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Abstract. This paper discusses the problem of stability in a milling process for titanium super-alloy Ti6242.
The phenomenon of chatter vibration is analysed by the multiscale entropy method and Hurst exponent.
Although this problem is often considered based on stability lobe diagrams, theoretical findings do not
always agree with experimental results. First, a stability lobe diagram is created based on parameters
determined by impact testing. Next, cutting forces are measured in an experiment where the axial cutting
depth is gradually increased. Finally, the obtained experimental signals are investigated with respect to
stability using the multiscale entropy method and Hurst exponent.

1 Introduction

The problem of stability in cutting and milling processes, particularly under high speed machining (HSM) conditions,
is very important in engineering practice. Instability is caused by chatter phenomena which can be generated by
regenerative and frictional mechanisms [1]. The regenerative chatter is one of the most common in the literature.
However, Wiercigroch et al. [2,3], Lipski et al. [4], Rusinek et al. [5,6] show that the frictional effect is also important
because it can produce the so-called frictional (primary) chatter and can even lead to chaotic vibrations [7,8]. Chatter
vibrations generated in cutting operations are undesired because they can deteriorate the surface of a finished product,
shorten tool life or even destroy the tool or the work piece. This, combined with the properties of hard, difficult-to-
machine materials like titanium alloy, poses serious problems in machining [9–13]. Specific properties of titanium alloys
such as high strength and their resistance to heat and corrosion are desirable in the civil and military aviation industry
to produce extremely loaded components. Therefore, these alloys are often applied in the production of aircrafts, racing
cars, and many other devices.

Given the demand for steadily growing productivity, there is a tendency to increase cutting parameters such
as cutting speed and feed rate in manufacturing processes. This, however, can lead to self-excited chatter vibrations
generated by a regenerative mechanism. To avoid regenerative chatter, the cutting parameters must be defined properly.
To this end, the so-called stability lobe diagrams (SLDs) are created, usually based on modal parameters of the tool-
holder system, where a rotational speed and depth of cut determine conditions of stable cutting. An advantage of
the SLD technique is that it can predict an unstable region of the cutting parameters prior to machining; however,
its correctness depends on the accuracy of the modal test. From another point of view, the cutting process can be
controlled online by measuring forces, displacements or accelerations in order to prevent instabilities from occurring
in a system. Therefore, some researchers measure acoustic emission during the cutting process to obtain experimental
SLDs, e.g. in [14]. Others use the recurrence plot (RP) technique [15–17], Hilbert-Huang transform (HHT) [18], flicker-
noise spectroscopy [19] and the Hurst exponent [20]. In some cases, however, the dynamics of a system requires the use
of a multiscale approach. This is particularly true with complex systems which usually exhibit nonlinear behaviour.
For this reason, such systems can be best analysed by the increasingly popular sample entropy method [21–23]. This
analysis approach provides a relative level of complexity for measured finite length time signals. The method is widely
used in medicine diagnostics [24], for measuring physiologic output signals, particularly blood pressure, heart rate or
electrical brain activity [25]. Also, it can be used for detecting early symptoms of cardiac arrhythmias [26]. Apart from
the sample entropy method, complex behaviours of mechanical systems can also be analysed by multiscale entropy.
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Fig. 1. Scheme of the experimental setup.

The authors of the paper [27] adopted this method to analyse the time series of a bistable laminate plate. They
examined its dynamic response, showing the presence of single well and snap-through vibrations of both periodic
and chaotic character. The authors of other papers, [15,17], used the multiscale entropy analysis (MSE) to observe
fluctuations describing chatter in the milling process of a composite material. This approach was also adopted for
time series analysis of vehicle suspension [28,29]. The MSE proved useful in identifying system behaviour during
driving tests. This paper uses the composite multiscale entropy analysis (CMSE) [30,31] to investigate the milling
of the titanium alloy. This method is applied to monitor complex dynamics of machining, particularly with respect
to chatter phenomena. Here, the stability of the milling process for titanium alloy Ti6242 is investigated by two
approaches: multiscale entropy and Hurst exponent analysis. With these methods, chatter vibrations in machining can
be predicted just before they occur.

2 Experiment

The experimental investigations are conducted on a titanium alloy Ti6242 using a Haas MiniMill CNC milling machine.
The tests are performed under laboratory conditions at the �Lódź University of Technology. Presented schematically
in fig. 1, the experimental setup consists of two parts: a modal analysis system (left) and a force measurement system
(right). The former, which is used to measure viscoelastic properties of the machine-tool system, consists of a PCB
086C03 modal hammer, a PCB 352B10 accelerometer and an NI9234 data acquisition card (DAQ). The latter is used
to measure three components (Fx, Fy and Fz) of the resultant cutting forces and torque (Mz) by means of a Kistler
9123C piezoelectric rotating dynamometer. The dynamometer is connected to a Kistler 5223 signal conditioner and
a 2855A4 data acquisition card. Both experimental rigs are integrated in computer system and controlled by the
DynoWare software to record measured signals. The measurements are taken in two steps. First, a single point impact
test is performed to determine stiffness, natural vibration frequency and damping ratio of the spindle-tool system in
order to predict regions of stable milling. To this end, the modal hammer is used to excite the tool and then the
output signal is measured by a low mass accelerometer mounted at the tip of the tool. Next, the modal parameters for
x and y directions, in the form of frequency response function, are implemented to the CutPro9 software in order to
determine SLD analytically. The stability lobe diagram, presented in fig. 2, is generated for the up-milling of titanium
alloy Ti6242 by an end milling cutter with a 12mm diameter and four flutes. The radial depth of cut ae is set to
4mm and the feed per tooth fz is 0.05mm. Stable cutting occurs in the region below the stability boundary, while
unstable machining should occur above the lobes. According to the diagram, the cutting depth below the critical value
apcr = 1.2mm should be stable regardless of the spindle speed.

In order to verify the SLD and find new stability measures, the second part of the experiment is performed using
the milling machine. The cutting parameters are set as follows: the spindle rotational speed n is 1860 rpm, the radial
depth of cut ae is 4mm, the feed per tooth fz is 0.05mm, while the axial depth of cut ap (referred to as “depth of
cut”) is increased from 0 to 2mm during the test. The cutting force component Fx and torque Mz are measured and
recorded at a sampling rate of 2 kHz, which is the necessary minimum because the natural frequency of spindle-tool
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Fig. 2. Stability lobe diagram for up-milling of titanium alloy Ti6242.
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Fig. 3. Schematic representation of a coarse graining procedure for scales τ = 2 and τ = 3.

system amounts to about 800Hz. The following section contains analyses performed to compare the dynamics of stable
and unstable milling systems and to verify whether the theoretical critical depth of cut obtained from the SLD was
calculated properly.

3 Multiscale entropy analysis

The composite multi-scale entropy analysis is based on a coarse-graining procedure presented in fig. 3.
This procedure provides a coarse-grained time series as an average of the original data points within non-overlapping

windows by increasing the scale factor τ . The k-th coarse-grained time series reads as 1:

y
(τ)
k,j =

1
τ

i=jτ+k−1∑

i=(j−1)τ+k

xi, 1 � j � N/τ, 1 � k � τ, (1)

where x is a raw one-dimensional time series x = {x1, x2, . . . , xN}. For the coarse-grained results
{yk,1, yk,2, yk,3, . . . , yk,N}, first, two patterns of length Ym(i) = {yk,i, . . . , yi+m} and Ym(j) = {yk,j , . . . , yj+m} are
selected to compute the number of Ym(j), which satisfies the condition

d[Ym(i), Ym(j)] � r, (2)
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Fig. 4. The algorithm of composite multi-scale entropy.

where d[Ym(i), Ym(j)] = max[|yi+κ, yj+κ|](κ ∈ [0,m − 1]) and j ∈ [1, N − m], i �= j. Finally, the Nn(i) is the result of
all Ym(i) similar to Ym(j), and the average for i ∈ [1, N − m],

Nn =
1

N − m

N−m∑

i=1

Nn(i) (3)

and, next, for the length increase to m + 1, then

Nd =
1

N − m

N−m∑

i=1

Nd(i). (4)

The logarithm of the conditional probability that two sequences with a tolerance r are similar to each other at
successive points of the coarse-grained series is denoted as SampEn(y(τ),m, r) and defined as [24]

SampEn
(
y(τ)

k ,m, r
)

= ln
(

Nn

Nd

)
. (5)

In this approach, for each scale factor τ , the CMSE calculation is based on the time series of the coarse-grained
y
(τ)
k,j introduced by Wu et al. [31]:

CMSE(x, τ,m, r) =
1
τ

τ∑

k=1

SampEn
(
y(τ)

k ,m, r
)

, (6)

where m = 2 is the pattern length and r is the similarity criterion which is usually chosen to be r < 0.1σx [32]. Here,
σx is the standard deviation of the original time series {x}.

The algorithm of the composite multi-scale entropy is presented in fig. 4, where the final result for each scale factor
τ is the averaged SampEn depending on k-th loops.

The paper investigates real signals reporting a different behaviour of the system characterized by the time series
of force and torque signals plotted in figs. 5(a) and (b), respectively. The corresponding magnified extreme parts of
these series at the increased depth of cut ap are presented in figs. 5(c)–(f). The force signal was measured along the
feed axis x while the torque was measured on the spindle axle. Generally, it is difficult to observe any differences after
the increase in the depth of cut ap. If one compares the plots of the force signal Fx in figs. 5(c) and (e), and the plots
of the torque signal Mz in figs. 5(d) and (f), there is hardly any visible amplitude growth. With long period data, it
is recommended using rolling windows to analyse local data. In this paper, the measured signal was first partitioned
into a number of windows, and the CMSE was calculated separately for each window data. The window width was
taken as 4 and 10 to demonstrate the changeability of signal behaviour.

Figure 6 presents the results of composite multiscale entropy for both the force along the feed axis x and the
spindle torque in the z-direction. The results demonstrate that the calculated entropy is higher for the force Fx signal
rather than in the case of the torque Mz. This relation remains unchanged at all stage of the cut depth ap. Analysing
the results, one can conclude that the behaviour of the signal along the feed axis of force Fx is more irregular than
that of the signal of torque Mz. Additionally, when the milling process is performed at the depth of cut parameter
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Fig. 5. The time series of the milling process of force signal (a) and torque signal (b). The first part of the wedge data (c), (e)
and the final data (d), (f) of force and torque signals, respectively, in Ti6242 alloy milling at increasing the depth of cut ap, at
fixed n = 1860 rpm, ae = 4 mm and fz = 0.05 mm.

ap ∈ (0–0.5)mm, this yields the most disordered signals in both measured directions, x and z. By increasing the scale
factors τ , the coarse-grained series becomes smoother, and the entropy based on such averaged time series decreases,
as expected. Nevertheless, the relation between the signals remains unchanged. In the whole range of τ , the most
irregular signal is observed at the smallest value of the ap parameter, while regularity can be observed at an increased
depth of cut (ap ≈ 2mm).

Figures 7(a) and (b) show the dependences of CMSE against the depth of cut ap at chosen scale factors τ . For
the smallest τ = 1, the coarse-grained time series is simply the original time series with the highest entropy (red
lines). But for all chosen scale factors τ = 1, τ = 10 and τ = 20, the entropy slowly decreases with increasing the ap

parameter.
This means that initiating the milling process at a higher ap leads to a more regular behaviour of the machining

process. This can be clearly observed for the original time series signals (τ = 1, fig. 7). Moreover, in the experiment,
the chatter effect is observed at the same values of parameters. Given the results, it can therefore be concluded that the
chatter phenomenon in milling manifests itself in a regular behaviour rather than a chaotic one. Finally, the composite
multiscale entropy (CMSE) maps against both the scale factor τ and the depth of cut ap are presented in figs. 8(a)
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Fig. 7. Composite multiscale entropy against the depth of cut at chosen scale factors τ , for the measured signal of forces Fx (a)
and torque Mz signal (b), respectively.
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Fig. 8. The maps of composite multiscale entropy against the depth of cut ap and scale factor τ for measured forces Fx signal (a)
and torque signal Mz signal (b), respectively.

and (b). The maps indicate that the system dynamics will remain stable with increasing the depth of cut ap in the
whole range of the scale factor τ . The results reveal the occurrence of chatter.

4 Hurst exponent analysis

Generally, the Hurst exponent is applied to evaluate time series persistence in a long-range dependence. The Hurst
exponent can also be interpreted as a measure of the smoothness of a fractal time series based on the asymptotic
behaviour of a process. The Hurst exponent is used to solve both in technical [20] and medical [33] problems.
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Fig. 9. Hurst exponent of Fx (a) and Mz (b).

The Hurst exponent value ranging between 0 and 0.5 means that the time series demonstrates an “anti-persistent
behaviour”. This behaviour is sometimes called “mean reversion”, which means that future values will have a tendency
to return to a longer-term mean value. When the value of the Hurst exponent is between 0.5 and 1 indicating “persistent
behaviour”, then the time series is trending. If the value is higher than 1, the trend is stronger. Series of this type are
easier to predict. The Hurst exponent value close to 0.5 indicates random data (like in a Brownian time series). In this
study, the Hurst exponent is used to point out the difference between stable and unstable milling. Both time series
(Fx and Mz) exhibit an anti-persistent behaviour. This is connected with changes in signal character which occur
during the milling test with increasing the depth of cut. According to the stability lobe diagram in fig. 2, a symptom
of stability loss can be observed at the depth of cut ap > 1mm, while the value of the Hurst exponent dramatically
decreases (figs. 9(a) and (b)). In general, the Hurst exponent value in the range of 0–0.5 indicates an anti-persistent
behaviour of the analysed time series, which confirms that the milling process is susceptible to chatter. Thus, the
Hurst exponent can be treated as a relatively good chatter indicator.

5 Conclusions

The composite multiscale entropy (CMSE) and Hurst exponent analyses presented in the paper are effective method
for detecting chatter. Analysing the stability lobe diagram, one can observe that the unstable behaviour of the milling
process at a higher depth of cut ap, does not provide sufficient information for chatter detection. This stems from
the fact that the chatter effect can appear both in chaotic and regular behaviours. As for the analysed time series,
the CMSE results reveal a growing disorder at a lower depth of cut ap, which can indicate some irregularities in the
system at the beginning of the process. At the same time, however, it is found that the chatter effect occurs when the
depth of cut is increased to ap > 1mm, despite the fact that the behaviour seems regular according to the CMSE
analysis. Also, the Hurst exponent analysis confirms that the process can exhibit an anti-persistent behaviour, which
can generate this undesired effect. Finally, it can therefore be concluded that unexpected chatter vibrations have
regular nature and high amplitude.
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