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5 Joint Laboratory of Optics of Palacký University and Institute of Physics of Physics of Academy of Sciences of the Czech

Republic, 17. listopadu 50a, 771 46 Olomouc, Czech Republic

Received: 12 February 2015 / Revised: 23 September 2015
Published online: 12 November 2015
c© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract. A quantum optics model is considered where the cavity field interacts with two coupled atoms.
The time-dependent wave function is obtained and used to derive the density matrix from which we
discussed some statistical properties for the present system. The atom-atom entanglement, atoms-cavity
entanglement, entropy and variance squeezing, the Pegg-Barrnet phase and the fidelity are discussed with
the effects of the initial conditions, atom-atom coupling and the detuning parameter displayed. It is shown
that an increase in the value of the atom-atom coupling parameter leads to an increase in the degree of
entanglement. Numerical results show that under some conditions the phenomena of entanglement and the
collapses and the revivals emerge. Nonclassical properties are demonstrated by means of the field quantum
statistical characteristics, such as photon-number distribution, Husimi, Wigner and Glauber-Sudarshan
quasidistributions and the corresponding variances.

1 Introduction

Entanglement plays a basic role in quantum computation and quantum communication [1,2]. Therefore one of the
particular interesting schemes, in which entanglement can be created, is a system containing two two-level atoms,
since they can represent two qubits, as building blocks of the quantum gates that are essential to implement quantum
protocols in quantum information processing. Two-atom entangled states have been demonstrated experimentally
using ultra cold trap ions [3,4] and cavity quantum electrodynamics schemes [5]. The Tavis-Cummings model [6] can
be used to understand the dynamics of entanglement for atoms interacting with quantum electromagnetic field. The
two-atom Tavis-Cummings model describes the simplest fundamental interaction between a single mode of quantized
electromagnetic field and two atoms under the usual two-level and rotating-wave approximations [7]. The atom-
field entanglement for two two-level atoms interacting with coherent cavity field by means of one-photon transitions
has been studied in [8,9]. The important generalization of the considered model is the two-atom two-photon Tavis-
Cummings model. Two-photon transitions in atomic systems play an important role because of the high degree of
correlation between emitted photons. The interest in the investigation of the two-photon models is stimulated by the
experimental realization of a two-photon one-atom micromaser on Rydberg transitions in a microwave cavity [10]. The
atom-field entanglement for the two-atom Tavis-Cummings model has been investigated for nondegenerate, Raman and
degenerate two-photon transitions in [11,12]. The effects of Stark shift on the purity loss of the two-atom multi-photon
system and different partitions of the system (field-two-atom, atom-(field + atom)) have been considered in [13].

It is important to study the entanglement properties in realistic physical system, where the subsystem of our
interest, two-qubit subsystem, interacts with other subsystems as the environment of the two-qubit subsystem. This
type of interaction causes the indirect coupling between the two qubits. The entanglement between qubits and an
environment unavoidably causes decoherence of qubits, one of the biggest obstacles in quantum information processing.
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It has been believed that qubits should be isolated from environment. However, it has been shown that two qubits
which do not interact directly with each other but interact with the environment can be entangled or disentangled [14–
17]. In addition to the indirect coupling with each other, there is another type of two-qubit direct coupling, such as
dipole coupling in NMR [18] or Coulomb coupling in superconducting charge qubits [19].

On the other hand, a thorough understanding of entanglement dynamical evolution in quantum physical sys-
tems, such as quantum optics systems, has obvious implications for quantum information processing, as well as for
understanding fundamental quantum mechanics. Vast efforts have been devoted to studying bipartite entanglement
dynamics in the one-atom model [20–23] and two-atom model [24]. However, the atom-atom coupling was not taken
into account. Here we consider the atom-atom coupling and focus on the mediating roles of the atom-cavity indirect
coupling and atom-atom direct coupling by studying the evolution of different phenomena related to the considered
system.

Our interest lies in the case where the atom-atom coupling is included. In the dipole and rotating-wave approxi-
mations, the system Hamiltonian of the whole system reads
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where â† and â are the creation and annihilation operators for the cavity mode such that [â, â†] = 1 and ω and
Ωj , j = 1, 2 are the field and the atomic transition frequencies, respectively, while λ1 is the coupling constant between
the field and each of the atoms and λ2 between the two atoms themselves. The operators σ̂

(j)
+ (σ̂(j)

− ) and σ̂
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are the usual raising (lowering) and inversion operators for the two-level atomic system, satisfying the commutation
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In this context we may refer to the last part of the present paper, where we will demonstrate nonclassical properties
of this system using field statistical characteristics, such as photon-number distribution, Husimi, Wigner and Glauber-
Sudarshan quasidistributions and the corresponding variances, related to antinormal, symmetric and normal operator
ordering. Particular attention is devoted to the examination of the nonclassical properties of the system.

From the above, as one can see, the problem would be much easier and the chance to find the dynamical operators
or the wave function becomes more tractable than for the nonconservative case. However, the existence of the atom-
atom interaction leads to some complications. This is solved in the forthcoming section where an exact solution of
the wave function in the Schrödinger picture is obtained. This is followed by a discussion of the linear entropy of the
atomic state in sect. 3. In sect. 4 we consider the atomic inversion where we discuss the influence of the detuning
and the atom-atom interaction on the behavior of the revivals and collapses phenomenon. The entropy squeezing and
variance squeezing phenomena are also considered in sect. 5. Pegg-Barnett phase and fidelity are discussed in sect. 6
and sect. 7, respectively. In sect. 8 the characteristics of the field are introduced and we illustrate the results of the
last part of the paper in sect. 9. Finally we give our conclusion in sect. 10.

2 Analytical solution

To discuss the statistical properties of the present system we have to obtain the solution of the wave function in the
Schrödinger picture or to find the dynamical operators by solving the Heisenberg equations of motion. We write the
Heisenberg equations of motion for the operators n̂ = â†â and σ̂
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z (j = 1, 2) in what follows:
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from which we can show that the operator
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1
2
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is a constant of motion. Using this fact the Hamiltonian model (1) can written in the form

Ĥ
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= ωN̂ + Ĉ, (5)

where the operator Ĉ is given by
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+ + â†σ̂

(j)
−

)]
+ iλ2

(
σ̂

(1)
+ σ̂

(2)
− − σ̂

(1)
− σ̂

(2)
+

)
. (6)

In the above relation the quantities δ1 and δ2 are the detuning parameters defined by

δj = 2Ωj − ω, j = 1, 2. (7)

It is an easy task to show that the operators N̂ and Ĉ commute and consequently each of them commutes with
the Hamiltonian Ĥ. Since the Hamiltonian is a constant of motion, then the operator Ĉ is also a constant of motion.
We now assume that the field is initially in the coherent state and the atoms are identical and initially in pure atomic
states. In this case the wave function of the atoms-field system at t = 0 can be written as

|ψ(0)〉 = [c1|+〉1|+〉2 + c2|+〉1|−〉2 + c3|−〉1|+〉2 + c4|−〉1|−〉2] ⊗ |α〉, (8)

where |α〉 is the coherent state given by
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2

)
, (9)

|+〉i and |−〉i are the upper and lower states of the i-th atom and ci, i = 1, 2, 3, 4 are arbitrary complex quantities
that satisfy the condition

|c1|2 + |c2|2 + |c3|2 + |c4|2 = 1. (10)

In what follows we assume that the condition for the two atoms in exact resonance case is fulfilled, which means
that δ1 + δ2 = 0. The wave function |ψ(t)〉 at the time t > 0 takes the form

|ψ(t)〉 =
∞∑
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The coefficients Xj(n, t), j = 1, 2, 3, 4 are obtained by solving the Schrödinger equation i�∂|ψ(t)〉/∂t = Ĥ|ψ(t)〉,
where Ĥ is given by eq. (5). Considering that the first part gives a phase component, we concentrate on the second
part, i.e. on the interaction picture. In this case, for δ1 + δ2 = 0, we obtain the following system of the differential
equations for Xj(n, t):
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where
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After straightforward calculations, we find that the time-dependent coefficients Xj(n, t), j = 1, 2, 3, 4 are given by

Xj(n, t) =
4∑

i=1

Aji(n, t), (14)
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where
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Note the dependence of the arguments of the trigonometric functions on μ1(n). Now if one uses the state |ψ(t)〉 given
by eq. (11), then the reduced atomic density matrix can be constructed from tracing the expression ρ̂ = |ψ(t)〉〈ψ(t)|
over the field variables. Thus having obtained the exact expression for the wave function, we are able to obtain the
accurate statements for the atoms-field entanglement parameter and consequently the degree of the entanglement.

3 Linear entropy

In recent years, various research works have in quantum entanglement, which is one of the main parts for the execution
of quantum information processing devices [25]. From the obtained results in the previous section, we may come to
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a b

Fig. 1. The time evolution of linear entropy as a function of the scaled time λ1t, with the atoms initially in excited state and
the field prepared in a coherent state with fixed amplitude α = 5, (a) λ2 = 0 and δ1/λ1 = 0.1P (t), δ1/λ1 = 3(P (t) + 0.25),
δ1/λ1 = 5(P (t) + 0.5), δ1/λ1 = 10(P (t) + 0.75), (b) the same as (a) but for λ2/λ1 = 4.

the conclusion that the quantum dynamics associated with the presented atom-field quantum system lead to the
entanglement between the atom and the field. On the other hand, the linear entropy of the field is a criterion which
implies the strength of entanglement. The higher (lower) the entropy, the greater (smaller) the degree of entanglement.
This encouraged us to investigate the time evolution of the entropy for the present system. To study the dynamics of
the entanglement, we have to use a suitable measure. For the present case, we use the linear entropy or von Neumann
reduced entropy [26]. The linear entropy can be determined from the quantity P (t) = 1−Tr[ρ̂2

f (t)], where ρ̂f (t) is the
field reduced density matrix. A necessary and sufficient condition for the ensemble to be described in terms of a pure
state is that Tr[ρ̂2

f (t)] = 1, in this case a state-vector description of each individual system of the ensemble is possible.
For the case Tr[ρ2

f (t)] < 1 the field will be in a statistical mixture state. However, for a maximally mixed ensemble we
have Tr[ρ2

f (t)] = 1
4 , because of the diminution of the reduced space in this case for two two-level atoms.

Analytical conclusions about the system state vector dynamics and atom-field entanglement can be reached through
the examination of the linear entropy, since a linear entropy of reduced atomic (or field) density matrix can serve for
entanglement degree evaluation of the systems consisting of two subsystems and being prepared in a pure state. It
is to be mentioned for this special initial pure state that the entropies of the subsystems (atom or field) are equal,
according to Araki-Lieb inequality [27]. Therefore, in our investigations we take into account, as stated before, that
the atoms are initially in the excited states, i.e. c1 = 1 and ci = 0, i = 2, 3, 4 in eq. (8) and the field is prepared in
a coherent state |α〉. From eqs. (11) and (14) together with eq. (15) where only A11, A21, A31 and A41 are nonzero
while the rest of the coefficients vanish, it is easy to show that the linear entropy for the atomic state takes the form
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The analysis and discussion of the linear entropy is handled through eq. (17). To do so we plot in fig. 1 the function
P (t) against the scaled time λ1t. We display the evolution of the linear entropy for different values of the involving
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parameters. We have fixed the value of the initial coherent parameter α = 5 and in fig. 1a we take λ2 = 0, δ1/λ1 = 0.1
(red solid curve), δ1/λ1 = 3(P (t) + 0.25) (dotted blue curve), δ1/λ1 = 5(P (t) + 0.5) (green dashed curve) and
δ1/λ1 = 10(P (t) + 0.75) (purple dot-dashed). In this case we observe that the linear entropy in general satisfies the
inequality 0 ≤ P (t) ≤ 0.6 as was considered in the fig. 1, where the system approaches the pure state after the onset of
the interaction displaying weak entanglement. This means that the state of the field and the atoms are almost at the
minimum values of P (t). However, as the time increases the function shows rapid fluctuations with a decrease in its
maximum value. Also we note that the rapid fluctuations for the cases δ1/λ1 = 0.1 and 3 are more pronounced than
for the cases δ1/λ1 = 5 and 10. Furthermore, the function shifts up in the cases δ1/λ1 = 5 and 10 and oscillations are
faster than in the other two cases.

When we take the effect of the coupling parameter into account, such as λ2/λ1 = 4, the linear entropy exhibits
similar behavior to the previous case. However one can realize that there are slight fluctuations that appear at the
maximum value of the second period which is pronounced for δ1/λ1 = 3 and 5, see fig. 1b. Also we noted that the
linear entropy reduces its maximum as well as its minimum. This means that an increase in the value of the coupling
between the atoms leads to the reduction in the degree of entanglement beside it gets far from the pure state of the
field. The same behavior can be seen when we consider the cases in which δ1 = 0 or 4 for different values of the
coupling parameter λ2 (not presented here).

4 Atomic characteristics

The atomic inversion represents the difference between the population of the excited and the ground atomic states.
In fact using the atomic inversion we can observe the atom in its excited or ground state, and also we can indicate
when the atom reaches a super position state. To discuss the atomic inversion we have to calculate the reduced atomic
density matrix

ρ̂atoms(t) = Trfield|ψ(t)〉〈ψ(t)|, (18)

where |ψ(t)〉 is the time-dependent wave function (11). If we assume that the atom starts in its excited state, the
density matrix for a single atom is obtained when we take the trace over one of the atoms, thus we have

ρ̂at(j) = Trat(i)ρ̂atoms(t), i, j = 1, 2,

ρ̂(i) = ρ11|+〉ii〈+| + ρ12|+〉ii〈−| + ρ21|−〉ii〈+| + ρ22|−〉ii〈−|, (19)

where

ρ11(t) =
∞∑

n=0

(
|X1(n, t)|2 + |X2(n, t)|2

)
, ρ22(t) =

∞∑

n=0

(
|X3(n, t)|2 + |X4(n, t)|2

)
,

ρ12(t) = ρ∗21(t) =
∞∑

n=0

(X1(n + 2, t)X∗
3 (n, t) + X2(n + 2, t)X∗

4 (n, t)) . (20)

Since the two atoms are identical, the above equation can well fit for either atom.
The atomic inversion W (t) for one of the atoms takes then the form

W (t) = ρ11(t) − ρ22(t). (21)

As one can see, it is quite difficult to analyze explicitly the result obtained from the above equation, therefore we
plot some figures to display the behavior of the function W (t). For this reason we have used numerical computations
to plot the atomic inversion against the scaled time τ = λ1t. In our investigations we take into account, as stated
before, the atoms are initially in the excited states and the field is prepared in a coherent state |α〉. Furthermore, we
have fixed the coherent parameter α = 5.

In fig. 2a we plot the atomic inversion for different values of λ2/λ1 and in the absence of the detuning δ1. For
instance we consider the case in which δ1/λ1 = 0 (solid curve) where the atomic inversion shows regular oscillations
between the upper and the lower states around zero. As one can see, the phenomenon of revival occurs once after the
onset of the interaction for a short period of time. The revival time for this case is π

√
4|α|2 � 10π which is twice

the revival time for the standard JCM [28], but for λ2/λ1 �= 0 it is π
√

(λ2/λ1)2 + 4|α|2. This is followed with a long
period of collapse, however several periods of the revivals can be seen. In the meantime we observe periods of partial
collapses during the considered time. For instance when λ2/λ1 = 3 (dotted curve) the behavior is different and one
can observe a period of revival with small amplitude during the first collapse period. Moreover, the revivals shift to
the right-hand side in addition the partial collapses get more pronounced compared with the previous case. When
we consider λ2/λ1 = 5 (dashed curve) the function decreases its periods of collapses compared with the previous
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a b

Fig. 2. The time evolution of the atomic inversion as a function of the scaled time λ1t, with the atoms initially in the excited
states and the field prepared in a coherent state with fixed amplitude α = 5, (a) δ1/λ1 = 0 and λ2/λ1 = 0.1, 3, 5, 10, (b)
δ1/λ1 = 0.1W (t), δ1/λ1 = 3(W (t) + 0.25), δ1/λ1 = 5(W (t) + 0.5), δ1/λ1 = 10(W (t) + 0.75).

two cases. Also it is observed that when we consider the case in which λ2/λ1 = 10 (dot-dashed curve) the function
reduces its amplitude during the revivals periods. Also the revivals with smaller amplitudes get more pronounced.
These secondary revivals are due to the appearance of the coupling and have times with 2μ1(n)t as arguments in the
trigonometric functions of the coefficients which introduce a revival time of the form π

2

√
(λ2/λ1)2 + 2|α|2, as in the

case of the 3-level JCM [28,29]. Note that the same behavior is seen when we consider λ2/λ1 > 10 (not presented
here), however the function is only shifted up which means that the coupling parameter plays the role of the detuning
parameter. On the other hand, when we consider the case λ2/λ1 = 0, while δ1/λ1 takes the values 0.1, 3, 5 and 10, the
atomic inversion for all cases fluctuates just above zero. In this case we note that, for a small value of δ1/λ1, one can
see certain periods of partial collapses, i.e. δ1/λ1 = 0.1, 3, 5 and 10. These periods of partial collapses disappeared and
we can only realize the collapses periods, see fig. 2b. Since the revival time is π

√
(δ1/λ1)2 + 4|α|2, we may conclude

that for this considerations the parameter δ1/λ1 shifts the inversion upward and prolongs the revival time, λ2/λ1 does
the same but adds the new feature that is attributed to the two-atom interaction.

5 The entropy and variance squeezing

To discuss the quantum fluctuations one can consider the entropy and the variance squeezing which are built on the
concept of the uncertainty relations. The argument was to use the entropic uncertainty relations for two-level system
rather than the Heisenberg uncertainty relations. This argument has been discussed by the authors of ref. [28,30–36].
It is well known that for a quantum-mechanical system with two physical observables represented by the Hermitian
operators Â and B̂ satisfying the commutation relation [Â, B̂] = iĈ, one can write the Heisenberg uncertainty relation
in the form

〈(ΔÂ)2〉〈(ΔB̂)2〉 ≥ 1
4
|〈Ĉ〉|2, (22)

where 〈(ΔÂ)2〉 = 〈Â2〉 − 〈Â〉2. Consequently, the uncertainty relation for a two-level atom characterized by the Pauli
operators σ̂x, σ̂y and σ̂z, satisfying the commutation relation [σ̂x, σ̂y] = 2iσ̂z, can also be written as

Δσ̂xΔσ̂y ≥ |〈σ̂z〉|. (23)

Note that if σ̂α satisfies the condition

V (σ̂α) =
(
Δσ̂α −

√
|〈σ̂z〉|

)
< 0, Δσ̂α =

√
〈σ̂2

α〉 − 〈σ̂α〉2, α = x, y, (24)

then the fluctuations in the component Δσ̂α of the atomic dipole is said to be squeezed.
On the other hand, for an arbitrary quantum state the probability distribution for N possible outcomes of mea-

surements of the operator σ̂α is Pi(σ̂α) = 〈Ψαi|ρ̂|Ψαi〉, where |Ψαi〉 is an eigenvector of the operator σ̂α such that
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σ̂α|Ψαi〉 = λαi|Ψαi〉, α = x, y, z and i = 1, 2, . . . , N . The corresponding Shannon information entropies are then
defined as

H(σ̂α) = −
N∑

i=1

Pi(σ̂α) ln Pi(σ̂α), α = x, y, z. (25)

For an N -dimensional Hilbert space, the investigation of the optimal entropic uncertainty relation for sets of N +1
complementary observables with nondegenerate eigenvalues can be described by the inequality [37–39]

N+1∑

k=1

H(σ̂k) ≥ N

2
ln

(
N

2

)
+

(
1 +

N

2

)
ln

(
1 +

N

2

)
, (26)

where H(σ̂k) represents the information entropy of the variable σ̂k.
Also it is noted that the uncertainty relation of the entropy can be used as a general criterion for the squeezing in

the entropy of an atom, therefore for a two-level atom where N = 2, we have 0 ≤ H(σ̂α) ≤ ln 2 and hence from (24),
the information entropies of the operators σ̂x, σ̂y and σ̂z will satisfy the inequality

H(σ̂x) + H(σ̂y) + H(σ̂z) ≥ 2 ln 2. (27)

In other words, if we define δH(σ̂α) = exp[H(σ̂α)], then we can write

δH(σ̂x)δH(σ̂y)δH(σ̂z) ≥ 4. (28)

It is interesting to mention that the above inequality has been established to be optimal (27), for more details, see
refs. [37–39]. The fluctuations in the component σ̂α (α = x, y) of the atomic dipole are said to be squeezed in entropy
if the information entropy H(σ̂α) of σ̂α satisfies the condition

E(σ̂α) = δH(σ̂α) − 2√
δH(σ̂z)

< 0, (29)

where α = x, y.
To obtain the Shannon information entropies of the atomic operators σ̂x, σ̂y and σ̂z for a two-level atom with

N = 2, one can use the reduced atomic density operator ρ̂(t). Thus we have the following expression:

H(σ̂α) = −1
2

(
ρα(t) ln

[
1 + ρα(t)
1 − ρα(t)

]
+ ln

[
1 − ρ2

α(t)
4

])
,

α = x, y, z. (30)

The time-dependent density matrix is given by

ρα(t) = 〈ψ(0)|ρ̂α(t)|ψ(0)〉,

then from eqs. (19) and (20) we get the expression of the density matrix in the form

ρx(t) = 2Re [ρ12(t)] , ρy(t) = 2Im [ρ12(t)] , ρz(t) = W (t). (31)

We are now in a position to examine the temporal evolutions of the entropy squeezing as well as variances squeezing
related to the present system. To do so we plot several figures of the entropy squeezing E(σ̂x) and E(σ̂y) as well as
the variance squeezing factors V (σ̂x), V (σ̂y), against the scaled time τ = λ1t for the atoms initially prepared in the
excited state. Furthermore we have considered the field initially in the coherent state as before.

In fig. 3 we have fixed the value of the amplitude such that α = 5 and examined the effect for different values of
the involved parameters. For instance we discuss the case in which δ1 = 0 and λ2 = 0 where we observe the squeezing
that occurs several times during the considered period of time. In the meantime, the phenomenon of squeezing is
pronounced for a short period after the onset of the interaction again. It is also noted that the function displays rapid
fluctuations with interference between the patterns. The maximum value of squeezing in this case is carefully checked,
and it is found to be −0.356. When we take the effect of the detuning parameter into account, δ1/λ1 = 2 and λ2 = 0,
the function E(σ̂x) decreases its value and the squeezing starts to get weaker. It is also observed that when the time
increases the value of the squeezing decreases and the value of the maximum squeezing in this case is −0.13, see fig. 3b.
When we take the effect of the coupling between the atoms into account, such that λ2/λ1 = 2 and ignore the effect
of δ1/λ1, more decreasing in the amount of squeezing can be seen, see fig. 3c. In this case we can also see more rapid
fluctuations building up. Finally when we consider δ1/λ1 = λ2/λ1 = 2, the phenomenon of squeezing disappeared
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a b

c d

Fig. 3. The time evolution of the entropy squeezing against the scaled time λ1t where the atoms are initially in the excited
states and the field is prepared in the coherent state with the amplitude α = 5, (a) δ1 and λ2/λ1 are zero, (b) δ1/λ1 = 2 and
λ2 = 0, (c) δ1 = 0 and λ2/λ1 = 2, (d) δ1/λ1 = λ2/λ1 = 2.

except after the onset of the interaction, however the quadrature still displays rapid fluctuations during the considered
period of the time, see fig. 3d.

As soon as we consider the resonance case and neglect the atom-atom interaction, δ1 = 0 and λ2 = 0, it can be seen
that the squeezing occurs in three regions during the considered period of time. One can also see that the maximum
value of the variance squeezing is less than the entropy squeezing. The maximum squeezing in this case is equal to
−0.025. It is also noted that the amount of squeezing in the second period of time is too small compared with the
first and third periods of time, see fig. 4(a). When we take the detuning parameter into account, such that δ1/λ1 = 2
and λ2 = 0, the squeezing is increased compared with the previous case and it occurs in two regions, see fig. 4(b). In
this case the squeezing gets pronounced, and the quadrature variance shows two different periods where the maximum
value of the squeezing occurrs at the value −0.08. On the contrary when we consider the case in which δ = 0 and
λ2/λ1 = 2, the squeezing behavior is dramatically reduced, however the quadrature variances V (σx) still displays some
squeezing with maximum value at −0.06, see fig. 4(c). Finally a greater increase in the value of the detuning parameter
δ1/λ1 = 2, leads to a decrease in the amount of squeezing, and this occurs only once with maximum value at −0.02,
see fig. 4(d). Thus we may conclude that as the value of the coupling between the atoms increases the amount of
squeezing decreases. This also depends on the value of the detuning parameter.

6 Pegg-Barnett phase

A Hermitian phase operator in a finite-dimensional state space has been defined by Pegg and Barnett [40–42]. The
phase operator is defined as the projection operator on the particular phase state multiplied by the corresponding value
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a b

c d

Fig. 4. The time evolution of the variance squeezing against the scaled time λ1t where the atoms are initially in the excited
states and and the field is prepared in the coherent state with the amplitude α = 5, (a) δ1/λ1 and λ2/λ1 are zero, (b) δ1/λ1 = 2
and λ2 = 0, (c) δ1 = 0 and λ2/λ1 = 2, (d) δ1/λ1 = λ2/λ1 = 2.

of the phase. The main idea of the Pegg-Barnett formalism consists in the evaluation of all expectation values of the
physical variables in a finite-dimensional Hilbert space. These give real numbers, which depend parametrically on the
dimension of the Hilbert space. Because a complete description of the harmonic oscillator involves an infinite number
of states to be taken, a limit is taken only after the physical results are evaluated. This leads to proper limits which
correspond to the results obtainable in ordinary quantum mechanics. It can be used for investigating the quantum
states phase properties of the electromagnetic-field single mode. Therefore, we will study the phase properties of the
Hamiltonian (1) for a coherent state input using the Pegg-Barnett phase formalism. The phase probability distribution
is defined by [40–42]

P̃ (θ, t) =
1
2π

∞∑

l,m=0

ρf
lm(t) exp[i(l − m)(θ − θ0)], (32)

where θ0 is the phase angle reference which will be ignored in our calculations. The phase distribution, on taking
c1 = 1 in eq. (10) and using the field reduced density operator, can be written as

P̃ (θ, τ) =
1
2π

⎧
⎨

⎩

∣∣∣∣∣

∞∑

n=0

A11(n, τ) exp[inθ]

∣∣∣∣∣

2

+

∣∣∣∣∣

∞∑

n=0

A12(n, τ) exp[inθ]

∣∣∣∣∣

2

+

∣∣∣∣∣

∞∑

n=0

A13(n, τ) exp[inθ]

∣∣∣∣∣

2

+

∣∣∣∣∣

∞∑

n=0

A14(n, τ) exp[inθ]

∣∣∣∣∣

2
⎫
⎬

⎭ . (33)
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a b

Fig. 5. The Pegg-Barnett phase against the scaled time λ1t and the phase angle θ where the atoms are initially in the excited
states and and the field is prepared in the coherent state with the amplitude α = 5, (a) δ1 and λ2 are zero, (b) δ1/λ1 = λ2/λ1 = 2.

To discuss the behavior of the function P̃ (θ, τ) we plot fig. 5 against the scaled time τ and the phase angle θ for
θ ∈ [−π, π].

Taking δ1/λ1 = 0 and λ2/λ1 = 0 in fig. 5(a), it is seen that at τ = 0 a single peak is observed at θ = 0 but as τ
develops, three peaks appear, the one at θ = 0 with large amplitude and two similar side peaks of smaller amplitudes.
These two peaks diverge towards θ = ±π until they reach these values. Thus they occur at mid-revival time as seen in
fig. 5(a). But as the time increases further the two side peaks start to converge towards θ = 0 when τ equals the revival
time in comparison with the central peak being higher at this point. Increasing time further the two side peaks diverge
again but, however, with slightly smaller amplitude compared to the first window appearing when one introduces the
amplitude damping [43,44]. When the atomic coupling or the detuning is taken into consideration, the same behavior
is displayed with the elongation of the revival time and the lowering of the amplitude of the side peaks, as seen in
fig. 5(b).

7 Fidelity

In this section we calculate the fidelity which plays the role of the transition between a pure state |ψ(0)〉 and the state
described by ρ̂(t) = |ψ(t)〉〈ψ(t)|. This is equal to the square root of the overlap between the state |ψ(0)〉 and the state
defined by ρ̂(t). The fidelity is given by the form [1],

F (t) =
√
〈ψ(0)|ρ̂(t)|ψ(0)〉 = |(〈ψ(0)|ψ(t)〉)| . (34)

Showing the state close to the initial state due to the initial condition (8) and taking both the atoms in their
excited states, we find that the F (t) dependence on A11(t) is symmetric on both δ1 and λ2.

Plots of the fidelity for different values of δ1 and λ2 are shown in fig. 6. At τ = 0 it attains the value 1 but it
sharply drops after τ = 0 to almost a constant value all along the collapse period. Then as in the case of the atomic
inversion, however, it builds up towards a peak during the revival period and drops again to the constant value until
it reaches a second lower peak at the second main revival. The detuning or the atomic coupling increases the constant
value during the collapse period and raises the amplitude of the peaks besides elongation of the collapse period, as
indicated in fig. 2b for the atomic inversion. In the meantime, it is noted that the atomic coupling gives the same
behavior as the detuning parameter (not presented here). Finally we may point out that the shift between the second
and third curves in fig. 2 nearly disappeared in fidelity. This means that the effects of δ1/λ1 = 3 and 5 are almost the
same as for λ2/λ1 = 4.
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Fig. 6. The fidelity against the scaled time τ = λ1t, the conditions are the same as in fig. 2b.

8 Field characteristics

In this section we illustrate nonclassical properties of the field in this system using Husimi, Wigner and Glauber-
Sudarshan quasidistributions and their variances. Therefore we review basic relations from which we can discuss the
effects related to the field.

We have used the wave function (11) to obtain the field density matrix in the form

ρfield(t) = Tratoms|ψ(t)〉〈ψ(t)| (35)

=
∞∑

n,m=0

[X1(n, t)X∗
1 (m, t)|n〉〈m|

+ X2(n, t)X∗
2 (m, t)|n + 1〉〈m + 1|

+ X3(n, t)X∗
3 (m, t)|n + 1〉〈m + 1|

+ X4(n, t)X∗
4 (m, t)|n + 2〉〈m + 2|] .

Then the Fock density matrix elements are

ρ(n,m, t) = 〈n|ρfield(t)|m〉 (36)
= [X1(n, t)X∗

1 (m, t)
+ X2(n − 1, t)X∗

2 (m − 1, t)
+ X3(n − 1, t)X∗

3 (m − 1, t)
+ X4(n − 2, t)X∗

4 (m − 2, t)] ,
X1(n, t) = X2(n, t) = X3(n, t) = X4(n, t) = 0, n < 0.

The Husimi quasidistribution ΦA(α, t) is then given in [45] (eq. (4.87)), from which the phase-independent quasidis-
tribution PA(W, t) of the integrated intensity W = |α|2 is obtained.

For the symmetric ordering we have for the Wigner quasidistribution performing the Fourier transformation of the
symmetric characteristic function expressed in the Fock states

ΦS(α, t) =
1
π

∞∑

n,m=0

n∑

k=0

∞∑

r=max(0,n−m)

(37)

(−1)k+rρ(n,m, t)(n!m!)1/2(k + r + m − n)!
k!(k + m − n)!(n − k)!r!(r + m − n)!

× 2k+r+m−n+1αrα∗r+m−n.
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For computations it is useful to reorganize this expression as follows:

ΦS(α, t) =
2
π

∑

0≤m≤n<∞

√
m!
n!

Re
[
ρ(n,m, t)(2α)n−m

]

∞∑

r=0

(−2|α|2)r

r!
Cmnr, (38)

where

Cmnr = amn

m∑

k=0

(−2)k

(
k + r + n − m

r + n − m

)(
n

m − k

)
,

amn = 2 − δmn. (39)

The corresponding phase-independent relation is given in [45] (eq. (4.188) for s = 0). The Glauber-Sudarshan qua-
sidistribution can be obtained as a solution of the moment problem for the photodetection equation as given in [45]
eq. (4.113). In an analogous way we obtain the phase-independent Glauber-Sudarshan PN (W, t), see eq. (3.116) in [45].

9 Illustrations

We can now illustrate the above relations which will really demonstrate nonclassical properties of the field in the
interaction with atoms in this system. We assume the initial field in the coherent state with the complex amplitude
β = 5 or β = 1 and excited atoms so that c1 = 1, c2 = c3 = c4 = 0 as in the earlier sections of this paper. For
controlling the numerical results we will use the following relations:

〈(ΔW (t))2〉A = 〈(Δn(t))2〉 + 〈n(t)〉 + 1,

〈(ΔW (0))2〉A = 2|β|2 + 1, (40)

〈(ΔW (t))2〉S = 〈(Δn(t))2〉 +
1
4

,

〈(ΔW (0))2〉S = |β|2 + 1
4 , (41)

〈(ΔW (t))2〉N = 〈(Δn(t))2〉 − 〈n(t)〉,
〈(ΔW (0))2〉N = 0.

The averages are taken by means of the corresponding quasidistributions on the left-hand side and by means of the
photon number distribution on the right-hand side.

In figs. 7(a), (b), (c) we see the time evolution of the photon number distribution p(n, t) = ρ(n, n, t) for times t = 1,
3.6, 9.8 (λ1 = 1 as a canonic value, as before, where we choose δ1 = 0 (no detuning), λ2 = 0 and δ = δ1 + iλ2 = 0),
respectively; and time evolution of the corresponding variances is in fig. 8, both in comparison with the Poisson
distribution with the same mean photon number. One can see the successive evolution of the field between sub- and
super-Poissonian states.

Adopting the antinormal ordering of field operators, the Husimi quasidistribution and its phase-independent form
will exhibit its quantum behavior being narrower or broader than the corresponding initial distributions in correspon-
dence to the variances in (40) and (41):

ΦA(α, 0) =
1
π

exp(−|α − β|2) (42)

and
PA(W, 0) = exp(−W − |β|2)I0(2(W |β|2)1/2), (43)

respectively, I0 being the modified Bessel function. This is shown in fig. 9 for t = 1.1 giving the phase-independent
Husimi quasidistribution and in fig. 10 showing the time evolution of the variance which periodically increases and
decreases the initial value 51. In this case the reduction of the uncertainty in fig. 9 is maximum, as seen in fig. 10.
The phase-dependent Husimi quasidistribution is shown in figs. 11(a), (b), (c) for t = 60, 100, 500 exhibiting quantum
oscillations.

Similarly for symmetric ordering we have

ΦS(α, 0) =
2
π

exp(−|α − β|2) (44)
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Fig. 7. Photon number distribution p(n, t) = ρ(n, n, t) for (a) t = 1, (b) t = 3.6 and (c) t = 9.8, β = 5, dashed curve is for
Poisson distribution with the same mean photon number.

Fig. 8. Time evolution of the corresponding variance 〈(Δn(t))2〉, β = 5, dashed curve is for Poisson distribution with the same
mean photon number.
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Fig. 9. Phase-independent Husimi quasidistribution PA(W, t) for t = 1.1 and β = 5, the dashed curve is for the initial
distribution with the same mean photon number.

Fig. 10. Time evolution of the corresponding variance 〈(ΔW (t))2〉A, the dashed line is for the initial distribution with the
same mean photon number.

and

PS(W, 0) = 2 exp(−W − |β|2)I0(4(W |β|2)1/2), (45)

and the corresponding behavior is in fig. 12 for t = 6 exhibiting negative values of the Wigner quasidistribution
and the time evolution of the variance for symmetric ordering is in fig. 13 starting at 25.25. For t = 1.1 we also
obtain the maximum reduction of the uncertainty, as seen from fig. 13, similarly as in fig. 9 for antinormal orde-
ring. Clearly the demonstration of nonclassical behavior is more effective adopting symmetric ordering rather than
antinormal ordering. The phase-dependent Wigner quasidistribution computed to test the numerical algorithm for
density matrix ρnm = δnmδnM (Fock state |M〉) is seen in fig. 14(a), (b), when M = 5 and M = 10. Figure 15(a), (b)
represent the phase-dependent Wigner quasidistribution for β = 1 and times t = 2.5 and t = 9.0 demonstrating clearly
its negative values related to the quantum behavior of the system. The highest nonclassical effects can be obtained
adopting the normal operator ordering and the corresponding illustration is in fig. 16 for t = 1. We clearly see the very
rich nonclassical behavior of this quasidistribution. Similar fast quantum oscillations to negative values are obtained
in phase-independent Glauber-Sudarshan quasidistribution PN (W, t) with negative normal variance 〈(ΔW (t))2〉N in
fig. 17. In general, an increase of detuning δ1 will reduce the field nonclassical effects, whereas an increase of coupling
constant λ2 of atoms will support them. However, we have verified that the influence of the coupling of atoms on field
nonclassical effects is very weak.
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Fig. 11. Phase-dependent Husimi quasidistribution ΦA(α, t) for (a) t = 60, (b) t = 100 (c) and t = 500, β as in fig. 1.

Fig. 12. Wigner quasidistribution PS(W, t), t = 6, β as in fig. 1, the dashed curve is for the initial distribution with the same
mean photon number.
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Fig. 13. Time evolution of the corresponding variance 〈(ΔW (t))2〉S , the dashed line is for the initial distribution with same
mean photon number.

Fig. 14. Wigner quasidistribution ΦS(α, t), when ρnm = δnmδnM for (a) M = 5, (b) M = 10.

Fig. 15. Wigner quasidistribution ΦS(α, t) for β = 1 and times (a) t = 2.5, (b) t = 9.0.
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Fig. 16. Glauber-Sudarshan quasidistribution ΦN (α, t) for β = 1 and times (a) t = 1.0, (b) t = 20.0.

Fig. 17. Glauber-Sudarshan quasidistribution PN (W, t) (a) for β = 5 and time t = 6 and (b) corresponding normal variance
〈(ΔW (t))2〉N .

10 Conclusion

In this paper we have considered the problem of the interaction between two two-level atoms and radiation field. The
interaction between the atoms is also taken into consideration. The time-dependent wave function is obtained and
employed to discuss some statistical properties for the system. For instance, we considered the degree of entanglement
using the definition of purity. We found that an increase in the value of the coupling between the atoms leads to
a reduction in the degree of entanglement but the function gets further from the pure state. Also we discussed the
atomic inversion behavior where the function exhibited periods of revival disappearing in the case in which the detuning
parameter δ1 is zero. We also extended our discussion to include the entropy and variance squeezing. It is showed
that the maximum squeezing occurs when δ1 = λ2 = 0. While for the variance squeezing an increase in the value of
the coupling between the atoms leads to observe a greater amount of squeezing. We considered two examples for the
Pegg-Barnett phase, for δ1 = λ2 = 0, 2. Similar behavior is observed for both cases except the slight difference in
the elongation of the revival time and the lowering of the amplitude of the peak. Finally we considered the normal
squeezing, the fidelity, and demonstrated the quantum oscillations of the quasidistributions.
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