Skip to main content
Log in

Correlation \(\overline{\nu}_{p} - \sigma\) for U-Pu in the thermal and resonance neutron range via integral information

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper presents an application of the Backward-Forward Monte Carlo (BFMC) method using measured critical boron concentrations for a specific PWR cycle. The considered prior nuclear data are the fission cross sections, \(\overline{\nu}_{p}\) for 235U and 239Pu and the capture cross section of 238U. The posterior nuclear data exhibit cross-isotope correlations, moderate changes for the average quantities and reduced uncertainties. This work is the first one considering the BFMC method and an integral system mostly sensitive to thermal neutrons. It contributes to show the impact of integral experimental data for the evaluation of nuclear data and their covariance matrices, leading to cross-isotope correlations and a nuclear data uncertainty reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Goorley, MCNP 6.1.1 - Beta release Notes, Los Alamos National Laboratory, Report LA-UR-14-24680 (June 2014)

  2. D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, Eur. Phys. J. N 3, 14 (2017)

    Google Scholar 

  3. D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, G. Perret, Eur. Phys. J. N 4, 7 (2018)

    Google Scholar 

  4. C. De Saint Jean, P. Archier, E. Privas, G. Noguere, B. Habert, P. Tamagno, Nucl. Data Sheets 148, 338 (2018)

    Article  Google Scholar 

  5. D. Siefman, M. Hursin, D. Rochman, S. Pelloni, A. Pautz, Eur. Phys. J. Plus 133, 429 (2018)

    Article  Google Scholar 

  6. T. Kawano, K.M. Hanson, S. Frankle, P. Talou, M.B. Chadwick, R.C. Little, Nucl. Sci. Eng. 153, 1 (2006)

    Article  Google Scholar 

  7. O. Cabellos, L. Fiorito, EPJ Web of Conferences 211, 07008 (2019)

    Article  Google Scholar 

  8. A. Hoefer, O. Buss, M. Hennebach, M. Schmid, D. Porsch, Ann. Nucl. Energy 77, 514 (2015)

    Article  Google Scholar 

  9. E. Castro, C. Ahnert, O. Buss, N. Garcia-Herranz, A. Hoefer, D. Porsch, Ann. Nucl. Energy 85, 148 (2016)

    Article  Google Scholar 

  10. JEFF-3.3, Joint Evaluated Fission and Fusion File, OECD/NEA, https://www.oecd-nea.org/dbdata/jeff/jeff33/index.html

  11. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  12. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  13. A. Koning, D. Rochman J. Sublet, N. Dzysiuk, M. Fleming, S. van der Marck, Nucl. Data Sheets 155, 1 (2019)

    Article  ADS  Google Scholar 

  14. A.J. Koning, Eur. Phys. J. A 51, 184 (2015)

    Article  ADS  Google Scholar 

  15. E. Bauge, P. Dossantos-Uzarralde, J. Kor. Phys. Soc. 59, 1218 (2011)

    Article  ADS  Google Scholar 

  16. E. Bauge, M. Dupuis, S. Hilaire, S. Péru, A.J. Koning, D. Rochman, S. Goriely, Nucl. Data Sheets 118, 32 (2014)

    Article  ADS  Google Scholar 

  17. P. Helgesson, H. Sjostrand, D. Rochman, Nucl. Data Sheets 145, 1 (2017)

    Article  ADS  Google Scholar 

  18. M. Salvatores et al., Nucl. Data Sheets 118, 38 (2014)

    Article  ADS  Google Scholar 

  19. R. Capote, D.L. Smith, Nucl. Data Sheets 109, 2725 (2008)

    Article  Google Scholar 

  20. R. Capote, D. Smith, A. Trkov, M. Meghzifene, J. ASTM Int. https://doi.org/10.1520/JAI104115 (2012)

    Article  Google Scholar 

  21. D. Rochman, A.J. Koning, Nucl. Sci. Eng. 172, 287 (2012)

    Article  Google Scholar 

  22. S. Pelloni, D. Rochman, Ann. Nucl. Energy 115, 323 (2018)

    Article  Google Scholar 

  23. P. Helgesson, H. Sjostrand, Rev. Sci. Instrum. 88, 115114 (2017)

    Article  ADS  Google Scholar 

  24. G. Schnabel, H. Leeb, EPJ Web of Conferences 111, 09001 (2016)

    Article  Google Scholar 

  25. A.J. Koning, D. Rochman, Ann. Nucl. Energy 35, 2024 (2008)

    Article  Google Scholar 

  26. D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, S. Pelloni, A.J. Koning, J.Ch. Sublet, Eur. Phys. J. Plus 133, 537 (2018)

    Article  Google Scholar 

  27. D. Rochman, A. Vasiliev, H. Ferroukhi, H. Dokhane, A. Koning, Ann. Nucl. Energy 112, 236 (2018)

    Article  Google Scholar 

  28. M. Klein, L. Gallner, B. Krzykacz-Hausmann, I. Pasichnyk, A. Pautz, W. Zwermann, Influence of nuclear data covariance on reactor core calculations, in Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M& C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM

  29. C.J. Diez, O. Buss, A. Hoefer, D. Porsc, O. Cabellos, Ann. Nucl. Energy 77, 101 (2015)

    Article  Google Scholar 

  30. E. Castro, C. Ahnert, O. Buss, N. Garcia-Herranz, A. Hoefe, D. Porsch, Ann. Nucl. Energy 95, 148 (2016)

    Article  Google Scholar 

  31. A. Aures, F. Bostelmann, M. Hursin, O. Leray, Ann. Nucl. Energy 94, 269 (2017)

    Google Scholar 

  32. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  33. J. Rhodes, K. Smith, D. Lee, CASMO-5 development and applications, in Proceedings of the PHYSOR-2006 conference, ANS Topical Meeting on Reactor Physics, Vancouver, BC, Canada, September 10-14, 2006 (ANS, 2006) p. B144

  34. T. Bahadir, S. Lindahl, Studsvik’s next generation nodal code SIMULATE-5, in Proceedings of the ANFM-2009 conference, Advances in Nuclear Fuel Management IV, Hilton Head Island, South Carolina, USA, April 12-15, 2009

  35. G. Schnabel, Large Scale Bayesian Nuclear Data Evaluation with Consistent Model Defects, PhD thesis, TU Vienna, Austria, June 2015

  36. M.B. Priestley, Spectral Analysis and Time Series 1 (Academix Press, 1982)

  37. L. Kish, Survey Sampling (Wiley & Sons, Inc., NY, London, 1965)

  38. O. Leray, H. Ferroukhi, M. Hursin, A. Vasiliev, D. Rochman, Ann. Nucl. Energy 110, 547 (2017)

    Article  Google Scholar 

  39. C. Demaziere, I. Pazsit, Nucl. Technol. 140, 147 (2002)

    Article  Google Scholar 

  40. A. Hoefer, O. Buss, Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment, in ANS Winter Meeting, Washington, D.C., October 29--November 2 (2017)

  41. O. Cabellos, W. Castro, C. Ahnert, C. Holgado, Nucl. Eng. Technol. 46, 299 (2014)

    Article  Google Scholar 

  42. J.-Ch. Sublet et al., Eur. Phys. J. Plus 134, 350 (2019)

    Article  Google Scholar 

  43. A.D. Carlson, V.G. Pronyaev, R. Capote, G.M. Hale, Z.-P. Chen, I. Duran, F.-J. Hambsch, S. Kunieda, W. Mannhart, B. Marcinkevicius, R.O. Nelson, D. Neudecker, G. Noguere, M. Paris, S.P. Simakov, P. Schillebeeckx, D.L. Smith, X. Tao, A. Trkov, A. Wallner, W. Wang, Nucl. Data Sheets 148, 143 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rochman.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rochman, D., Vasiliev, A., Ferroukhi, H. et al. Correlation \(\overline{\nu}_{p} - \sigma\) for U-Pu in the thermal and resonance neutron range via integral information. Eur. Phys. J. Plus 134, 453 (2019). https://doi.org/10.1140/epjp/i2019-12875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12875-7

Navigation