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Abstract In each community, there is a lot of information about the disadvantages and risks
of drug use and its negative effects on health, work, honor, and other living funds of people.
A group of individuals, who can be called responsive individuals, will be safe from the risk
of drug abuse, by receiving and understanding such information. In this paper, by proposing
mathematical models, we investigate the effect of the distribution of this kind of information
on the transformation of susceptible individuals into responsive individuals as well as their
effect in preventing the occurrence of substance abuse epidemics. In these models, we take
into account the fact that the spirit of responsiveness of these individuals can be decayed with
time, and these people can become susceptible people, and eventually to addicts. We analyze
the dynamical properties of the models, such as local and global stability of equilibrium
points and the occurrence of backward bifurcation. The results of this study show that the
higher the rate of conversion of susceptible individuals to those responsive, the prevention
of drug epidemy is easier.

1 Introduction

As far as usage of drugs damages the physical, mental, and social well being of individuals,
their families and societies, and drug usage turn into a worldwide social and health problem.
Police records, rehabilitation centers, and prisons records show the increase in harmful drug
uses, and on the other hand, the literature shows expanded studies undertaken to explore
various aspects of drugs such as its relation to media and information, campaigns, criminals,
etc., see [23,24].

Among various drug users, heroin users are at high risk of addiction and criminal actions.
As indicated in [24], “the number of heroin users increased from 166,000 in 2002 to 335,000
in 2012, and the death rate of drug poisoning involving heroin increased from 0.7 to 2.7 per
100,000 persons during 2002–2013 in the USA. The heroin addiction was first defined as
an epidemic in 1981–1983 in Ireland”. White and Comiskey, in [25], have introduced the
following epidemic model for the dynamics of heroin users:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= � − β1SU1

N − μS

dU1

dt
= β1SU1

N + β3U1U2
N − (μ + δ1 + p)U1

dU2

dt
= pU1 − β3U1U2

N − (μ + δ2)U2

(1.1)

in which S(t) is the number of susceptible individuals in the population, U1(t) is the number
of drug users not in treatment; initial and relapsed drug users, and U2(t) is the number of
drug users in treatment. Their model was revisited by Mulone and Straughan [18].

After White and Comiskey’s work, the epidemiology of drugs has been studied by several
authors. For example, Nyabadza and Hove-Muskava in [21] modified (1.1) to a model of the
dynamics of methamphetamine use in a South African province. Njagarah and Nyabadza in
[19], have studied the impact of rehabilitation, amelioration, and relapse on drug epidemics.
Nyabadza, Njagarah, and Smith in [20] have studied the epidemiology of crystal in South
Africa. The reader can see also [8,10,22].

In many compartmental epidemic models, individuals assumed to be passive persons,
that will not respond, i.e., change their behavior during an infectious disease outbreak or
in an endemic infection. Now, it is clear that a realistic model must include the feedback
that the information about the disease prevalence has on its spreading [6]. In some infectious
disease such as sexually transmitted diseases, i.e., STDs, Pandemic Influenza, and SARS, the
diffusion of information through targeted campaigns, various media resources and individual
to an individual contact, can alert the population to the spreading disease. Most studies of
behavior change in epidemic disease models have been carried out in the context of STDs,
particularly HIV, see [5,7,11,16,17,26].

In the case of drugs, there is a lot of information available about the harm and dangers of
drug use in the community. A group of individuals, who can be called responsive individuals,
will be safe from the risk of drug abuse, by receiving and understanding such information. In
this paper, we will propose modified forms of White–Comiskey’s model, by considering the
effect of information transmission, on drug prevalence. Our modification includes the split
of the susceptible populations into two compartments, the susceptible individuals S1, and the
responsive individuals S2, i.e., the individuals who do not use drugs because of information
about the harms and dangers of it. Furthermore, we assume that because of transmission
of information, susceptibles will be transmitted from S1 to S2. As in [11], we consider two
routes for information dissemination, information transmission via direct contact between
individuals, and population-wide dissemination of drug-related information.

Our aim is to study the quantitative effect of the coefficients of the model, specially
the rate of conversion of susceptible and responsive individuals and the rate of decay of
information, on the threshold required for the occurrence of backward bifurcation and stability
of equilibrium points. With this study, the mechanism of the effect of changes in these factors
on the occurrence or prevention of an epidemic becomes more apparent.

The paper is organized as follows. In Sect. 2, we consider a model without treat-
ment/rehabilitation compartment, compute the basic reproduction number, R0, of the model,
and, by using Lyapunov functions, Poincare

′
–Bendixson theorem, and Dulac functions, prove

that the drug-free equilibrium P0 is locally and globally stable if R0 < 1, and the unique
endemic equilibrium point exists and is locally and globally stable if R0 > 1.

In Sect. 3, we consider a model with a compartment for the individuals under treat-
ment/rehabilitation programs with the effect of relapse of drug users under treatment to drug
use. We compute R0, the basic reproduction number of the model and study the local stability
of equilibrium points. This model shows more complexity, in fact, although the equation on
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endemic value u∗ is a polynomial of third order, we have provided a complete analysis which
shows that endemic equilibrium may exist (at most 3 points), in cases, R0 < 1, R0 = 1
and R0 > 1. Occurrence of backward bifurcation is also proved for the model which shows,
under some conditions, it is not enough to reduce R0 to the region R0 < 1, to control the drug
epidemy. In fact, when R0 < 1, the drug problem may be persistent. Furthermore, we drive
sufficient conditions for the global stability of endemic equilibrium points in some cases,
using geometric approach.

2 The first model

2.1 Model formulation and basic properties

As we have mentioned, our goal is to investigate the effect of information on the prevention
of drug epidemics. In the White and Comiskey’s model, this effect is not considered. To this
end, we add a compartment for the responsive people, to their model. First, in this section,
we analyze the model regardless of the effect of treatment/rehabilitation. Then, in the next
section, we will consider a more complete model containing a compartment for these people.
By doing this, we can see that adding a compartment to the model causes what changes in
the analysis process and also the dynamics of the model.

We suppose that the population is divided into three compartments; the susceptible indi-
viduals S1, the infected individuals U , i.e., drug users, and the responsive individuals S2, i.e.,
the individuals who do not use drugs because of information about its harms and dangers.
We assume that because of the diffusion of information about the harms and dangers of drug
use, susceptibles will be transmitted from S1 to S2. In this model, we consider two routes for
information dissemination:

(i) Information dissemination via direct contact between individuals given by f1, and,
(ii) population-wide dissemination of drug-related information given by f2. Contact between

individuals is best characterized by frequency dependent contact, and hence, the natural
choice for f1 is given by:

f1 = αs S1U

N
,

where αs is the rate of (i.e., the likelihood of) exposure to addicts and taking lessons from
the effects of the painful consequences of addiction.

The rate of population-wide transmission of information is assumed to depend on the
disease prevalence. This is based on the assumption that more drug users will generate an
increased volume and more efficient diffusion of information about its harms and dangers.
However, the effect of this will be limited and will saturate for high prevalence with little
further impact on individuals’ behavior. Thus, we consider a function of the following form:

f2 = αl S1U

K +U
,

where αl is, the rate of encouraging people to come to a healthy life together with cautionary
behaviors, and K is a positive constant. As a result of either of these two types of information
dissemination, susceptible individuals move to the responsive individual’s compartment.
However, information that covers the same topic repeatedly will lose its value over time.
For example, responsive individuals that avoid using drugs for a certain amount of time
are likely to become less cautious. We consider d as the rate of decay of information and
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Fig. 1 The flowchart of the
model

cautiousness. In this model, β is the contact rate of susceptibles with infectious individuals,
i.e., drug users. The constants ν, μ, and A, represent the recovery rate, the natural death rate,
and the rate of immigration of susceptibles, respectively. The flowchart of the model is given
in the above diagram, Fig. 1, and the model describes by the following system of nonlinear
ordinary differential equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS1

dt
= A − αs S1

U
N − αl S1

(
U

U+K

)
+ dS2 − μS1 + νU − βS1

U
N

dS2

dt
= αs S1

U
N − dS2 + αl S1

(
U

U+K

)
− μS2

dU

dt
= βS1

U
N − νU − μU

(2.1)

The total population N (t) = S1(t) + S2(t) +U (t) satisfies the following equation, dN
dt =

A − μN (t), and hence limt→∞ N (t) = A
μ

= N0. Following [14,15], we assume that the
population is at equilibrium and study the behavior of the system on the plane S1 + S2 +U =
N0 = A

μ
. Let

s1 = S1

N0
, s2 = S2

N0
, u = U

N0
, k = K

N0
. (2.2)

which satisfies s1 + s2 + u = 1. Using this relations, finally, we consider the following
two-dimensional system:

⎧
⎪⎨

⎪⎩

ds1

dt
= μ − αss1u − αl s1

u
u+k + d(1 − s1 − u) − μs1 + νu − βs1u = f (s1, u)

du

dt
= βs1u − νu − μu = g(s1, u).

(2.3)

We study (2.3) in the following feasible region:

� = {(s1, u) ∈ R
2+ : s1 ≥ 0, u ≥ 0, s1 + u ≤ 1},

which is positively invariant with respect to (2.2).

2.2 Stability of the drug-free equilibrium

System (2.3) has the drug-free equilibrium P0 = (1, 0). The Jacobian of the system is given
by:

J (s1, u) =
(

−αsu − αl

(
u

u+k

)
− d − μ − βu −αss1 − αl s1

(
k

(k+u)2

)
− d + ν − βs1

βu βs1 − ν − μ

)

123



Eur. Phys. J. Plus (2020) 135:54 Page 5 of 20 54

Fig. 2 The phase portrait of the system for a: αl = αs = β = ν = μ = d = 0.5, k = 1.2, and R0 = 0.5. b
αl = αs = d = 0.5, ν = μ = 0.25, β = 0.75, k = 1.2, and R0 = 1.5

and

J (1, 0) =
(−d − μ −αs − αl

k − d + ν − β

0 β − ν − μ

)

.

The eigenvalues of this matrix are λ1 = −d −μ and λ2 = β − ν −μ, the first eigenvalue
is negative, and the second eigenvalue is negative if β < ν + μ. We introduce R0 = β

ν+μ
,

as the basic reproduction number and obtain the following result on the local stability of the
drug-free equilibrium.

Theorem 2.1 The drug-free equilibrium P0 is asymptotically stable when R0 < 1 and
unstable when R0 > 1.

Furthermore, we can prove the global stability of the drug-free equilibrium point.

Lemma 2.1 The drug-free equilibrium point, P0, is globally asymptotically stable in � if
R0 < 1.

Proof Define V : {(s1, u) ∈ � : s1 > 0} → R by:

V (s1, u) = u.

The time derivative of V along the solution curves of (2.3) is:

dV

dt
= du

dt
≤ (μ + ν)(R0 − 1)u.

Therefore, when R0 < 1,
dV

dt
≤ 0, and,

dV

dt
= 0 if and only if u = 0. Hence, P0 is global

asymptotic stable. 	

Figure 2 shows the phase portrait of the system, around the equilibrium points, in some cases.

2.3 Endemic equilibrium

Let P∗ = (s∗
1 , u∗) be the endemic equilibrium point of (2.3); u∗ �= 0 in the second equation

imply that:

s∗
1 = ν + μ

β
= 1

R0
. (2.4)
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Since in the endemic equilibrium s∗
1 < 1, this relation implies that the endemic equilibrium

point exists only when R0 > 1. Now, substituting this value in the first equation of (2.3), and
setting equal to zero, we obtain:

μ − αs

(
ν + μ

β

)

u∗ − αl

(
ν + μ

β

) (
u∗

u∗ + k

)

+ d

(

1 −
(

ν + μ

β

)

− u

)

−μ

(
ν + μ

β

)

+ νu∗ − β

(
ν + μ

β

)

u∗ = 0,

which reduces to:

Au∗2 + Bu∗ + C = 0. (2.5)

With the following coefficients:

A = (ν + μ)(−αs − β) + β(ν − d) = (ν + μ)(−αs − R0(μ + d)),

B = k((ν + μ)(−αs − β) + β(ν − d)) + (μ + d)(β − ν − μ) − αl(ν + μ)

= k(−αs(ν + μ) − β(μ + d)) + (μ + d)(ν + μ)(R0 − 1) − αl(ν + μ),

C = k(μ + ν)(β − ν − μ) = k(μ + ν)2(R0 − 1).

Since at an endemic equilibrium s∗
1 < 1, the endemic equilibrium exists only when,

R0 > 1, and hence C is a positive real number. On the other hand, since A is a negative real
number, we have 	 ≥ 0. Solving Eq. (2.5) yields:

u∗
1,2 = −B

2A
±

√
	

2A
(2.6)

and u∗
1 = −B

2A −
√

	
2A is the positive root of (2.5). Therefore, in this case:

P∗ = (s∗
1 , u∗) =

(
ν + μ

β
,
−B − √

	

2A

)

is the endemic equilibrium point. Now, we investigate the local stability of the endemic
equilibrium.

Theorem 2.2 The endemic equilibrium point P∗ is locally asymptotically stable if R0 > 1.

Proof The characteristic equation of the Jacobian matrix of the endemic equilibrium P∗ has
the following form:

λ2 − λp + q = 0,

where p = TraceJ (P∗) = −αsu∗ − αl(
u∗

u∗+k ) − d − μ − βu∗ < 0 and q = Det J (P∗) =
βu∗

(

αs(
ν + μ

β
) + αl(

ν + μ

β
)( k

(k+u∗)2 ) + d + μ

)

> 0. Hence, the linearization theorem

shows the local stability of the endemic equilibrium point. Furthermore, if 	 = p2 −4q ≥ 0,
the endemic equilibrium is a stable node, and if 	 ≤ 0, the endemic equilibrium is a stable
focus. 	

For the study of global stability of the endemic equilibrium point, we use the Poincaré–
Bendixson theorem.

Theorem 2.3 If R0 > 1, the unique endemic equilibrium point P∗ is globally asymptotically
stable in �.
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Proof We use the Dulac function B(s1, u) = 1
u , for which div(B f, Bg) = −αs −αl(

1
u+k )−

d

u
− μ

u − β < 0, in the region u > 0. Furthermore, integrating the second equation of (2.3)

yields u(t) = u(0)e
∫ t

0 (βs1(τ )−ν−μ)dτ , which shows that the line u = 0 is positively invariant,
and hence, there are no periodic solutions in this system. Hence, the local stability and the
Poincare

′
–Bendixson theorem imply the global stability of P∗. 	


3 The second model

In the previous section, we studied the model (2.1). Now, we developed (2.1) taking into
account the effect of treatment and rehabilitation. We add a new compartment T , consist of
drug users who become under treatment/rehabilitation to the previous model. We assume
that δ1 represents the treatment/rehabilitation rate and δ2 is the rate of relapse to drug use.
Therefore, we have the following system of nonlinear ordinary differential equations (Fig. 3):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1

dt
= A − αs S1

U
N − αl S1

(
U

U+K

)
+ dS2 − μS1 + νU − βS1

U
N

dS2

dt
= αs S1

U
N − dS2 + αl S1

(
U

u+K

)
− μS2

dU

dt
= βS1

U
N − νU − μU − δ1U + δ2T

U
N

dT

dt
= δ1U − δ2T

U
N − μT

(3.1)

The total population N (t) = S1(t)+ S2(t)+U (t)+T (t) satisfies the following equation:
dN
dt = A − μN (t), and hence, limt→∞ N (t) = A

μ
= N0. Following [14,15], we assume

that the population is at equilibrium and study the behavior of the system on the hyperplane
S1 + S2 +U + T = N0 = A

μ
. Let

s1 = S1

N0
, s2 = S2

N0
, u = U

N0
, τ = T

N0
, k = K

N0
. (3.2)

which satisfies s1 + s2 + u + τ = 1. Using this relations, finally, we consider the following
system:

Fig. 3 The flowchart of the
model with
treatment/rehabilitation
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ds1

dt
= μ − αss1u − αl s1

(
u

u+k

)
+ d(1 − s1 − u − τ) − μs1 + νu − βs1u

du

dt
= βs1u − νu − μu − δ1u + δ2τu

dτ

dt
= δ1u − δ2τu − μτ.

(3.3)

We study (3.3) in the following feasible region:

�1 = {(s1, u, τ ) ∈ R
3+ : s1 ≥ 0, u ≥ 0, τ ≥ 0, s1 + u + τ ≤ 1},

Which is positively invariant with respect to (3.3).

3.1 Stability of the drug-free equilibrium

It is easy to see that system (3.3), has a unique drug-free equilibrium P1(1, 0, 0). The Jacobian
matrix of this system has the following form:

J (s1, u, τ )

=
⎛

⎜
⎝

−αsu − αl

(
u

u+k

)
− d − μ − βu −αss1 − αl s1

(
k

(k+u)2

)
− d + ν − βs1 −d

βu βs1 − ν − μ − δ1 + δ2τ δ2u
0 δ1 − δ2τ −δ2u − μ

⎞

⎟
⎠ ,

and

J (1, 0, 0) =
⎛

⎝
−d − μ −αs − αl

k − d + ν − β −d
0 β − ν − μ − δ1 0
0 δ1 −μ

⎞

⎠ . (3.4)

The eigenvalues of this matrix are λ1 = −d −μ, λ2 = −μ, and λ3 = β −ν −μ− δ1. We
introduce R0 = β

ν+μ+δ1
and obtain the following result on the local stability of the drug-free

equilibrium.

Theorem 3.1 The drug-free equilibrium P1 is asymptotically stable when R0 < 1 and
unstable when R0 > 1.

3.2 Endemic equilibrium

The endemic equilibrium point (s∗
1 , u∗, τ ∗) of (3.3) is determined by the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

μ − αss∗
1u

∗ − αl s∗
1

(
u∗

u∗+k

)
+ d(1 − s∗

1 − u∗ − τ ∗) − μs∗
1 + νu∗ − βs∗

1u
∗ = 0

βs∗
1 − ν − μ − δ1 + δ2τ

∗ = 0

δ1u∗ − δ2τ
∗u∗ − μτ ∗ = 0

(3.5)

Since u∗ �= 0, the second and third equations yield, τ ∗ = δ1u∗
δ2u∗+μ

and s∗
1 =

ν+μ+δ1−δ2(
δ1u

∗
δ2u

∗+μ
)

β
. Now, by substituting this relations in the first equation of system and

setting it equal to zero, we get the following third-order polynomial in terms of u∗:

μ − αsu∗

β

⎛

⎝ν + μ + δ1 − δ2

(
δ1u∗

δ2u∗ + μ

)

− αl

⎛

⎝
ν + μ + δ1 − δ2

(
δ1u∗

δ2u∗+μ

)

β

⎞

⎠

(
u∗

u∗ + k

)

123



Eur. Phys. J. Plus (2020) 135:54 Page 9 of 20 54

+d

⎛

⎝1 −
⎛

⎝
ν + μ + δ1 − δ2

(
δ1u∗

δ2u∗+μ

)

β

⎞

⎠ − u∗ −
(

δ1u∗

δ2u∗ + μ

)
⎞

⎠

−μ

β

(

ν + μ + δ1 − δ2

(
δ1u∗

δ2u∗ + μ

))

+ νu∗ − u∗
(

ν + μ + δ1 − δ2

(
δ1u∗

δ2u∗ + μ

))

= 0,

which reduces to

Au∗3 + Bu∗2 + Cu∗ + D = 0, (3.6)

where

A = −δ2(μ(αs + β) + ναs + βd),

B = (μ + ν)(−αskδ2 − αsμ − αlδ2 − dδ2 − μδ2) + μβ(−μ − kδ2)

+δ1(−αsμ − μβ − βd) + δ2β(μ + d − kd)

= (μ + ν)(−αskδ2 − αsμ − αlδ2 − dδ2 − μδ2) + δ1(−αsμ − μβ − βd)

−μ2β + (μ + d)βδ2(1 − k),

C = μ(μ + ν + δ1)(−αsk − αl − kβ − d − μ) + (d + μ)(−k(ν + μ)δ2 + kβδ2 + βμ)

+kβνμ − kdβν − kdβδ1,

D = kμ(μ + d)(ν + μ + δ1)(R0 − 1).

Now, we consider f (u) = Au3 + Bu2 + Cu + D, with f ′(u) = 3Au2 + 2Bu + C
and f ′′(u) = 6Au + 2B. Furthermore since A < 0, limu→+∞ f (u) = −∞ and
limu→−∞ f (u) = +∞. For the study of the existence of endemic values u∗, we consider
three cases:

Case I: R0 > 1, i.e., f (0) = D > 0.
And we consider the following subcases:

I0 : 	 = 4B2 − 12AC < 0.

In this case, f (u) is strictly decreasing, and hence, it has a unique positive root:

I1 : 	 > 0, B > 0, and C > 0.

In this case, according to the second derivative test, u1 = −2B+√
	

6A < 0 is a local minimum

and u2 = −2B−√
	

6A > 0 is a local maximum for f (u). Therefore, f (u) = Au3 + Bu2 +
Cu + D, has only one positive real root, u∗:

I2 : 	 > 0, B < 0 and C < 0.

In this case, u1 = −2B+√
	

6A < 0 is a local minimum, and u2 = −2B−√
	

6A < 0 is a local
maximum, with u1 < u2, and therefore, there is only one positive real root for f (u):

I3 : 	 > 0, B > 0 and C < 0.

In this case, u1 = −2B+√
	

6A > 0 is a local minimum, and u2 = −2B−√
	

6A > 0 is a local
maximum for f (u) and u1 < u2. Hence, f (u) = Au3 + Bu2 + Cu + D, which has three
positive real roots:

I4 : 	 > 0, B < 0 and,C > 0.

123
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In this case, u1 = −2B+√
	

6A < 0 is a local minimum, and u2 = −2B−√
	

6A > 0 is a local
maximum for f (u). Thus, f (u) = Au3 + Bu2 + Cu + D, which has only one positive real
root.

It should be noted that if 	 > 0, then B and C are not both zero:

I5 : 	 > 0 and B = 0.

In this case, C > 0, u1 =
√

	
6A < 0 is a local minimum, and u2 = −√

	
6A > 0 is a local

maximum, and there is only one positive real root for f (u):

I6 : 	 > 0 and C = 0.

If 	 > 0 and C = 0, then B �= 0. If B > 0, the point u1 = 0 is a local minimum and
u2 = −2

3
B
A > 0, is a local maximum. Therefore, there is only one positive real root for f (u).

If B < 0, then u1 = −2
3

B
A < 0 is a local minimum and u2 = −2

3
B
A > 0 is a local

maximum. Therefore, there is only one positive real root for f (u):

I7 : 	 = 0, B �= 0 and C �= 0.

If 	 = 0, then, C = B2

3A < 0. Therefore we have A < 0,C < 0. If B > 0, then f (u)

in u = −B
3A > 0 has a horizontal tangent, and if B < 0 Then, f (u) has a horizontal

tangent in u = −B
3A < 0. In both cases, if ε > 0 is sufficiently small, then f ′(−B

3A + ε) =
−B2

3A + 3Aε2 + C = 3Aε2 < 0 and f ′(−B
3A − ε) = −B2

3A + 3Aε2 + C = 3Aε2 < 0. Hence,
in this case, there is just one positive real root for f (u):

I8 : 	 = B = 0.

In this case,C = 0 and f (u) have a horizontal tangent in u = 0 and it is a decreasing function

that has u∗ = 3
√

−D
A > 0 as the only root:

I9 : 	 = C = 0.

If 	 = C = 0, then B = 0. With a similar argument as in (8), f (u) has a rootu∗ = 3
√

−D
A > 0.

Figure 4 shows the phase portrait of the system in some cases of I.

Case II: R0 < 1, i.e., f (0) = D < 0.
We consider the following subcases:

I I0 : 	 < 0.

In this case, f (u) is strictly decreasing, and hence, it does not has any positive root:

I I1 : 	 > 0, B > 0 and C > 0.

In this case, according to the second derivative test, u1 = −2B+√
	

6A < 0 is a local minimum

and u2 = −2B−√
	

6A > 0 is a local maximum for f (u). If f (u2) > 0, then f (u) has two
positive real roots, and if f (u2) = 0, then f (u) has only one positive real root, and if
f (u2) < 0, then f (u) has no real positive root:

I I2 : 	 > 0, B > 0 and C < 0.

In this case, with an argument similar to the previous case, u1 = −2B+√
	

6A > 0 is a local

minimum and u2 = −2B−√
	

6A > 0 is a local maximum for f (u) and u1 < u2. If f (u2) > 0,
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Fig. 4 The phase portrait of the system for a αs = αl = d = 0.5, ν = 0.125, μ = 0.25, β = 0.75, δ1 =
0.25, δ2 = 0.5, and k = 1.2. Case I2. b αl = αs = d = 0.01, ν = μ = 0.01, β = 0.031, and k = 1.2. Case
I4

then f (u) has two positive real roots; if f (u2) = 0, then f (u) has only one positive real
root; and if f (u2) < 0, then f (u) has no real positive root:

I I3 : 	 > 0, B < 0 and C > 0.

In this case, u1 = −2B+√
	

6A < 0 is a local minimum and u2 = −2B−√
	

6A > 0 is a local
maximum for f (u). If f (u2) > 0, then f (u) has two positive real roots and if f (u2) = 0,
then f (u) has only one positive real root; furthermore, if f (u2) < 0, then f (u) has no real
positive root:

I I4 : 	 > 0, B < 0 and C < 0.

Clearly, in this case, u1 = −2B+√
	

6A < 0 is a local minimum, u2 = −2B−√
	

6A < 0 is a local
maximum and u1 < u2, and hence, there is no endemic value for u.

It should be noted that if 	 > 0, then B and C are not both zero:

I I5 : 	 > 0 and B = 0.

If 	 > 0 and B = 0, then C > 0. In this case, u1 =
√

	
6A < 0 is a local minimum and

u2 = −√
	

6A > 0 is a local maximum and a similar argument concludes that if f (u2) > 0,
then f (u) has two positive real roots; if f (u2) = 0, then f (u) only one positive real root;
and if f (u2) < 0, then f (u) has no real positive root:

I I6 : 	 > 0,C = 0.

If 	 > 0 and C = 0, then B �= 0. If B > 0, then u1 = 0 is a local minimum and
u2 = −2

3
B
A > 0 is a local maximum. Therefore, if f (u2) > 0, then f (u) has two positive

real roots; and if f (u2) = 0, then f (u) has only one positive real root; and if f (u2) < 0,
then f (u) has no real positive root.

If B < 0, then u1 = −2
3

B
A < 0 is a local minimum and u2 = 0 is a local maximum.

Therefore, there is only one positive real root for f (u):

I I7 : 	 = 0, B �= 0,C �= 0.
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Fig. 5 The phase portrait of the system for a αs = 0.9, αl = 0.1, ν = 0.01, μ = 0.01, d = 0.9, β =
0.3333, δ1 = 0.5, δ2 = 0.9, and k = 0.01. Case II2. b αs = 0.01, αl = 0.1, ν = 0.01, μ = 0.001, d = 0.99,
β = 0.02, δ1 = 0.01, δ2 = 0.14, and k = 1.2. Case II3

If 	 = 0, then C = B2

3A < 0. Therefore, we have A < 0,C < 0, D < 0. Now, if B > 0,
then f (u) in u = −B

3A > 0 has a horizontal tangent, and if B < 0, then f (u) has a horizontal
tangent in u = −B

3A < 0. In both cases, if ε is a sufficiently small positive number, then

f ′(−B
3A + ε) = −B2

3A + 3Aε2 + C = 3Aε2 < 0 and f ′(−B
3A − ε) = −B2

3A + 3Aε2 + C =
3Aε2 < 0. Therefore, if B > 0, there is no positive real root for f (u), and if B < 0 for both
cases f (−B

3A ) ≥ 0 and f (−B
3A ) < 0, there is no positive real root for f (u).

I I8 : 	 = 0, B = 0.

If 	 = 0 and B = 0, then C = 0. In this case, f (u) has a horizontal tangent in u = 0 and it

is a decreasing function with the unique root u∗ = 3
√

−D
A < 0. Therefore, there is no positive

real endemic value for u.

I I9 : 	 = 0,C = 0.

If 	 = 0 and C = 0, then B = 0, and similar to (I I8), f (u) has only one root u∗ = 3
√

−D
A <

0. Therefore, there is no endemic value for u.
Figure 5 shows the phase portrait of the system in some cases of II.
Case III: R0 = 1, i.e., f (0) = D = 0, and u∗ is the solution of the second-order

polynomial:

g(u∗) = Au∗2 + Bu∗ + C = 0, (3.7)

which is a concave parabola in term of u∗. Now, if 	′ = B2 − 4AC < 0, it does not
have any real root. If 	′ ≥ 0, and C ≥ 0, it has one positive real root. When 	′ ≥ 0,
and C ≤ 0, if B > 0, the parabola g(u∗) has a positive maximum point u∗

max = −B
2A , and

g(u∗
max) = 	′

−4A ≥ 0. Hence, if 	′ > 0, it has two positive solutions, and if 	′ = 0, it has
one positive solution.

Figure 6 shows the phase portrait of the system in some cases of III.
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Fig. 6 The phase portrait of the system for a αs = 0.01, αl = 0.1, ν = 0.005, μ = 0.01, d = 0.99,
β = 0.02, δ1 = 0.005, δ2 = 0.14, and k = 1.2. Case III. b αl = αs = d = 0.00001, μ = 0.01, β = 0.02,
ν = δ1 = 0.005, δ2 = 0.064, and k = 0.01. Case III

3.3 Backward bifurcation

Now, we use the Castillo–Chavez and Song theorem, see [4], to determine the conditions for
the occurrence of backward bifurcation in (3.3). Let s1 = x1, u = x2, and τ = x3. System
(3.3) transforms to the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1

dt
= μ − αs x1x2 − αl x1

(
x2

x2+k

)
+ d(1 − x1 − x2 − x3) − μx1 + νx2 − βx1x2

dx2

dt
= βx1x2 − νx2 − μx2 − δ1x2 + δ2x3x2

dx3

dt
= δ1x2 − δ2x2x3 − μx3.

(3.8)

We consider β∗ = ν + μ + δ1 as the parameter φ. The Jacobian matrix of the drug-free
equilibrium evaluated at β∗ has the following form:

A =
⎛

⎝
−d − μ −αs − αl

k − d + ν − β∗ −d
0 β∗ − ν − μ − δ1 0
0 δ1 −μ

⎞

⎠ ,

which has the eigenvalues, λ1 = −μ, λ2 = −d − μ and λ3 = β∗ − ν − μ − δ1 = 0. We
compute a right eigenvector w, i.e., Aw = 0. By solving this linear system, we found:

w =
⎛

⎝
μ(−αs − αi

k − d − μ − δ1) − δ1d
μ(d + μ)

δ1(d + μ)

⎞

⎠ .

Furthermore, we need to compute a left eigenvector, i.e., a vector v, with vA = 0. Compu-

tation shows that v =
⎛

⎝
0
1
0

⎞

⎠. Hence:
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a = 2v2w2

(

w1
∂2 f2

∂x2∂x1
+ w3

∂2 f2
∂x3∂x2

)

= 2v2w2(β
∗w1 + δ2w3)

b = v2w2
∂2 f2

∂x2∂β∗
= μ(d + μ) > 0.

As indicated in [4], Th. 3.2., for the occurrence of backward bifurcation, we need to have
a > 0 and b > 0. The relation a > 0, is equivalent to:

(μ(−αs − αl

k
− d − μ − δ1) − δ1d)β∗ + δ1(d + μ)δ2 > 0.

The last inequality holds if and only if:

δ2 >
μ

δ1

(
αs + αl

k + δ1

(d + μ)
+ 1

)

+ d

d + μ
(ν + μ + δ1). (3.9)

3.4 Global stability

Now, we obtain sufficient conditions for the global stability of endemic equilibrium points, in
cases of unique endemic equilibrium points, using geometric approach introduced in [12,13],
see [2,3,9], for applications of this method.

Let P = 1
u I3, where I3 is the identity matrix. Then, Pf P−1 = − 1

u

du

dt
I3, and:

Q = Pf P
−1 + P J [2]P−1 =

⎛

⎝
q11 q12 q13

q21 q22 q23

aq31 q32 q33

⎞

⎠

in which q11 = −αsu − αl(
u

u+k ) − d − μ − βu, q12 = δ2u, q13 = d q21 = δ1 − δ2τ ,
q22 = −αsu − δ2u − αl(

u
u+k ) − d − μ − βu − βs1 − δ2τ + δ1 + ν, q23 = −αss1 −

αl s1

(
ku

(k+u)
2

)
− d + ν − βs1, q31 = 0, q32 = βu and q33 = −μ − δ2u.

For z = (z1, z2, z3)
T , let ‖z‖ be the norm given by:

‖z‖ =
{

max{|z1| + |z2|, |z2| + |z3|} if 0 ≤ z2z3

max{|z1| + |z3|, |z2|} if z2z3 ≤ 0.
(3.10)

Lemma 3.1 There existsχ > 0, such that D+‖z‖ ≤ −χ‖z‖ for all z ∈ R
3 and all s1, u, τ >

0, where D+‖z‖ is the right-hand derivative of ‖z‖ and z is the solution of
dz

dt
= Qz, provided

that:

αs + ν + 2δ1 < d + μ, 2δ1 + 2ν + αs < 2d + μ, δ2 < d + μ, d < μ (3.11)

for some positive constant χ .

Proof We demonstrate the existence of some χ > 0, such that:

D+‖z‖ ≤ −χ‖z‖
for all z ∈ R

3. The proof is divided into eight cases based on the octant and the definition of
the norm in (3.10).

Case 1: 0 < z1, z2, z3 and |z1| + |z3| > |z2| + |z3|. In this case, ‖z‖ = |z1| + |z3|, and

D+‖z‖ = D+(|z1| + |z3|) = dz1

dt
+ dz3

dt
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=
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

z1 + (δ2u)z2 + dz3

+βuz2 + (−μ − δ2u)z3

=
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

z1 + (βu + δ2u)z2 + (d − μ − δ2u)z3,

since z1 > z2 > 0, we have:

D+‖z‖ <

(

δ2u − αsu − αl

(
u

u + k

)

− d − μ

)

z1 + (d − μ − δ2u)z3

≤ max

{

δ2u − αsu − αl

(
u

u + k

)

− d − μ, d − μ − δ2u

}

‖z‖.

Case 2: 0 < z1, z2, z3 and |z1| + |z3| < |z2| + |z3|. In this case, ‖z‖ = |z2| + |z3|, and

D+‖z‖ = D+(|z2| + |z3|) = dz2

dt
+ dz3

dt
= (δ1 − δ2τ)z1 +

(

−αsu − δ2u − αl

(
u

u + k

)

−d − μ − βu − βs1 − δ2τ + δ1 + ν) z2 +
(

−αss1 − αl s1

(
ku

(k + u)
2

)

−d + ν − βs1) z3 + (βu)z2 + (−μ − δ2u)z3

= (δ1 − δ2τ)z1 +
(

−αsu − δ2u − αl

(
u

u + k

)

− d − μ − βs1 − δ2τ + δ1 + ν

)

z2

+
(

−αss1 − αl s1

(
ku

(k + u)
2

)

− d + ν − βs1 − μ − δ2u

)

z3,

from z1 < z2, the above relation becomes:

D+‖z‖ <

(

ν + 2δ1 − αsu − δ2u − αl

(
u

u + k

)

− d − μ − βs1 − δ2τ

)

z2

+
(

ν − αss1 − αl s1

(
ku

(k + u)
2

)

− d − βs1 − μ − δ2u

)

z3

≤ max

{

ν + 2δ1 − αsu − δ2u − αl

(
u

u + k

)

− d − μ − βs1 − δ2τ, ν

−αss1 − αl s1

(
ku

(k + u)
2

)

− d − βs1 − μ − δ2u

}

}‖z‖.

Case 3: z1 < 0 < z2, z3 and |z1| + |z3| > |z2| + |z3|. In this case, ‖z‖ = |z1| + |z3|, and

D+‖z‖ = D+(|z1| + |z3|) = −dz1

dt
+ dz3

dt

=
(

αsu + αl

(
u

u + k

)

+ d + μ + βu

)

z1 − δ2uz2 − dz3 + βuz2 + (−μ − δ2u)z3

= −
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

z1 + (βu − δ2u)z2 + (−d − μ − δ2u)z3

=
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

|z1| + (βu − δ2u)|z2| + (−d − μ − δ2u)|z3|,

from |z1| > |z2|, we have:

123



54 Page 16 of 20 Eur. Phys. J. Plus (2020) 135:54

D+‖z‖ <

(

−αsu − αl

(
u

u + k

)

− d − μ

)

|z1| + (−d − μ − δ2u)|z3|

≤ max

{

−αsu − αl

(
u

u + k

)

− d − μ,−d − μ − δ2u

}

‖z‖.

Case 4: z1 < 0 < z2, z3 and |z1| + |z3| < |z2| + |z3|. In this case, ‖z‖ = |z2| + |z3|, and

D+‖z‖ = D+(|z2| + |z3|) = dz2

dt
+ dz3

dt
= (δ1 − δ2τ)z1

+
(

−αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1 − δ2τ + δ1 + ν

)

z2

+
(

−αss1 − αl s1

(
ku

(k + u)
2

)

− d + ν − βs1

)

z3 + (βu)z2

+(−μ − δ2u)z3(δ2τ − δ1)|z1| +
(

ν + δ1 − αsu − δ2u − αl

(
u

u + k

)

−d − μ − βs1 − δ2τ) |z2| +
(

ν − αss1 − αl s1

(
ku

(k + u)
2

)

−d − βs1 − μ − δ2u) |z3|
≤ (δ2τ)|z1| +

(

ν + δ1 − αsu − δ2u − αl

(
u

u + k

)

− d − μ − βs1 − δ2τ

)

|z2|

+
(

ν − αss1 − αl s1

(
k

(k + u)
2

)

− d − βs1 − μ − δ2u

)

|z3|,

from |z1| < |z2|, we have:

D+‖z‖ <

(

ν + δ1 − αsu − δ2u − αl

(
u

u + k

)

− d − μ − βs1

)

|z2|

+
(

ν − αss1 − αl s1

(
ku

(k + u)
2

)

− d − βs1 − μ − δ2u

)

|z3|

≤ max

{

ν + δ1 − αsu − δ2u − αl

(
u

u + k

)

− d − μ − βs1, ν − αss1

−αl s1

(
ku

(k + u)
2

)

− d − βs1 − μ − δ2u

}

‖z‖.

Case 5: z2 < 0 < z1, z3 and |z1| + |z3| > |z2|. In this case, ‖z‖ = |z1| + |z3|, and

D+‖z‖ = D+(|z1| + |z3|) = dz1

dt
+ dz3

dt

=
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

z1 + (δ2u)z2 + (d)z3

+(βu)z2 + (−μ − δ2u)z3

=
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

z1 + (δ2u + βu)z2 + (d − μ − δ2u)z3

since z1 > 0, z2 < 0:

D+‖z‖ < (d − μ − δ2u)z3 < (d − μ − δ2u)‖z3‖.
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Case 6: z2 < 0 < z1, z3 and |z1| + |z3| < |z2|. In this case, ‖z‖ = |z2|, and

D+‖z‖ = D+(|z2|) = −dz2

dt
= −(δ1 − δ2τ)z1

−
(

−αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1 − δ2τ + δ1 + ν

)

z2

−
(

−αss1 − αl s1

(
ku

(k + u)
2

)

+ d − ν − βs1

)

z3

= −(δ1 − δ2τ)|z1| +
(

−αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1

−δ2τ + δ1 + ν) |z2| +
(

+αss1 + αl s1

(
ku

(k + u)
2

)

− d + ν + βs1

)

|z3|

≤ (δ2τ)|z1| +
(

ν + δ1 − αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1 − δ2τ

)

|z2|

+
(

+αss1 + αl s1

(
ku

(k + u)
2

)

+ ν − d + βs1

)

|z3|

≤
(

δ2τ + αss1 + αl s1

(
ku

(k + u)
2

)

+ ν − d + βs1

)

(|z1| + |z3|)

+
(

ν + δ1 − αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1 − δ2τ

)

|z2|,

from |z1| + |z3| < |z2|, we have:

D+‖z‖ ≤
(

αss1 + αl s1

(
ku

(k + u)
2

)

+ 2ν + δ1 − αsu − δ2u

−αl

(
u

u + k

)

− μ − 2d − βu

)

|z2|

=
(

αss1 + αl s1

(
ku

(k + u)
2

)

+ 2ν + δ1 − αsu − δ2u

−αl

(
u

u + k

)

− μ − 2d − βu

)

‖z‖.

Case 7: z3 < 0 < z1, z2 and |z1| + |z3| > |z2|. In this case, ‖z‖ = |z1| + |z3|, and

D+‖z‖ = D+(|z1| + |z3|) = dz1

dt
− dz3

dt

=
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

z1 + (δ2u)z2

+(d)z3 − (βu)z2 − (−μ − δ2u)z3

=
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

|z1| + (δ2u)|z2| − d|z3| − (βu)|z2|
+(−μ − δ2u)|z3|

≤
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

|z1| + (δ2u)|z2|
−d|z3| + (−μ − δ2u)|z3|

≤
(

−αsu − αl

(
u

u + k

)

− d − μ − βu

)

|z1|
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+(δ2u)(|z1| + |z3|) + (−d − μ − δ2u)|z3|
=

(

δ2u − αsu − αl

(
u

u + k

)

− d − μ − βu

)

|z1| + (−d − μ)|z3|

≤ max

{

δ2u − αsu − αl

(
u

u + k

)

− d − μ − βu,−d − μ

}

‖z‖.

Case 8: z3 < 0 < z1, z2 and |z1| + |z3| < |z2|. In this case, ‖z‖ = |z2|, and

D+‖z‖ = D+(|z2|) = dz2

dt

= (δ1 − δ2τ)z1 +
(

−αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1

−δ2τ + δ1 + ν) z2 +
(

−αss1 − αl s1

(
ku

(k + u)
2

)

+ d − ν − βs1

)

z3

= (δ1 − δ2τ)|z1| +
(

−αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1

−δ2τ + δ1 + ν) |z2| −
(

−αss1 − αl s1

(
ku

(k + u)
2

)

+ d − ν − βs1

)

|z3|

≤ δ1|z1| +
(

−αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1 − δ2τ + δ1 + ν

)

|z2|

+
(

αss1 + αl s1

(
ku

(k + u)
2

)

+ ν − d + βs1

)

|z3|

≤
(

δ1 + αss1 + αl s1

(
ku

(k + u)2

)

+ ν − d + βs1

)

(|z1| + |z3|)

+
(

−αsu − δ2u − αl

(
u

u + k

)

− d − μ − βu − βs1 − δ2τ + δ1 + ν

)

|z2|,

since |z1| + |z3| < |z2|, we have:

D+‖z‖ ≤
(

2ν + 2δ1 + αss1 + αl s1

(
ku

(k + u)2

)

− αsu − δ2u

−αl

(
u

u + k

)

− μ − 2d − βu − δ2τ

)

‖z‖.

Now, using the supposed inequalities, in all of the above cases, the coefficient of ||z|| is a
negative number, and hence, there exists χ > 0, with D+‖z‖ ≤ −χ‖z‖ for all z ∈ R

3. 	


Lemma 3.1 and a proof similar to corollary 5.4 in [1], implies the following theorem.

Theorem 3.2 If the inequalities (3.11) hold, positive semi-trajectories of system converge
to an equilibrium point, i.e., any ω-limit point of system in �◦, is an equilibrium point.

Finally, the above theorem implies the following result.

Theorem 3.3 Suppose the inequalities (3.11) hold, then:

1. when the only equilibrium point is the drug-free equilibrium P0, then all solutions tend
to P0;

2. when there is unique endemic equilibrium point, then all solutions of system tends to
endemic equilibrium point.
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4 Conclusion

The White and Comiskey’s model of heroin epidemics was developed in this paper. The
development includes the split of the susceptible populations into two compartments, the
susceptible individuals S1, and the responsive individuals S2, i.e., the individuals who do not
use drugs because of information about the harms and dangers of it. Furthermore, we assume
that because of transmission of information, susceptibles will be transmitted from S1 to S2.
We considered two routes for information dissemination, information transmission via direct
contact between individuals, and population-wide dissemination of drug-related information.
At first, we considered a model without treatment/rehabilitation compartment. A complete
qualitative study of this model including the existence and local and global stability of the
equilibrium points are carried out. The drug-free equilibrium P0 was shown to be locally
and globally stable if R0 < 1, and the endemic equilibrium point exists and is locally and
globally stable if R0 > 1.

Then, we considered a model with a compartment for the individuals under treat-
ment/rehabilitation programs. This model shows more complexity, in fact, endemic equi-
librium may exist (up to 3 point), in cases, R0 < 1, R0 = 1 and R0 > 1. Occurrence of
backward bifurcation is also proved for the model. The backward bifurcation analysis showed
that, if the relapse rate exceeds a certain value, then the backward bifurcation will occur. The
occurrence of backward bifurcation makes it harder to control the infection, in fact, to prevent
the epidemic from occurring, the reducing of R0 to the region R0 < 1, is not enough.

Formula of R0 showed that the basic reproduction number is not dependent on informa-
tion transmission parameters αs, αl , k, d , so the role of the other parameters, such as the
infection rate and the treatment rate, in the occurrence or elimination of epidemy is of greater
impact. However, at the same time, (3.9) showed that increasing the parameters αs and αl , or
decreasing the parameters k and d , increases the amount of the threshold necessary for the
occurrence of backward bifurcation, which makes the occurrence of backward bifurcation
harder, and hence, it makes the infection control easier.
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