
DOI 10.1140/epjp/i2018-12126-7

Regular Article

Eur. Phys. J. Plus (2018) 133: 311 THE EUROPEAN
PHYSICAL JOURNAL PLUS

Two-dimensional hydrogen-like atom in a weak magnetic field

Rados�law Szmytkowskia

Atomic and Optical Physics Division, Department of Atomic, Molecular and Optical Physics, Faculty of Applied Physics and
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Abstract. We consider a non-relativistic two-dimensional (2D) hydrogen-like atom in a weak, static, uni-
form magnetic field perpendicular to the atomic plane. Within the framework of the Rayleigh-Schrödinger
perturbation theory, using the Sturmian expansion of the generalized radial Coulomb Green function, we
derive explicit analytical expressions for corrections to an arbitrary planar hydrogenic bound-state energy
level, up to the fourth order in the strength of the perturbing magnetic field. In the case of the ground
state, we correct an expression for the fourth-order correction to energy available in the literature.

1 Introduction

Theoretical studies on elementary two-dimensional quantum structures in magnetic fields have been carried out for
several decades [1–20]. Recent spectacular developments in single-layer materials science have given a fresh impact to
such investigations [21–36]. As a result of the work done so far, at the present moment we understand some aspects
of the magnetic-field–induced properties of 2D analogues of atoms and molecules, but our knowledge on the subject
still appears to be far from being complete.

Recently, we have come across the need to know exact analytical representations for low-order perturbation theory
corrections to an arbitrary energy level of a two-dimensional analogue of a hydrogen-like atom placed in a weak and
uniform magnetic field perpendicular to the atomic plane. The first-order correction may be obtained trivially for any
atomic state. Exact values of the second-order corrections for states with the principal quantum numbers 1 � n � 4
may be derived from a table provided in ref. [4]. The third-order correction may be shown to vanish identically for
any state (in fact, the same happens for all odd-order corrections other than the first-order one), while in refs. [25,31]
the fourth-order correction has been given, but for the ground level only. Approximate expressions for several higher
even-order corrections to states with zero radial quantum numbers and with principal quantum numbers not exceeding
six are contained in ref. [35]. However, neither of the publications invoked above, nor any other related one we have
had in hands in the course of browsing the literature, contains the general formulas we have been seeking for. This
is a bit astonishing in view of the fact that for a similar problem of the planar one-electron atom placed in a weak,
uniform, in-plane electric field, closed-form analytical expressions for Stark-Lo Surdo corrections to energies of discrete
parabolic eigenstates are known up to the sixth order in the perturbing field [37,38]. Under these circumstances, we
have derived expressions for the second- and fourth-order magnetic-field–induced corrections to an arbitrary energy
level of the planar hydrogenic atom. The results of that study are presented in this work. We believe they may be of
some interest, in particular because the result for the fourth-order correction to the ground state given in ref. [25],
and then repeated in ref. [31], has been found to be incorrect.

2 Preliminaries

We consider a one-electron atom with a point-like and spinless nucleus at rest. The electron is constrained to move in a
plane through the nucleus. A potential of interaction between the nucleus (of charge +Ze) and the electron (of charge
−e and mass m) is taken to be the attractive Coulomb one-over-distance one. The system is subjected to the action of
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a static uniform magnetic field of induction B, which is perpendicular to the atomic plane. With the electron radius
vector r being referred to the nucleus, the two-dimensional time-independent Schrödinger equation for the electron is

{
[−i�∇ + eA(r)]2

2m
− Ze2

(4πε0)r

}
Ψ(r) = EΨ(r) (r ∈ R

2), (1)

where r = |r| and A(r) is a vector potential of the magnetic field. Equation (1) is to be solved, with the electron
energy E chosen as an eigenvalue, subject to the constraint that the wave function Ψ(r) is single-valued and bounded
for all r ∈ R

2, including the point r = 0 and the point at infinity.
Throughout this paper, we shall be working in the symmetric gauge, in which the vector potential A(r) is

A(r) =
1
2
B × r. (2)

Then, the Schrödinger equation (1) may be rewritten as
[
− �

2

2m
∇2 +

e�

2m
B · Λ +

e2B2r2

8m
− Ze2

(4πε0)r

]
Ψ(r) = EΨ(r), (3)

where
Λ = −ir × ∇ (4)

is a (dimensionless) orbital angular-momentum operator for the electron. The form of the Hamiltonian operator in
the Schrödinger equation (3) suggests one introduces the polar coordinates r and ϕ, with 0 � r < ∞ and 0 � ϕ < 2π;
eq. (3) is then transformed into the following one:

[
− �

2

2m

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

)
− ie�B

2m

∂

∂ϕ
+

e2B2r2

8m
− Ze2

(4πε0)r

]
Ψ(r, ϕ) = EΨ(r, ϕ). (5)

The benefit from the use of the polar coordinates is that eq. (5) is separable, in the sense that it possesses particular
solutions of the form

Ψnlml
(r, ϕ) =

1√
r
Pnlml

(r)Φml
(ϕ) (l = |ml|), (6)

where
Φml

(ϕ) =
1√
2π

eimlϕ (ml ∈ Z). (7)

Plugging eq. (6) into eq. (5) and exploiting eq. (7) yields the radial Schrödinger equation
[
− �

2

2m

d2

dr2
+

�
2
(
l2 − 1

4

)
2mr2

+ ml
e�B

2m
+

e2B2r2

8m
− Ze2

(4πε0)r

]
Pnlml

(r) = Enlml
Pnlml

(r), (8a)

which is to be solved subject to the boundary conditions

Pnlml
(r)/

√
r bounded for r → 0 and for r → ∞. (8b)

It is easy to deduce from the standard asymptotic analysis that for B �= 0 the constraints displayed in eq. (8b) may
be replaced by the following ones:

Pnlml
(r) r→0−−−→ 0, Pnlml

(r) r→∞−−−→ 0. (8c)

The symbol n that has appeared the first time as a subscript in eq. (6) is the principal quantum number defined as

n = nr + l + 1, (9)

where nr ∈ N0 is the radial quantum number which counts the number of nodes (zeroes) in the radial wave function.
Since the term linear in B which appears in the differential operator in eq. (8a) is independent of the variable r,

it is clear that the energy eigenvalue Enlml
may be written as

Enlml
= Enl + E(1)

ml
, (10)

with
E(1)

ml
= ml

e�B

2m
. (11)
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It is also evident that the radial function Pnlml
(r) does depend on ml through l = |ml| only:

Pnlml
(r) ≡ Pnl(r). (12)

Consequently, the starting point for further considerations will be the radial eigenvalue problem
[
− �

2

2m

d2

dr2
+

�
2
(
l2 − 1

4

)
2mr2

− Ze2

(4πε0)r
+

e2B2r2

8m

]
Pnl(r) = EnlPnl(r), (13a)

Pnl(r)
r→0−−−→ 0, Pnl(r)

r→∞−−−→ 0. (13b)

3 Perturbation theory analysis

3.1 Basics and the zeroth-order problem

Closed-form analytical solutions to the eigenproblem (13) are not known. Therefore, below we shall attempt to find its
approximate solutions, under the assumption that the magnetic field is weak, with the use of the Rayleigh-Schrödinger
perturbation theory. To this end, we write the radial differential operator from eq. (13a) as

Hl(r) = H
(0)
l (r) + H(2)(r), (14)

where

H
(0)
l (r) = − �

2

2m

d2

dr2
+

�
2(l2 − 1

4 )
2mr2

− Ze2

(4πε0)r
(15)

and

H(2)(r) =
e2B2r2

8m
. (16)

We shall treat the diamagnetic term (16) as a small perturbation of the radial Coulomb Hamiltonian (15). Since
H(2)(r) is of the second order in the perturbing magnetic field, we seek solutions to the eigensystem (13) in the form
of the perturbation series

Enl = E
(0)
nl + E

(2)
nl + E

(4)
nl + · · · (17)

and
Pnl(r) = P

(0)
nl (r) + P

(2)
nl (r) + P

(4)
nl (r) + · · · , (18)

involving even-order terms only. Here E
(0)
nl and P

(0)
nl (r) are those solutions to the zeroth-order eigenproblem (being

the radial Coulomb one)
[
H

(0)
l (r) − E(0)

]
P (0)(r) = 0, (19a)

P (0)(r) r→0−−−→ 0, P (0)(r) bounded for r → ∞ (19b)

(subscripts have been omitted intentionally), which correspond to the discrete part of its spectrum, consisting of the
eigenvalues

E
(0)
nl ≡ E(0)

n = − Z2

2N2
n

e2

(4πε0)a0
, (20)

with
Nn = n − 1

2
= nr + l +

1
2

(21)

and with

a0 = (4πε0)
�

2

me2
(22)

being the Bohr radius. Eigenfunctions associated with the eigenvalues (20), orthonormal in the sense of
∫ ∞

0

dr P
(0)
nl (r)P (0)

n′l (r) = δnn′ , (23)
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are

P
(0)
nl (r) =

√
Z(n − l − 1)!

a0N2
n(n + l − 1)!

(
2Zr

Nna0

)l+1/2

e−Zr/Nna0L
(2l)
n−l−1

(
2Zr

Nna0

)
, (24)

where L
(α)
k (x) is the generalized Laguerre polynomial ([39], sect. 5.5). For integration purposes, it is frequently conve-

nient to have these functions rewritten as

P
(0)
nl (r) =

√
Znr!

a0N2
n(nr + 2l)!

(
2Zr

Nna0

)l+1/2

e−Zr/Nna0L(2l)
nr

(
2Zr

Nna0

)
. (25)

3.2 The second-order corrections to Coulomb energies

For the present problem, the second-order correction to energy, E
(2)
nl , is given by

E
(2)
nl =

∫ ∞

0

dr P
(0)
nl (r)H(2)(r)P (0)

nl (r) (26)

or, equivalently, if use is made of eq. (16), by

E
(2)
nl =

e2B2

8m

∫ ∞

0

dr r2
[
P

(0)
nl (r)

]2

. (27)

Plugging eq. (25) into the integrand and exploiting the integration formula
∫ ∞

0

dxxα+3e−x
[
L

(α)
k (x)

]2

= (2k + α + 1)(10k2 + 10k + 10αk + α2 + 5α + 6)
Γ (k + α + 1)

k!
(Re α > −4), (28)

which may be deduced from the general expression ([40], eqs. (E54), (E56) and (E60))

∫ ∞

0

dxxγe−xL
(α)
k (x)L(β)

k′ (x) = (−)k+k′
min(k,k′)∑

m=0

Γ (m + γ + 1)
m!

(
γ − α

k − m

)(
γ − β

k′ − m

)

(Re γ > −1), (29)

yields

E
(2)
nl =

1
24

(
n − 1

2

)2 (
5n2 − 5n − 3l2 + 3

)
Z−2 B2

B2
0

e2

(4πε0)a0
, (30)

where

B0 =
�

ea2
0

=
m2e3

(4πε0)2�3
(31)

is the atomic unit of magnetic induction. For states with l = n− 1 (i.e., those with nr = 0), the expression in eq. (30)
simplifies to

E
(2)
n,n−1 =

1
23

n

(
n +

1
2

)(
n − 1

2

)2

Z−2 B2

B2
0

e2

(4πε0)a0
. (32)

3.3 The fourth-order corrections to Coulomb energies

Proceeding along the standard route, one finds that for the present problem the fourth-order correction to energy,
E

(4)
nl , is given by

E
(4)
nl =

∫ ∞

0

dr P
(0)
nl (r)H(2)(r)P (2)

nl (r), (33)
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where the second-order correction to the radial wave function, P
(2)
nl (r), is a solution to the inhomogeneous boundary-

value problem [
H

(0)
l (r) − E(0)

n

]
P

(2)
nl (r) = −

[
H(2)(r) − E

(2)
nl

]
P

(0)
nl (r), (34a)

P
(2)
nl (r) r→0−−−→ 0, P

(2)
nl (r) r→∞−−−→ 0, (34b)

subject to the further orthogonality restraint∫ ∞

0

dr P
(0)
nl (r)P (2)

nl (r) = 0. (35)

The formal solution to the problem (34)-(35) is

P
(2)
nl (r) = −

∫ ∞

0

dr′ G̃
(0)
nl (r, r′)

[
H(2)(r′) − E

(2)
nl

]
P

(0)
nl (r′), (36)

where G̃
(0)
nl (r, r′) is a generalized (or reduced) radial Coulomb Green function associated with the Coulomb energy

level E
(0)
n . The latter function is defined as that particular solution to the inhomogeneous boundary-value problem[

H
(0)
l (r) − E(0)

n

]
G̃

(0)
nl (r, r′) = δ(r − r′) − P

(0)
nl (r)P (0)

nl (r′), (37a)

G̃
(0)
nl (r, r′) r→0−−−→ 0, G̃

(0)
nl (r, r′) r→∞−−−→ 0, (37b)

where δ(r − r′) is the Dirac delta function, which obeys the additional orthogonality constraint
∫ ∞

0

dr P
(0)
nl (r)G̃(0)

nl (r, r′) = 0. (38)

Since the zeroth-order eigenproblem (19) is self-adjoint, the function G̃
(0)
nl (r, r′) is symmetric in its arguments:

G̃
(0)
nl (r, r′) = G̃

(0)
nl (r′, r). (39)

When this is combined with eq. (38), one deduces the formula
∫ ∞

0

dr′ G̃
(0)
nl (r, r′)P (0)

nl (r′) = 0, (40)

which allows us to simplify eq. (36) to obtain

P
(2)
nl (r) = −

∫ ∞

0

dr′ G̃
(0)
nl (r, r′)H(2)(r′)P (0)

nl (r′). (41)

Plugging eq. (41) into the right-hand side of eq. (33) gives the energy correction E
(4)
nl in the form

E
(4)
nl = −

∫ ∞

0

dr

∫ ∞

0

dr′ P
(0)
nl (r)H(2)(r)G̃(0)

nl (r, r′)H(2)(r′)P (0)
nl (r′) (42)

or, still more explicitly, in the form

E
(4)
nl = −

(
e2B2

8m

)2 ∫ ∞

0

dr

∫ ∞

0

dr′ P
(0)
nl (r)r2G̃

(0)
nl (r, r′)r′ 2P (0)

nl (r′). (43)

A representation of the generalized radial Coulomb Green function G̃
(0)
nl (r, r′) which is perhaps the most suitable

for the use in eq. (43) is the one in the form of a series expansion in the discrete radial Coulomb Sturmian basis. We
shall construct it below.

The discrete radial Coulomb Sturmian functions are defined as solutions to the spectral problem
[
− �

2

2m

d2

dr2
+

�
2(l2 − 1

4 )
2mr2

− μ
(0)
nrl(E)

Ze2

(4πε0)r
− E

]
S

(0)
nrl(E, r) = 0 (E < 0), (44a)

S
(0)
nrl(E, r) r→0−−−→ 0, S

(0)
nrl(E, r) r→∞−−−→ 0, (44b)



Page 6 of 10 Eur. Phys. J. Plus (2018) 133: 311

with E < 0 fixed and with the parameter μ
(0)
nrl(E) chosen as an eigenvalue. The spectrum of this problem is purely

discrete, and eigenvalues are given by

μ
(0)
nrl(E) =

(
nr + l +

1
2

)
ka0

Z
(nr ∈ N0), (45)

where

k =

√
−2mE

�2
. (46)

Eigenfunctions, orthonormal in the sense of
∫ ∞

0

dr
Ze2

(4πε0)r
S

(0)
nrl(E, r)S(0)

n′
rl(E, r) = δnrn′

r
, (47)

are

S
(0)
nrl(E, r) =

√
(4πε0)nr!

Ze2(nr + 2l)!
(2kr)l+1/2e−krL(2l)

nr
(2kr). (48)

Contrary to the discrete Coulomb eigenfunctions (24), the Sturmians (48) form a complete set, the corresponding
closure relation being

Ze2

(4πε0)r

∞∑
nr=0

S
(0)
nrl(E, r)S(0)

nrl(E, r′) = δ(r − r′). (49)

If the parameter E coincides with the Coulomb energy eigenvalue E
(0)
n displayed in eq. (20) (we assume n is related

to nr and l used here as in eq. (9)), it is easy to see from eqs. (45), (46), (20) and (21) that one has

μ
(0)
nrl(E

(0)
n ) = 1 (n = nr + l + 1). (50)

Similarly, from eqs. (48), (44), (20), (21) and (25) one infers the relationship

S
(0)
nrl(E

(0)
n , r) =

Nn

Z

√
(4πε0)a0

e2
P

(0)
nl (r) (n = nr + l + 1). (51)

The radial Coulomb Green function, G
(0)
l (E, r, r′), is defined to be a solution to the inhomogeneous equation

[
H

(0)
l (r) − E

]
G

(0)
l (E, r, r′) = δ(r − r′) (E < 0), (52a)

subject to the boundary constraints

G
(0)
l (E, r, r′) r→0−−−→ 0, G

(0)
l (E, r, r′) r→∞−−−→ 0. (52b)

Since the Sturmian functions (48) form a complete set, the Green function G
(0)
l (E, r, r′) may be sought in the form of

the series

G
(0)
l (E, r, r′) =

∞∑
nr=0

C
(0)
nrl(E, r′)S(0)

nrl(E, r). (53)

To determine the expansion coefficients C
(0)
nrl(E, r), we plug eq. (53) into eq. (52a), multiply both sides of the re-

sulting identity by S
(0)
n′

rl(E, r), then integrate with respect to r over the interval [0,∞), and apply the orthogonality
relation (48). Upon the replacement of n′

r with nr, this yields

C
(0)
nrl(E, r′) =

1

μ
(0)
nrl(E) − 1

S
(0)
nrl(E, r′), (54)

hence, we obtain the following symmetric Sturmian expansion of G
(0)
l (E, r, r′):

G
(0)
l (E, r, r′) =

∞∑
nr=0

S
(0)
nrl(E, r)S(0)

nrl(E, r′)

μ
(0)
nrl(E) − 1

. (55)
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It follows, from eqs. (37), (38) and (52), that the generalized radial Coulomb Green function G̃
(0)
nl (r, r′) may be

obtained from the radial Coulomb Green function G
(0)
l (E, r, r′) through the limit procedure

G̃
(0)
nl (r, r′) = lim

E→E
(0)
n

[
G

(0)
l (E, r, r′) − P

(0)
nl (r)P (0)

nl (r′)

E
(0)
n − E

]
. (56)

By virtue of the de l’Hospital rule, the latter equation is equivalent to the following one:

G̃
(0)
nl (r, r′) = lim

E→E
(0)
n

∂

∂E

[(
E − E(0)

n

)
G

(0)
l (E, r, r′)

]
, (57)

which is particularly suitable for the construction of the Sturmian expansion of G̃
(0)
nl (r, r′). Inserting the series repre-

sentation (55) into the right-hand side of eq. (57) and then making use of the relationships

∂S
(0)
nrl(E, r)
∂E

=
r

2E

dS
(0)
nrl(E, r)

dr
, (58)

E − E
(0)
n

μ
(0)
nrl(E) − 1

= E(0)
n

[
μ

(0)
nrl(E) + 1

]
, (59)

lim
E→E

(0)
n

E − E
(0)
n

μ
(0)
nrl(E) − 1

= 2E(0)
n (n = nr + l + 1), (60)

lim
E→E

(0)
n

∂

∂E

E − E
(0)
n

μ
(0)
nrl(E) − 1

=
1
2

(n = nr + l + 1), (61)

μ
(0)
n′

rl(E
(0)
n ) =

n′
r + l + 1

2

Nn
, (62)

which may be easily derived from the defining eqs. (45) and (48), one eventually arrives at the sought Sturmian
expansion of the generalized radial Coulomb Green function, which is

G̃
(0)
nl (r, r′) = Nn

∞∑
n′

r=0

(n′
r �=nr)

S
(0)
n′

rl(E
(0)
n , r)S(0)

n′
rl(E

(0)
n , r′)

n′
r − nr

+
1
2
S

(0)
nrl(E

(0)
n , r)S(0)

nrl(E
(0)
n , r′)

+ r
dS

(0)
nrl(E

(0)
n , r)

dr
S

(0)
nrl(E

(0)
n , r′) + S

(0)
nrl(E

(0)
n , r)r′

dS
(0)
nrl(E

(0)
n , r′)

dr′
(nr = n − l − 1). (63)

Once the Sturmian expansion of G̃
(0)
nl (r, r′) has been found, we are ready to complete the task to find the fourth-

order energy correction E
(4)
nl . To this end, we insert eq. (63) into eq. (43) and use the relationship in eq. (51), together

with integrations by parts, to eliminate derivatives of Sturmian functions. This gives E
(4)
nl in the form

E
(4)
nl = −

(
e2B2

8m

)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Nn

∞∑
n′

r=0

(n′
r �=nr)

[∫ ∞

0

dr r2P
(0)
nl (r)S(0)

n′
rl(E

(0)
n , r)

]2

n′
r − nr

− 5
2

[∫ ∞

0

dr r2P
(0)
nl (r)S(0)

nrl(E
(0)
n , r)

]2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(nr = n − l − 1). (64)

The integrals in eq. (64) may be taken after one exploits eqs. (25) and (48), with the use of the integration formula∫ ∞

0

dxxα+3e−xL
(α)
k (x)L(α)

k′ (x) = − Γ (k + α + 1)
(k − 3)!

δk′,k−3 + 3(2k + α − 1)
Γ (k + α + 1)

(k − 2)!
δk′,k−2

− 3(5k2 + 5αk + α2 + 1)
Γ (k + α + 1)

(k − 1)!
δk′,k−1 + (2k + α + 1)(10k2 + 10k + 10αk + α2 + 5α + 6)

Γ (k + α + 1)
k!

δk′k

− 3(5k2 + 10k + 5αk + α2 + 5α + 6)
Γ (k + α + 2)

k!
δk′,k+1 + 3(2k + α + 3)

Γ (k + α + 3)
k!

δk′,k+2

− Γ (k + α + 4)
k!

δk′,k+3 (Re α > −4), (65)
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which generalizes the one in eq. (28) and, similarly to the latter, may be derived from the general expression (29).
Since only terms with n′

r constrained by 1 � |n′
r − nr| � 3 are seen to contribute non-vanishingly to the sum in

eq. (64), we eventually obtain

E
(4)
nl = − 1

210

(
n − 1

2

)6 (
143n4 − 286n3 − 90n2l2 + 582n2 + 90nl2 − 439n − 21l4 − 138l2 + 159

)
Z−6 B4

B4
0

e2

(4πε0)a0
.

(66)
For states with l = n − 1 (i.e., those with nr = 0), eq. (66) becomes

E
(4)
n,n−1 = − 1

29
n

(
n +

1
2

)(
n − 1

2

)6

(16n2 + 26n + 11)Z−6 B4

B4
0

e2

(4πε0)a0
. (67)

For the ground state (n = 1), eq. (67) yields

E
(4)
10 = − 159

65 536
Z−6 B4

B4
0

e2

(4πε0)a0
. (68)

This differs from the result announced in refs. [25] (eq. (32)) and [31] (eq. (6.59)), which is

E
(4)
10 = − 153

65 536
Z−6 B4

B4
0

e2

(4πε0)a0
. (69)

The latter one is thus found to be incorrect.

4 Summary and concluding remarks

On the preceding pages, we have shown that energy levels of the planar hydrogen-like atom placed in a weak, static,
uniform magnetic field of induction B perpendicular to the atomic plane may be expressed in the form

Enlml
= E(0)

n + E(1)
ml

+ E
(2)
nl + E

(4)
nl + O

(
Z−10(B/B0)6

)
, (70)

where

E(k)
... = ε(k)

... Z−2k+2 Bk

Bk
0

e2

(4πε0)a0
. (71)

In eq. (71), Z is an electric charge of the atomic nucleus in units of the elementary charge e, a0 is the Bohr radius,

B0 =
m2e3

(4πε0)2�3
� 2.35 × 105 T (72)

is the atomic unit of magnetic induction, while the dimensionless and Z-independent coefficients ε(k)
... are given by

ε(0)
n = − 1

2(n − 1
2 )2

, (73)

ε(1)
ml

=
1
2
ml, (74)

ε
(2)
nl =

1
24

(
n − 1

2

)2 (
5n2 − 5n − 3l2 + 3

)
(75)

and

ε
(4)
nl = − 1

210

(
n − 1

2

)6 (
143n4 − 286n3 − 90n2l2 + 582n2 + 90nl2 − 439n − 21l4 − 138l2 + 159

)
, (76)

with n ∈ N+, ml ∈ Z and 0 � l = |ml| � n − 1. Numerical values of the coefficients ε
(2)
nl and ε

(4)
nl for states with

1 � n � 4 are displayed in table 1.
It has to be emphasized that the formula in eq. (70) is valid only if the electron spin is ignored. If this cannot be

done, the Schrödinger equation (1) should be replaced with the planar Pauli equation
{
{σ · [−i�∇ + eA(r)]2

2m
− Ze2

(4πε0)r

}
Ψ(r) = EΨ(r) (r ∈ R

2), (77)
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Table 1. Numerical values of the coefficients ε
(2)
nl and ε

(4)
nl , defined in eqs. (75) and (76), for 1 � n � 4 and 0 � l � n − 1.

n l ε
(2)
nl ε

(4)
nl

Rational form Factorized form Rational form Factorized form

1 0
3

64

3

26
− 159

65 536
−3 × 53

216

2 0
117

64

32 × 13

26
−1 172 961

65 536
−36 × 1609

216

1
45

32

32 × 5

25
−462 915

32 768
−36 × 5 × 127

215

3 0
825

64

3 × 52 × 11

26
−124 078 125

65 536
−3 × 56 × 2647

216

1
375

32

3 × 53

25
−56 578 125

32 768
−3 × 56 × 17 × 71

215

2
525

64

3 × 52 × 7

26
−76 453 125

65 536
−3 × 56 × 7 × 233

216

4 0
3087

64

32 × 73

26
−3 061 109 331

65 536
−32 × 78 × 59

216

1
735

16

3 × 5 × 72

24
−728 835 555

16 384
−3 × 5 × 77 × 59

214

2
2499

64

3 × 72 × 17

26
−2 448 393 339

65 536
−3 × 77 × 991

216

3
441

16

32 × 72

24
−392 830 011

16 384
−32 × 77 × 53

214

where σ = (σx, σy) is the two-dimensional Pauli matrix vector, and Ψ(r) is a two-component Pauli spinor. Equa-
tion (77) may be cast into the form

{
[−i�∇ + eA(r)]2

2m
+

e�B

m
Σz −

Ze2

(4πε0)r

}
Ψ(r) = EΨ(r), (78)

with
Σz =

1
2
σz, (79)

where σz is the third Pauli matrix. It is then evident that eq. (78), supplemented with the regularity constraints on
Ψ(r) analogous to those introduced under eq. (1), possesses separated eigenfunctions of the form

Ψnlmlms
(r, ϕ) =

1√
r
Pnl(r)

eimlϕ

√
2π

χms
, (80)

where Pnl(r) is the same radial function which has appeared in the preceding sections, while χms
is the spin one-half

eigenfunction obeying

Σzχms
= msχms

(
ms = ±1

2

)
, (81)

and that the energy spectrum is of the form

Enlmlms
= E(0)

n + E(1)
mlms

+ E
(2)
nl + E

(4)
nl + O

(
Z−10(B/B0)6

)
, (82)

with the terms E
(0)
n , E

(2)
nl and E

(4)
nl being identical to those derived before, and with

E(1)
mlms

=
1
2
(ml + 2ms)

B

B0

e2

(4πε0)a0

(
= (ml + 2ms)

e�B

2m

)
. (83)

There are two natural directions in which the analysis presented in this paper might be extended. First, one
might investigate the impact of the magnetic field on energy levels of a planar two-center Coulomb problem [41]. The
second challenge would be to consider perturbatively, but still analytically, a planar one-center system analogous to
the one studied above, but now with special relativity taken into account through the use of the Dirac, rather than
the Schrödinger or Pauli, equation. We are currently working on the latter problem.
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