomial form of V (�) in the spirit of a
small-� expansion:9

− L2V (�) = 12 +
∑
i=1

φ2i�
2i , (C2)

and vary the parameters φ2, φ4, and φ6. A Tmin curve is exhibited in Fig. 11-left panel (cf.
Figs. 4 and 10 for other potential ansätze). In addition, the right panel of Fig. 11 displays
a contour plot of the quantity (∂�V/V )∗ over the plane spanned by the coordinates � and
∂�(∂�V/V ). The meaning of (∂�V/V )∗ is as follows: that value is the minimum at which

9 We thank the anonymous Referee for that suggestion.
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Fig. 11 Left: Tmin curve (solid black) generated by the potential (C2) under variation of φ2 at φ4 = 0.23
and φi≥6 = 0, analog to Fig. 4. Right: contour plot of the minimum value (∂�V/V )∗ over the plane �

vs. ∂�(∂�V/V ) for which T (�H ) exhibits a minimum: If (∂�V/V ) exceeds this value (depending on its
slope and the position), the temperature exhibits a minimum which is independent of the concrete set of
parameters

the corresponding curve T (�H ) acquires a local minimum, thus turning the smooth (cross-
over) thermodynamic behavior into a first-order or HP transition. Note that the quantity
∂�(∂�V/V ) is the slope of ∂�V/V and so Fig. 11 could be understood as some kind of
Legendre transform parameterizing a function by its derivative. In essence, the shown mini-
mum value of ∂�V/V is needed to produce at least a local minimum of the temperature as a
function of zH or �H . The particular value of such an analysis is that the minimum value of
∂�V/V depends mainly on � and the slope of the quantity ∂�V/V and not on the concrete
choice of parameters which leads to the combination of � and ∂�(∂�V/V ).

We emphasize again that, w.r.t. applications for QCD2+1(phys.), parameter regions which
facilitate a first-order or HP transitions must be avoided. In fact, there are parameter regions
which allow the desired cross-over as well. Insofar, (C2) can provide a guidance for such a
goal upon a small-� expansion of specific ansätze of the dilaton potential.
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