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Abstract The aggregation or clustering of proteins and other macromolecules plays an important role
in the formation of large-scale molecular assemblies within cell membranes. Examples of such assemblies
include lipid rafts, and postsynaptic domains (PSDs) at excitatory and inhibitory synapses in neurons.
PSDs are rich in scaffolding proteins that can transiently trap transmembrane neurotransmitter receptors,
thus localizing them at specific spatial positions. Hence, PSDs play a key role in determining the strength
of synaptic connections and their regulation during learning and memory. Recently, a two-dimensional (2D)
diffusion-mediated aggregation model of PSD formation has been developed in which the spatial locations
of the clusters are determined by a set of fixed anchoring sites. The system is kept out of equilibrium by
the recycling of particles between the cell membrane and interior. This results in a stationary distribution
consisting of multiple clusters, whose average size can be determined using an effective mean-field descrip-
tion of the particle concentration around each anchored cluster. In this paper, we derive corrections to the
mean-field approximation by applying the theory of diffusion in singularly perturbed domains. The latter
is a powerful analytical method for solving two-dimensional (2D) and three-dimensional (3D) diffusion
problems in domains where small holes or perforations have been removed from the interior. Applications
range from modeling intracellular diffusion, where interior holes could represent subcellular structures such
as organelles or biological condensates, to tracking the spread of chemical pollutants or heat from localized
sources. In this paper, we take the bounded domain to be the cell membrane and the holes to represent
anchored clusters. The analysis proceeds by partitioning the membrane into a set of inner regions around
each cluster, and an outer region where mean-field interactions occur. Asymptotically matching the inner
and outer stationary solutions generates an asymptotic expansion of the particle concentration, which
includes higher-order corrections to mean-field theory that depend on the positions of the clusters and the
boundary of the domain. Motivated by a recent study of light-activated protein oligomerization in cells, we
also develop the analogous theory for cluster formation in a three-dimensional (3D) domain. The details
of the asymptotic analysis differ from the 2D case due to the contrasting singularity structure of 2D and
3D Green’s functions.

1 Introduction

The aggregation or clustering of proteins and other
macromolecules plays an important role in the for-
mation of large-scale molecular assemblies in cells. In
many cases, such assemblies are associated with cellular
membranes, including the clustering of cell-cell adhe-
sion proteins in epithelia [1] and lipid raft formation
[2,3]. Another notable example is the formation of post-
synaptic domains (PSDs) at excitatory and inhibitory
synapses in neurons. PSDs are rich in scaffolding pro-
teins that can transiently trap transmembrane neu-
rotransmitter receptors, thus localizing them at spe-
cific spatial positions, in particular, at sites apposed
to active zones in presynaptic domains where neuro-
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transmitters are released. PSDs thus play a crucial
role in determining the effective strength of synaptic
connections between cells [4–12]. Advances in single-
particle tracking and imaging methods have shown
that PSDs are highly dynamic structures whose con-
stituent molecular components are subject to continu-
ous turnover. For example, scaffolding protein-receptor
complexes can diffuse laterally within the cell mem-
brane. A surface complex may also be internalized via
endocytosis and stored within an intracellular compart-
ment, where it is either recycled to the surface via recy-
cling endosomes and exocytosis, or sorted for degrada-
tion by late endosomes and lysosomes.

A number of models have explored the combined
effects of diffusion-trapping and recycling on the num-
ber of excitatory AMPA (α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic) receptors within dendritic spines
[13–18]. However, these diffusion-trapping models typ-
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ically assume that the number of trapping sites or
“slots” within a given PSD is fixed. In order to under-
stand the formation and stabilization of PSDs, it is
necessary to consider the slower dynamics of scaffold-
ing protein-receptor complexes. Several modeling stud-
ies have analyzed the joint localization of gephyrin
scaffolding proteins and glycine receptors at inhibitory
synapses [19–21], showing how stable PSDs could arise
dynamically via a non-equilibrium Turing mechanism.
An alternative approach is to consider PSD forma-
tion in terms of diffusion-mediated particle aggrega-
tion or coalescence within the cell membrane [22,23].
The fusion of smaller diffusing clusters and particles is
modeled according to Smoluchowski coagulation equa-
tions, and the system is kept out of equilibrium by
the recycling of particles between the cell membrane
and interior [24]. This allows for the formation and
maintenance of a stationary distribution consisting of
multiple clusters. Recently, the PSD aggregation model
has been extended to include fixed anchoring sites that
trap clusters at specific positions within the membrane,
consistent with the alignment of PSDs and presynap-
tic active zone [25]. The effects of the anchoring sites
were analyzed using a mean field description of the
steady-state particle concentration around a single clus-
ter. This yielded an expression for the mean cluster size
as a function of model parameters such as the density
of anchoring sites.

As far as we are aware, current mathematical/
computational models of clustering have not been com-
pared directly with detailed experimental studies of
PSD formation. However, they do incorporate the vari-
ous molecular players and biophysical mechanisms that
have been identified experimentally as playing a crucial
role in PSD formation. Modeling studies thus estab-
lish a proof of principle for the hypothesized processes
and provide information regarding expected cluster
sizes and distributions [22,23,25]. There is an analo-
gous role for modeling in studies of the role of liquid-
liquid phase separation in the formation of biological
condensates. Many different types of biological conden-
sate are found intracellularly in the cytoplasm and cell
nucleus (see the reviews [26–29] and references therein).
These membrane-less organelles are viscous, liquid-like
structures containing enhanced concentrations of vari-
ous proteins and RNA, many of which can be continu-
ally exchanged with the surrounding medium.

It has been hypothesized that the coexistence of mul-
tiple droplets over significant timescales involves the
active suppression of Ostwald ripening. Ostwald ripen-
ing describes the coarsening of droplets during late-
stage liquid-liquid phase separation via spinodal decom-
position [30,31] and is distinct from the coarsening pro-
cess underlying aggregation models. In classical Ost-
wald ripening, an emulsion of polydisperse droplets
transitions to a single condensate in thermodynamic
equilibrium with a surrounding dilute phase. Various
hypotheses have been given to account for the sup-
pression of Ostwald ripening including the following:
actively driven chemical reactions that maintain the
out-of-equilibrium switching of proteins between solu-

ble and phase separating forms [32–35]; the mechani-
cal suppression of coarsening mediated by intracellular
visco-elastic networks such as the cytoskeleton [36–38];
the slow conversion of a molecular constituent between
the dilute and dense phases due to various regulatory
interfacial proteins [39–41]. As in the case of models
of clustering, mean field approximations are often used
to analyze the effects of diffusion on the formation and
maintenance of multiple droplets.

Recently, we have extended mean field models of
Ostwald ripening using the theory of diffusion in sin-
gularly perturbed domains [42–44]. The latter is a
powerful analytical method for solving boundary value
problems (BVPs) for two-dimensional (2D) and three-
dimensional (3D) diffusion in domains where small
holes or perforations have been removed from the inte-
rior [45–54]. Applications range from modeling intracel-
lular diffusion, where interior holes could represent sub-
cellular structures such as organelles, molecular clusters
and liquid droplets, to tracking the spread of chemi-
cal pollutants or heat from localized sources. Roughly
speaking, one can divide the various BVPs into two dis-
tinct groups. The first, which is relevant to the current
paper, treats the holes as localized sources or reflect-
ing obstacles for populations of particles, and one is
interested in calculating the steady-state solution (if it
exists) and the rate of approach to steady state. The
second treats the holes as totally or partially absorbing
traps, and the main focus is determining the first pas-
sage time or splitting probability for a single particle to
be captured by an interior trap (narrow capture).

Both types of BVP can be solved using a combina-
tion of matched asymptotic analysis and Green’s func-
tion methods. This involves obtaining an inner or local
solution of the diffusion equation that is valid in a
small neighborhood of each hole, and then matching
to an outer or global solution that is valid away from
each neighborhood. The matching requires taking into
account the singular nature of the Green’s function
associated with the diffusion equation. However, the
details of the matched asymptotic analysis in 2D and
3D domains differ considerably due to corresponding
differences in the Green’s function singularities. That
is, as |x − x0| → 0,

G(x,x0) → − 1
2πD

ln |x − x0| in 2D

G(x,x0) → 1
4πD|x − x0| in 3D.

Consequently, an asymptotic expansion of the solution
to a BVP in 3D is in powers of ε, where ε represents the
size of a hole relative to the size of the bulk domain. On
the other hand, the analogous expansion in 2D tends to
be in powers of ν = −1/ ln ε at O(1) in ε. The slower
convergence of ν in the limit ε → 0 can be dealt with
by summing the logarithmic terms non-perturbatively
[45,46]. Note that the only major constraints on the
applicability of the method is that the holes are much
smaller than the size of the domain, and are well sepa-

123



Eur. Phys. J. E           (2024) 47:30 Page 3 of 17    30 

rated from each other and the boundary of the domain.
The latter two constraints can be relaxed, but the anal-
ysis is significantly more difficult.

In this paper, analogous to our previous work on Ost-
wald ripening [42–44], we use the theory of diffusion in
singularly perturbed domains to extend the mean field
analysis of cluster formation in the presence of anchor-
ing sites. This allows us to take into account diffusion-
mediated interactions between the anchored clusters. In
order to highlight the generality of the methods used in
this paper, we also briefly recap the analysis of classi-
cal Ostwald ripening. The structure of the paper is as
follows. In Sect. 2, we begin by presenting the 2D aggre-
gation model introduced in Ref. [25], together with its
mean field formulation. We then consider a 3D ver-
sion of the model. One major difference from the 2D
model is that the recycling of particles can no longer
be interpreted in terms of membrane exo/endocytosis.
Instead, we assume that particles exist in either an
active or inactive state, and can only form clusters in
the active state. One motivation for the 3D model is
a recent study of the optogenetic protein CRY2olig,
which oligomerizes (forms small clusters) in the pres-
ence of blue light [55]. (In this particular study, the
authors explore both theoretically and experimentally
the effects of obstacles on the formation of large 3D
protein clusters via the diffusion-limited aggregation of
oligomers.) We end Sect. 2 by briefly reviewing the cor-
responding mean field treatment of classical Ostwald
ripening.

Since the theory of diffusion in singularly perturbed
domains is probably unfamiliar to the broad statisti-
cal physics community, we provide a detailed overview
of the method in Sect. 3 by considering a simplified
problem in which the holes are of a known fixed size.
We highlight the differences between 2D and 3D dif-
fusion due to the different singularity structure of the
corresponding Green’s functions. As a point of compar-
ison with the clustering model, we briefly indicate how
the asymptotic analysis can be used to determine cor-
rections to the mean field kinetics of droplets during
Ostwald ripening. We then apply the theory in Sects. 4
and 5 to the 2D and 3D clustering models, respectively.
In particular, we derive expressions for the steady-state
particle concentration outside the clusters that depend
on the positions of the various anchor points and the
boundary of the domain. The steady-state cluster sizes
are then obtained by calculating the total flux of parti-
cles at the surface of each cluster.

2 Cluster formation model and the mean
field approximation

In this section, we summarize the 2D diffusion model of
clustering and its mean field approximation, which was
formulated in Ref. [25]. We then show how to extend
the mean field theory to a 3D clustering model, and
briefly describe classical Ostwald ripening.

2.1 Diffusion model of clustering in 2D

Consider a 2D bounded domain Ω ⊂ R
2 containing a set

of N anchoring sites xj ∈ Ω, j = 1, . . . , N , see Fig. 1a.
Suppose that at time t, t ≥ 0, there exists a circularly
symmetric cluster Uj(t) of radius Rj(t) at the jth site,
see Fig. 1b. That is,

Uj(t) = {x ∈ Ω, |x − xj | ≤ Rj(t)}. (2.1)

Let c(x, t), x ∈ Ω, denote the concentration of freely
diffusing particles (monomers), which evolves according
to the diffusion equation

∂c(x, t)
∂t

= D∇2c(x, t) − κ0c(x, t) + I0,

x ∈ Ω\ ∪N
j=1 Uj(t), (2.2a)

D∇c(x, t) · n = 0, x ∈ ∂Ω, (2.2b)
c(x, t) = 0, x ∈ ∂Uj(t). (2.2c)

Here n is the outward unit normal to the surface ∂Ω,
the constant κ0 denotes the recycling or turnover rate
of individual particles outside a cluster, and I0 is the
re-injection flux of recycled particles, see Fig. 1c. We
take the exterior boundary ∂Ω to be totally reflecting so
that the total number of particles (freely diffusing and
clustered) is conserved. Also note that the set notation
A\B means the domain A excluding B, that is, A\B =
A∩Bc where Bc is the complement of B. In particular,
Ω\ ∪N

i=1 Ui, is the domain exterior to the clusters.)
It remains to specify the dynamics of cluster growth.

Let Nj(t) denote the total number of particles within
the jth cluster at time t. It follows from particle con-
servation that

d

dt
Nj(t) = D

∫
∂Uj(t)

∇c(x, t) · njdx − κ0Nj(t),

(2.3)

where nj is the outward unit normal to the surface ∂Uj .
In the case of a uniform density u0 of particles within
a cluster, the number of particles is Nj(t) = |Uj(t)|u0.
For concreteness, we assume that the rate of recycling
within a cluster is also κ0, and that no particles are re-
injected directly into a cluster (as appears to hold for
PSD formation). However, one could consider a more
general model, in which the recycling rates within and
outside clusters differ.

In this paper, we are interested in calculating the
steady-state solution. We proceed by solving the steady-
state version of Eq. (2.2a–c) in terms of the unknown
steady-state radii Rj , j = 1, . . . , N :

D∇2c(x) − κ0c(x) + I0 = 0, x ∈ Ω\ ∪N
j=1 Uj ,

(2.4a)
D∇c(x) · n = 0, x ∈ ∂Ω, (2.4b)

c(x) = 0, x ∈ ∂Uj . (2.4c)

123



   30 Page 4 of 17 Eur. Phys. J. E           (2024) 47:30 

Fig. 1 2D model of diffusion-based protein cluster forma-
tion in the presence of anchoring cites and particle recycling.
a A set of N anchoring sites at positions xj , j = 1, . . . , N ,
in a bounded domain Ω. b Diffusing particles accumulate

at the anchoring sites resulting in the formation of particle
aggregates or clusters Uj . c The clusters are dynamically
maintained by a combination of lateral diffusion outside the
clusters and particle recycling

The radii are then determined self-consistently by
imposing the steady-state version of Eq. (2.2d):

Jj := D

∫
∂Uj

∇c(x) · njdx = κ0u0|Uj | (2.5)

for j = 1, . . . , N , where Jj is the total flux into the
cluster.

For the moment, suppose that each cluster is treated
as a point source/sink. That is, we replace Eq. (2.4) by

D∇2c(x) − κ0c(x) + I0 −
N∑

j=1

Jjδ(x − xj) = 0,

(2.6)

together with the boundary conditions c(xj) = 0,
j = 1, . . . , N . Consider the Neumann Green’s function
G(x,y) for the modified Helmholtz equation, which is
uniquely defined by

D∇2G − κ0G = −δ(x − x′), x,x′ ∈ Ω, (2.7a)
∇G · n = 0 on ∂Ω (2.7b)

for fixed x′. Note that in 2D G can be decomposed as

G(x,x′) = − ln |x − x′|
2πD

+ R(x,x′), (2.8)

where R is the regular (non-singular) part of the
Green’s function. It follows that the formal solution of
Eq. (2.6) is given by

c(x) =
∫

Ω

G(x,x′)

[
I0 −

N∑
k=1

Jjδ(x′ − xk)

]
dx′

= c0 −
N∑

k=1

JkG(x,xk), (2.9)

where c0 = I0/κ0 and we have used the fact that∫
Ω

G(x,x′)dx′ = κ−1
0 .

In principle, the unknown fluxes Jj could now be
obtained by imposing the conditions c(xj) = 0, which
would yield the matrix equation c0 =

∑N
k=1 G(xj ,xk)Jk

for j = 1, . . . , N . However, the Green’s function
G(x,x′) has a logarithmic singularity in the limit x →
x′, so that the diagonal elements G(xj ,xj) = ∞. We
conclude that in 2D one cannot treat the clusters as
point-like objects. (An analogous result holds for 3D
diffusion due to the 1/|x − x′| singularity of the 3D
Green’s function.) This issue was dealt with in Ref. [25]
by considering a mean field approximation as detailed
below. One of the main goals of this paper is to show
how one can analyze the full steady-state Eq. (2.4) using
asymptotic methods that provide a systematic proce-
dure for handling the Green’s function singularities.

2.2 Mean field approximation

The mean field approximation of Ref. [25] involves
coarse-graining the system by treating each cluster as
if it is in a “sea” of uniformly distributed background
clusters. Suppose that all of the clusters have the same
radius R and that the background cluster density is φ0.
Ignoring the effects of the boundary ∂Ω, we can take
the concentration c around a single cluster to be circu-
larly symmetric. The coarse-grained version of Eq. (2.6)
for any individual cluster is then

D∇2c(r) − κ0c(r) + I0 − φ0J(R) = 0, r > R,
(2.10)
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with c(R) = 0 and the flux J(R) into the surface of each
cluster determined self-consistently from the equation

J(R) = 2πRD∂rc(R). (2.11)

This 2D mean-field approximation was analyzed in Ref.
[25]. First, the solution of Eq. (2.10) is given by

c(r) =
(

c0 − φ0J(R)
κ0

)(
1 − K0(r/λ)

K0(R/λ)

)
, (2.12)

where Kν is a modified Bessel function of the second
kind, c0 = I0/κ0, and λ =

√
D/κ0. Substituting the

solution into Eq. (2.11) yields a self-consistency equa-
tion for the flux J(R):

J(R) =
2πRD

λ

(
c0 − φ0J(R)

κ0

)
K1(R/λ)
K0(R/λ)

.

(2.13)

We have used the Bessel identity K ′
0(x) = −K1(x).

Equation (2.13) can be rewritten as an implicit equation
for the cluster radius R by using Eq. (2.5), since J(R) =
πR2κ0u0 [25]:

R

λ
= 2

(
c0

u0
− π

(
R

λ

)2

φ0λ
2

)
K1(R/λ)
K0(R/λ)

. (2.14)

The mean cluster radius R can now be determined
as a function of model parameters by solving Eq.
(2.14) numerically [25]. In anticipation of the subse-
quent asymptotic analysis, suppose φ0πλ2 
 1 (dilute
cluster regime), so that

R

λ
≈ 2c0

u0
f(R/λ), f(R/λ) =

K1(R/λ)
K0(R/λ)

. (2.15)

The solution for R/λ is plotted as a function of the
parameter 2c0/u0 in Fig. 2. It can be seen that if 2c0/u0

is sufficiently small Γ (as assumed in Ref. [25]), then the
mean cluster radius is relatively small. Therefore, we
can exploit the small-z expansions (see inset of Fig. 2)

K0(z) ∼ − ln(z/2) − γc, K1(z) ∼ 1
z
, (2.16)

where γc ≈ 0.5772 is Euler’s gamma constant. Setting
ε2 = 2c0/u0 and R/λ = ερ/λ with ρ/λ = O(1), we thus
find that

(ρ

λ

)2

∼ 1
− ln ε + ln 2 − ln ρ/λ − γc

=
ν

1 + ν (ln 2 − ln ρ/λ − γc)
, (2.17)

where ν = −1/ ln ε. As we highlighted in the intro-
duction, the non-perturbative dependence on the small
parameter ν is a common feature of strongly localized

Fig. 2 Mean-field approximation in the dilute cluster
regime. Plot of non-dimensionalized mean cluster radius
R/λ as a function of 2c0/u0, where c0 is the station-
ary particle concentration away from clusters and u0 is
the particle concentration within a cluster. Inset: Plot of
f(x) = K1(x)/K0(x) as a function of x (solid curve). The
asymptotic approximation of f(x) obtained from Eq. (2.16)
is shown as the dashed curve

perturbations in 2D domains [45]. In Sect. 4 we deter-
mine corrections to the mean-field result (2.17) by solv-
ing the full steady-state Eq. (2.4) in the small clus-
ter limit. These corrections take into account diffusion-
mediated interactions between the clusters as well as
the effects of the boundary ∂Ω.

2.3 3D clustering model

We now turn to the analogous problem of 3D par-
ticle clustering in the presence of anchoring sites
that is maintained out-of-equilibrium by the activa-
tion/deactivation of diffusing particles; particles can
only aggregate in the activated state, see Fig. 3. In par-
ticular, consider the mean field approximation given by
Eq. (2.10) with c(R) = 0 and the flux J(R) into the
surface of each cluster determined self-consistently from
the equation

J(R) = 4πR2D∂rc(R). (2.18)

The solution of Eq. (2.10) in the 3D case is given by

c(r) =
(

c0 − φ0J(R)
κ0

)(
1 − R

r

e−r/λ

e−R/λ

)
. (2.19)

Substituting the solution into Eq. (2.18) yields a self
consistency equation for the flux J(R):

J(R) =
4πR2D

λ

(
c0 − φ0J(R)

κ0

) [
1 +

λ

R

]
.

(2.20)

Equation (2.20) can be rewritten as an implicit equation
for the cluster radius R, since Eq. (2.5) implies that
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Fig. 3 3D model of diffusion-based protein cluster forma-
tion in the presence of anchoring cites and particle activa-
tion/deactivation. a A set of N anchoring sites at positions
xj , j = 1, . . . , N , in a bounded domain Ω. b Diffusing parti-

cles in the activated state accumulate at the anchoring sites
resulting in the formation of particles aggregates or clusters.
c The clusters are dynamically maintained by a combination
of diffusion and activation/deactivation

J(R) = 4πR3κ0u0/3 [25]:

R

λ
= 3

(
c0

u0
− 4π

3

(
R

λ

)3

φ0λ
3

)[
1 +

λ

R

]
.

(2.21)

Finally, suppose that R 
 λ and 4φ0πλ3/3 
 1. Set-
ting R/λ = ερ/λ, we find that

(ρ

λ

)2

=
3c0

ε2u0

[
1 +

ερ

λ

]
. (2.22)

The rescaled radius is O(1) provided that we set u0 =
u0/ε3 and I0 = I0/ε. Hence,

ρ ≈ ρ0

[
1 +

ερ0

2λ

]
, (2.23)

where

ρ0 ≡
√

3λ2c0

u0
. (2.24)

In Sect. 5, we use matched asymptotics to determine
corrections to the mean field result in the small cluster
limit.

2.4 Mean field theory of Ostwald ripening

It is useful to compare the 3D clustering model with the
classical formulation of Oswald ripening during late-
stage liquid-liquid phase separation. Suppose that we
reinterpret Fig. 3 as a 3D domain Ω containing a set of
N liquid droplets Uk, k = 1, . . . , N , that are well sep-
arated from each other and whose total volume frac-
tion is relatively small. The concentration within each
droplet is the high density phase φb, whereas the con-
centration in the bulk domain is the low density phase
φa. The no-flux boundary condition on ∂Ω ensures mass
conservation. Suppose that the coarsening dynamics is
much slower than the equilibration of the concentra-
tion profile in the dilute phase. Under this quasi-static

approximation, the solute concentration φ exterior to
the droplets satisfies a steady-state diffusion equation
of the form

∇2φ = 0, x ∈ Ω\ ∪N
i=1 Ui, ∇φ · n = 0 on ∂Ω,

(2.25a)

and

φ = φa

(
1 +

c

Ri

)
≡ φa(Ri) on ∂Ui. (2.25b)

The boundary condition (2.25b) expresses the Gibbs–
Thomson law due to interfacial tension on the droplet
interface. The quasi-static approximation ensures that
the total volume of condensates is conserved. This
follows from integrating Eq. (2.25a) with respect to
x ∈ Ω\ ∪N

i=1 Ui and using the divergence theorem:

N∑
j=1

∫
Uj

∇φ(x) · ndx = 0. (2.26)

That is, the sum of the fluxes into the N condensates
is zero so that there is no net change in the total con-
densate volume.

In the case of classical coarsening via Ostwald ripen-
ing, the difference in surface concentrations φa(Ri) for
droplets of different sizes results in a net diffusive flux
from small to large droplets. This is illustrated in Fig. 4
for two droplets U1 and U2 with R2 < R1. Under the
mean field approximation, the effects of the boundary
∂Ω and interactions between droplets are ignored by
introducing a constant mean field φ∞ with φ(x) ≈ φ∞
for all x ∈ Ω such that |x−xi| � Ri, i = 1, . . . , N . The
quantity Δ = φ∞ −φa is known as the supersaturation,
and is determined self-consistently from mass conserva-
tion. (In the absence of interfacial tension effects, the
bulk volume fraction would simply be φa and, hence,
Δ = 0.) Under the above assumptions, we can focus on
the concentration outside a single droplet of radius R,
which is analogous to the mean field approximation of
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Fig. 4 Ostwald ripening. Schematic diagram showing the
concentration profile as a function of x along the axis join-
ing the centers of two well separated droplets with different
radii R1 > R2. The solute concentration φa(R1) around
the larger droplet is lower than the concentration φa(R2)
around the smaller droplet, resulting in a net diffusive flux
from the small droplet to the large droplet. Here φ∞ denotes
the mean-field of LSW theory

clustering. Using spherical polar coordinates, we have

0 =
D

r2

∂

∂r

[
r2 ∂φ

∂r

]
, r > R, (2.27)

together with the boundary conditions

φ(R) = φa(R), φ(r) → φ∞ as r → ∞. (2.28)

Hence,

φ(r) = φ∞ − R

r

(
Δ − φac

R

)
, (2.29)

which implies that the diffusive flux entering the droplet
at its interface is

J(R) = Dφ′(R) =
D

R

(
Δ − φac

R

)
. (2.30)

It follows that Rc = φac/Δ is a critical radius such that
J(R) > 0 (J(R) < 0) when R > Rc (R < Rc),which
means that the droplet grows (shrinks) on longer time
scales.

Using a separation of time scales, one can now write
down dynamical equations for the evolution of the
droplet radii. This is driven by the transfer of solute
molecules between the dilute and dense phases as deter-
mined by the flux. When the radius Rj increases by an
amount dRj , the area increases by dAj = 4πR2

jdRj

and the number of molecules required to enlarge the
droplet by an amount dRj is φbdAj (assuming for sim-
plicity that φb � φ(Rj)). These molecules are supplied
by the flux at the interface. One thus finds that

dRj

dt
=

J(Rj)
φb

=
Γ
Rj

(
1

Rc
− 1

Rj

)
, j = 1, . . . , N,

(2.31)

where

Γ =
Dφac

φb
. (2.32)

Multiplying both sides of Eq. (2.31) by R2
j , summing

over j, and imposing conservation of the total droplet
volume Vdrop = 4π

∑
j R3

j (t)/3 gives

Rc(t) =
1
N

N∑
j=1

Rj(t). (2.33)

It follows that

Δ(t) ≡ φ∞(t) − φa =
cφaN∑N
j=1 Rj(t)

. (2.34)

Equation (2.34) implies that φ∞(t) decreases as the
mean radius increases. Since the critical radius Rc(t)
increases as the saturation Δ(t) = φ∞(t)−φa decreases,
it follows that only a single droplet remains in the limit
t → ∞.

As we have discussed in detail elsewhere [42–44],
mean field theory becomes less accurate in the case of
circular droplets in 2D systems, since the concentra-
tion around a droplet varies as lnR rather than R−1,
where R is the distance from the center of the droplet.
Thus, more care must be taken in imposing far-field
conditions, as previously shown for classical Ostwald
ripening [56,57]. Mean field theory also fails to cap-
ture finite-size effects. Corrections to mean field theory
based on asymptotic methods are briefly considered in
Sect. 3.3 for both 2D and 3D droplets.

3 Diffusion in a singularly perturbed
domains

In this section, we review the basic theory of diffu-
sion in singularly perturbed domains by considering the
bounded domain Ω ⊂ R

d with N small interior subdo-
mains Uj , as shown in Fig. 1b for 2D and Fig. 3b for
3D. However, in contrast to the models of clustering
and droplet formation described in Sect. 2, we consider
a simpler steady-state BVP in which the radius Rj of
the subdomain Uj is fixed and is known a priori. Let
c(x) denote the particle concentration exterior to the
subdomains Uj , and suppose that the concentration on
the boundary ∂Uj has a fixed value cj :

∇2c = 0, x ∈ Ω\ ∪N
i=1 Ui, (3.1a)

supplemented by the boundary conditions

n · ∇c = 0 on ∂Ω, c = cj on ∂Uj . (3.1b)

We leave the physical interpretation of Uj open here,
and focus on the mathematical analysis. In classical
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Ostwald ripening, Uj is a liquid droplet, cj = φa(Rj),
and Rj is time-dependent. On the other hand, in
the clustering model, Uj is an anchored cluster whose
radius is determined self-consistently from the interfa-
cial fluxes. We also note that Eq. (2.4) can be rewritten
in a form similar to Eq. (3.1) by performing the shift
c(x, t) → c′(x, t) = c(x, t) − c0 with c0 = I0/κ0. After
dropping the ′ on c′, we have

D∇2c(x, t) − κ0c(x, t) = 0, x ∈ Ω\ ∪N
j=1 Uj(t),

(3.2a)
D∇c(x, t) · n = 0, x ∈ ∂Ω, (3.2b)
c(x, t) = −c0, x ∈ ∂Uj(t). (3.2c)

The basic assumption of the asymptotic method is
that the subdomains Uj are small and well separated.
Fixing the length scale by setting L := |Ω|1/2 = 1,
we then take Rj = ερj with 0 < ε 
 1, |xi − xj | =
O(1) for all j �= i and miny{|xj − y|,y ∈ ∂Ω} = O(1),
j = 1, . . . , N . Under these various conditions, we can
use a combination of matched asymptotics and Green’s
function methods along analogous lines to Refs. [45–54].
More specifically, we construct an inner or local solution
valid in an O(ε) neighborhood of each cluster, and then
match to an outer or global solution that is valid away
from each neighborhood. The general construction is
illustrated in Fig. 5. We now give a detailed description
of the steps of the analysis, first in 2D and then 3D.

3.1 Asymptotic analysis in 2D

(i) Inner solution. The inner solution in a neighborhood
of Uj is defined by introducing the stretched coordinates
y = ε−1(x − xj), replacing the domain Ω by R

2, see
Fig. 5b, and setting Cj(y) = c(xj + εy). One can view
this procedure as zooming into the subdomain Uj and
ignoring the effects of the boundary ∂Ω and the other
subdomains Uk, k �= j. It follows that

∇2
yCj(y) = 0 for y ∈ R

2\Uj , (3.3a)

Cj(y) = cj on |y| = ρj , (3.3b)

which can be expressed in polar coordinates as

1
ρ

d

dρ
ρ
dCj(ρ)

dρ
= 0, ρj < ρ < ∞, Cj(ρi) = cj .

(3.4)

The solution takes the form

Cj(ρ) = cj + Aj ln(ρ/ρj), ρ > ρj , (3.5)

where Ai is some undetermined coefficient. The corre-
sponding solution in the original coordinates is

Cj(x) = cj + Aj ln(|x − xj |/ερj). (3.6)

The coefficients Aj , j = 1, . . . , N , can be determined
by matching the inner solutions with the corresponding
outer solution (see below).
(ii) Outer solution. The outer solution is obtained by
treating Uj as a point source/sink, see Fig. 5c. This is
equivalent to zooming out of the domain Ω. The result-
ing diffusion equation takes the form

∇2c = 0, x ∈ Ω\{x1, . . . ,xN}, (3.7a)
n · ∇c = 0, x ∈ ∂Ω, (3.7b)

together with the matching condition

c ∼ cj +
Aj

ν
+ Aj ln(|x − xj |/ρj), ν = − 1

ln ε
,

(3.7c)

as x → xj . The next step is to introduce the 2D
Neumann Green’s function G0(x,y), which is uniquely
defined by

D∇2G0 =
1

|Ω| − δ(x − y), x ∈ Ω; (3.8a)

n · ∇G0 = 0 on ∂Ω,

∫
Ω

G0dx = 0 (3.8b)

for fixed y. (More precisely, G0 is a modified Green’s
function, since the solution of Laplace’s equation in
a bounded domain Ω with a reflecting boundary ∂Ω
is only defined up to a constant. This is the reason
why there is the additional constant term 1/Ω on the
right-hand side of Eq. (3.8a). Indeed, integrating the
left-hand side of Eq. (3.8a) with respect to x ∈ Ω
and imposing the Neumann boundary condition yields
zero. This is consistent with the right-hand side as∫
Ω
[|Ω|−1 − δ(x − y)]dx = 0. The additional condition∫

Ω
G0dx = 0 determines G0 uniquely. Note that there is

no arbitrary constant in the construction of the Green’s
function G(x,y) of the modified Helmholtz equation,
see Eq. (2.7), where ∇2G0 is replaced by ∇2G − κ0G.)
Finally, note that G0 can be decomposed as

G0(x,y) = − ln |x − y|
2π

+ R0(x,y), (3.9)

where R0 is the regular (non-singular) part of the
Green’s function.

We now make the ansatz

c(x) ∼ c∞ − 2πD
N∑

j=1

AjG0(x,xj) (3.10)

for x /∈ {xj , j = 1, . . . , N} and some constant c∞.
Using the fact that

∫
Ω

G0dx = 0, it follows from Eq.
(3.10) that

c∞ = |Ω|−1

∫
Ω

c(x)dx.
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Fig. 5 Diffusion in a singularly perturbed domain. a Par-
ticles diffuse in a bounded domain Ω containing N small
interior holes or perforations denoted by Uj , j = 1, . . . , N .
The exterior boundary ∂Ω is reflecting, whereas c(x) = cj on
the j-th interior boundary ∂Uj . b Construction of the inner
solution in terms of stretched coordinates y = ε−1(x − xj),
where xj is the center of the j-th hole. The rescaled radius is

ρj and the region outside the hole is taken to be R
d, d = 2, 3,

rather than the bounded domain Ω. c Construction of the
outer solution. Each hole is shrunk to a single point. The
outer solution can be expressed in terms of the correspond-
ing modified Neumann Green’s function and then matched
with the inner solution around each hole

We also observe that for x /∈ {xj , j = 1, . . . , N},

∇2c(x) ∼ −2πD
N∑

j=1

Aj∇2G0(x,xj)

= − 2π

|Ω|
N∑

j=1

Aj .

Hence, the outer solution satisfies the steady-state dif-
fusion equation if and only if

N∑
j=1

Aj = 0. (3.11)

(iii) Matched asymptotics. In order to determine the
N + 1 unknown coefficients, Aj , j = 1, . . . , N and
c∞, we require N + 1 linearly independent conditions.
One of these is given by Eq. (3.11) whereas the others
are obtained from the matching conditions (3.7c). The
outer solution (3.10) shows that as x → xj ,

c(x) → c∞ + Aj ln |x − xj | − 2πDAjR0(xj ,xj)

− 2πD
∑
i�=j

AiG0(xj ,xi). (3.12)

Comparison with the asymptotic limit in Eq. (3.7c)
yields the self-consistency conditions

c∞ − cj =
[

1
ν

− ln ρj + 1 + 2πDR0(xj ,xj)
]

Aj

+ 2πD

N∑
i�=j

AiG0(xj ,xi) (3.13)

for j = 1, . . . , N . This is a matrix equation that can be
inverted to give

Ai = Ai(ν) ≡ ν

N∑
j=1

[1 + 2πνDG0]−1
ij (c∞ − cj) ,

(3.14)

where

G0,jj = R0(xj ,xj) − ln ρj

2πD
and G0,ji = G0(xj ,xi)

(3.15)

for j �= i. It remains to determine the unknown constant
c∞. Imposing the constraint (3.11) on Eq. (3.14) implies
that

c∞ =

⎡
⎣ N∑

i,j=1

Mij

⎤
⎦

−1
N∑

i,j=1

Mijcj . (3.16)

where

M = [1 + 2πνDG0]−1. (3.17)

Finally, note that the solution (3.14) is a non-
perturbative function of the small parameter ν. This
was achieved by matching the inner and outer solu-
tions using Green’s functions along the lines originally
developed in Refs. [45,46]. This effectively sums over
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the logarithmic terms, which is equivalent to calculat-
ing the asymptotic solution for all terms of O(νk) for
any k. Obtaining a non-perturbative solution is impor-
tant, since ν → 0 much more slowly than ε → 0, and
is a characteristic feature of diffusion problems in 2D
singularly perturbed domains.

3.2 Asymptotic analysis in 3D

The analysis in 3D is based on an asymptotic expansion
with respect to ε rather than ν. The outer solution is
expanded as

c(x) ∼ c∞ + εc1(x) + ε2c2(x) + . . . (3.18)

with

D∇2c�(x) =0, x ∈ Ω\{x1, . . . ,xN}, (3.19a)
∇c�(x) · n = 0, x ∈ ∂Ω, (3.19b)

for  = 1, 2. . . ., together with certain singularity con-
ditions as x → xj , j = 1, . . . , N . The latter are
determined by matching to the inner solution. In the
inner region around the j-th cluster, we again intro-
duce the stretched coordinates y = ε−1(x−xj) and set
Cj(y) = c(xj + εy). Expanding the inner solution as

Cj(y) = Cj,0(y) + εCj,1(y) + . . . , (3.20)

we have

∇2
yCj,� = 0, y ∈ R

3\Uj (3.21)

Cj,�(y) = cjδ�,0, y ∈ ∂Uj . (3.22)

Finally, the matching condition is that the near-field
behavior of the outer solution as x → xj should agree
with the far-field behavior of the inner solution as |y| →
∞, which is expressed as

c∞ + εc1(x) + ε2c2(x) ∼ Cj,0(x) + εCj,1(x) + . . .

(3.23)

In particular, note that the far-field behavior of Cj,�

determines the near-field behavior of cj,�+1 so we alter-
nate between the inner and outer solutions during
matching.

First Cj,0 ∼ c∞ as |y| → ∞ so that we can set

Cj,0(y) = cjw(y) + c∞(1 − w(y)), (3.24)

with w(y) satisfying the boundary value problem

∇2
yw(y) = 0, y ∈ R

3\Uj ; w(y) = 1, y ∈ ∂Uj ,

w(y) → 0 as |y| → ∞. (3.25)

This is a well-known problem in electrostatics and for
a spherical subdomain has the exact solution

w(y) =
ρj

ρ
. (3.26)

(See the discussion for the generalization to non-
spherical shapes.) The matching condition (3.23) then
implies that c1(x) satisfies Eq. (3.19) together with the
singularity condition

c1(x) ∼ − [c∞ − cj ]ρj

|x − xj | as x → xj .

It follows that the solution can be written as

c1(x) = −4πD
N∑

k=1

ρk[c∞ − ck]G0(x,xk), (3.27)

where G0 is the 3D version of the Green’s function
defined in Eq. (3.8). In particular, the 3D Green’s func-
tion has the singularity structure

G0(x,x′) =
1

4πD|x − x′| + R0(x,x′). (3.28)

Note that for x /∈ {xj , j = 1, . . . , N},

∇2c1(x) ≈ −4π

N∑
i=1

ρi[c∞ − ci]∇2G0(x,xi)

= − 4π

|Ω|
N∑

i=1

ρi[c∞ − ci]

Hence, the O(ε) term in the expansion of the outer solu-
tion satisfies the steady-state diffusion equation if and
only if

∑N
i=1 ρi[c∞ − ci] = 0, which can be rearranged

to show that the mean field

c∞ =
∑N

i=1 ρici∑N
i=1 ρi

. (3.29)

Next we match the far-field behavior of Cj,1(y) with
the near-field behavior of c1(x) around Uj , which takes
the form

c1(x) ∼ [cj − c∞]ρj

|x − xj | + [cj − c∞]χj , (3.30)

with

χj = 4πDρjR(xj ,xj) + 4πD
N∑

k �=j

ρkG0(xj ,xk).

(3.31)

It follows that the solution of Eq.(3.21) for  = 1 is

Cj,1(y) = −[c∞ − cj ]χj(1 − w(y)), (3.32)
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with w(y) given by Eq. (3.25). Hence, c2 satisfies Eq.
(3.19) supplemented by the singularity condition

c2(x) ∼ [c∞ − cj ]χjρj

|x − xj | as x → xj .

Following along identical lines to the derivation of c1(x),
we obtain the result

c2(x) = 4πD

N∑
k=1

[c∞ − ck]χkρkG0(x,xk). (3.33)

In conclusion, the outer solution takes the form

c(x) ∼ c∞−4πD
N∑

k=1

[c∞−ck]ρk(1−εχk)G0(x,xk),

(3.34)

while the inner solution around the j-th cluster is

Cj(ρ) ∼ c∞−(c∞−cj)
(

ρj

ρ
+ εχj

(
1− ρj

ρ

))
.

(3.35)

3.3 Droplet kinetics during Ostwald ripening

The asymptotic expansions derived in Sects. 3.1 and
3.2 can be applied directly to the classical model of
Ostwald ripening described in Sect. 2.4. First, we set
c(x) = φ(x), c∞ = φ∞, and take

cj = φa(Ri) ≡ φa

(
1 +

c

Ri

)
. (3.36)

It follows that

c∞ − cj = Δ − cφa

Ri
, (3.37)

where Δ = φ∞ − φa is known as the supersaturation.
Given the choice of scaling with Rj = ερj we also
assume that c = ε′

c.
Let us begin with the simpler case of 3D droplets

considered in Sect. 3.3. Equation (2.31) still holds under
the identification

J(Ri) =
D

ε
Φ′(ρi) (3.38)

where Φ(ρi) is the inner solution obtained from Eq.
(3.35) for a spherical droplet:

Φj(ρ) ∼ c∞ −
(

Δ − ′
cφa

ρj

)(
ρj

ρ
+ εχj

(
1 − ρj

ρ

))

(3.39)

for ρ > ρj and χj given by Eq. (3.31). The supersatu-
ration Δ is determined from Eq. (3.29), which yields

Δ =
′
cφaN∑N
j=1 ρj

=
cφaN∑N

j=1 Rj

. (3.40)

We thus recover the classical result (2.34). This is not
surprising, in the sense that Eq. (3.29) reflects conser-
vation of the total droplet volume. Finally, substituting
for J(Ri) into the kinetic Eq. (2.31) with Rj = ερj gives

ε2
dρj

dt
=

DΦ′(ρj)
φb

=
D

φbρj

(
Δ − ′

cφa

ρj

)
(1 − εχj)

=
Γ
ρj

(
1
ρc

− 1
ρj

)
(1 − εχj) (3.41)

for j = 1, . . . , N , where

Γ =
Dφa′

c

φb
, ρc =

1
N

∑
j=1

ρj . (3.42)

This establishes how the asymptotic analysis generates
corrections to the mean field droplet kinetics.

In the case of 2D droplets, there is no mean field limit.
However, we can still use the asymptotic analysis to
derive kinetic equations for the droplet sizes. The inner
solution (3.6) near the j-th droplet takes the form

Φj(ρ) ∼ φa

(
1 +

′
c

ρj

)
+ ν

(
Δ − φa′

c

ρj

)
ln(ρ/ρi).

(3.43)

For the sake of illustration, we have expanded the coef-
ficient Ai in Eq. (3.14) to leading order in ν. The anal-
ogous expansion of the condition (3.16) with Mij ∼
δi,j + O(ν) shows that to leading order in ν,

Δ ∼ 1
N

N∑
i=1

φa

ρi
=

φa

ρharm
, (3.44)

where ρharm is the harmonic mean [42,57]

1
ρharm

=
1
N

N∑
j=1

1
ρj

. (3.45)

This establishes one major difference from 3D, where
Δ is given by the inverse of the arithmetic mean of the
radii, see Eq. (3.40).

Given the quasi-static solution for the concentra-
tion, we can now write down a dynamical equation for
the rate of change of the size of each circular droplet
along analogous lines to the 3D case. When the radius
Ri increases by an amount dRi, the area increases by
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dAi = 2πRidRi and the number of molecules required
to enlarge the droplet by an amount dRi is φbdAi

(assuming for simplicity that φb � φ(Ri)). These
molecules are supplied by the flux at the interface.
Hence, we have

ε2
dρi

dt
=

D

φb
Φ′

i(ρi) ≈ D

φb

ν

ρi

(
Δ − φa

ρi

)
. (3.46)

In contrast to 3D, there is no O(1) contribution on the
right-hand side, reflecting the breakdown of mean field
theory.

4 Asymptotic analysis of the 2D clustering
model

In order to apply the theory developed in Sect. 3.1, we
use the version of the clustering model given by Eq.
(3.2). It follows that Eq. (3.1a) becomes ∇2c − κ0c =
0 while the boundary condition (3.1b) still holds with
cj = −c0 for all j. First, consider the inner equation.
Introducing stretched coordinates around Uj , we have
in polar coordinates

1
ρ

d

dρ
ρ
dCj(ρ)

dρ
− ε2κ0Cj(ρ) = 0, ρ > ρj ,

(4.1a)
Cj(ρi) = −c0. (4.1b)

Since we are only working to leading order in ε (but to
all orders in ν), we can drop the ε2κ0Cj term, which
recovers the inner problem given by Eq. (3.4). Hence,
the inner solution is

Cj(ρ) = −c0 + Aj ln(ρ/ρj), ρ > ρj . (4.2)

The corresponding outer equation takes the form

D∇2c(x) − κ0c(x) =0, x ∈ Ω\{x1, . . . ,xN},
(4.3a)

∇c(x) · n = 0, x ∈ ∂Ω, (4.3b)

together with the matching condition

c(x) ∼ Aj

ν
+ Aj ln(|x − xj |/ρj) (4.3c)

as x → xj . The outer solution (3.10) becomes

c(x) ∼ −2πD

N∑
j=1

AjG(x,xj) (4.4)

for x /∈ {xj , j = 1, . . . , N} where G(x,y) is the Green’s
function of the modified Helmholtz equation, see Eq.

(2.7). Using the identity
∫
Ω

G(x,x′)dx = 1/κ0 we see
from Eq. (4.4) that

∫
Ω

c(x)dx ∼ −2πD

κ0

∑
j=1

Aj . (4.5)

We can now determine the unknown coefficients Aj ,
j = 1, . . . , N , by matching the inner and outer solutions
along identical lines to Sect. 3.1. We thus obtain the
solution

Ai = Ai(ν) ≡ νc0

N∑
j=1

[1 + 2πνDG]−1
ij , (4.6)

with

Gjj = R(xj ,xj) − ln ρj

2πD
, Gji = G(xj ,xi) (4.7)

for j �= i. In order to calculate the coefficients Ai(ν)
we need to obtain accurate numerical or analytical
approximations of the Green’s function for the mod-
ified Helmholtz equation and inverting the matrix in
E. (4.6). This particular issue has been addressed by
Lindsay et al. [53], whose results can be applied to the
current problem. An important step in the evaluation
of the Green’s function is to decompose G as the sum
of the free-space Green’s function and a regular part:

G(x,x′) =
1

2πD
K0 (|x − x′|/λ) + R̂(x,x′), (4.8)

where λ =
√

D/κ0, K0 is the modified Bessel function
of the second kind and R̂ is non-singular at x = x′. It
can be shown that for |x − x′| = O(1) and sufficiently
small λ, the boundary contributions to R̂ are exponen-
tially small. (If we ignore boundary effects, then the
fundamental length scale is given by λ.) This allows us
to write

G(x,x′) ∼ 1
2πD

K0 (|x − x′|/λ) , x �= x′,

R̂(x′,x′) ∼ 1
2πD

(ln λ + ln 2 − γc) .

Substituting these approximations into Eq. (4.6) implies
that

Aj(ν) ∼ νc0

1 + ν (ln 2 − ln ρj/λ − γc)

N∑
k=1

[K(ν)−1]jk,

(4.9)

where

[K(ν)]jk = δj,k +
νK0(|xj − xk|/λ)[1 − δj,k]
1 + ν (ln 2 − ln ρj/λ − γc)

.

(4.10)
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Fig. 6 Pair of clusters of radius ρ given by the solution to
the non-perturbative Eq. (4.15). The radius ρ is plotted as a
function of cluster separation ξ for different values of ε with
ε2 = 2c0/u0. In the limit ξ → ∞ we recover the mean-field
results

The asymptotic analysis has yielded an inner solution
around each cluster that is expressed in terms of the
unknown radii ρj , j = 1, . . . , N . The latter are now
determined self-consistently by imposing the conditions
(2.5), which in 2D reduces to the implicit equations

2πρjD
Aj(ν)

ρj
= ε2κ0u0πρ2

j , j = 1, . . . , N. (4.11)

Substituting for Aj(ν) using Eq. (4.9) and noting that
u0 = 2c0/ε2 yields

(ρj

λ

)2

∼ ν

1+ν (ln 2−ln ρj/λ−γc)

N∑
k=1

[K(ν)−1]jk.

(4.12)

The first factor on the right-hand side of Eq. (4.12)
recovers the mean field Eq. (2.17). The second factor
is the correction to mean field theory that involves
diffusion-mediated interactions between the anchor
points.

As a simple illustration consider a pair of clusters
with spatial separation ξ = |x1 − x2|. If we ignore the
effects of the exterior boundary, then both clusters have
the same radius ρ1 = ρ2 = ρ. The matrix K and its
inverse are then simply

K(ν) =
(

1 Γ(ν, ξ)
Γ(ν, ξ) 1

)
, (4.13a)

K(ν)−1 =
1

1 − Γ(ν, ξ)2

(
1 −Γ(ν, ξ)

−Γ(ν, ξ) 1

)
,

(4.13b)

where

Γ(ν, ξ) =
νK0(ξ/λ)

1 + ν (ln 2 − ln ρ/λ − γc)
. (4.14)

It follows that ρ is the solution to the implicit equation

(ρ

λ

)2

∼ ν

1 + ν (ln 2 − ln ρ/λ − γc)
1

1 + Γ(ν, ξ)
.

(4.15)

In Fig. 6, we plot the numerical solution of Eq. (4.15)
as a function of the cluster separation ξ for ε2 = 0.01,
ε2 = 0.025 and ε2 = 0.05. The mean-field solution is
recovered in the limit ξ → ∞. It can be seen that the
non-perturbative corrections to mean-field theory are
significant.

5 Asymptotic analysis of the 3D clustering
model

Following the mean field analysis of the 3D model in
Sect. 3.2, we introduce the rescalings I0 = I0/ε and
c0 = c0/ε with c0 = I0/κ0. Again, we use the version of
the clustering model given by Eq. (3.2). It follows that
Eq. (3.1a) becomes ∇2c − κ0c = 0 while the boundary
condition (3.1b) still holds with cj = −c0/ε for all j.
The outer solution is now expanded as

c(x) ∼ c1(x) + εc2(x) + . . . (5.1)

with

D∇2c�(x) − κ0c�(x) =0, x ∈ Ω\{x1, . . . ,xN},
(5.2a)

∇c�(x) · n = 0, x ∈ ∂Ω, (5.2b)

together with singularity conditions as x → xj , j =
1, . . . , N . In the inner region around the j-th cluster, we
again introduce the stretched coordinates y = ε−1(x −
xj) and set Cj(y) = c(xj + εy). Expanding the inner
solution as

Cj(y) =
Cj,0(y)

ε
+ Cj,1(y) + . . . , (5.3)

we find that

∇2
yCj,� = 0,  = 0, 1, (5.4a)

∇2
yCj,� = κ0Cj,�−2,  ≥ 2, y ∈ R

3\Uj (5.4b)

Cj,�(y) = −c0δ�,0, y ∈ ∂Uj . (5.4c)

Finally, the matching condition is that the near-field
behavior of the outer solution as x → xj should agree
with the far-field behavior of the inner solution as |y| →
∞, which is expressed as

c1 + εc2 ∼ Cj,0

ε
+ Cj,1 + . . .

The iterative matching of the inner solution for  =
0, 1 with the outer solution proceeds along identical
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lines to Sect. 3.2 with the Green’s function G0(x,y)
replaced by G(x,y). Hence, we only summarize the
results. The outer solution takes the form

c(x) ∼ −4πc0D
N∑

k=1

ρk(1 − εχk)G(x,xk), (5.5)

while the inner solution around the j-th cluster is

Cj(ρ) ∼ c0

[
1
ε

− χj + O(ε)
] (

1 − ρj

ρ

)
. (5.6)

The final step is to determine the unknown radii ρj ,
j = 1, . . . , N , by imposing the conditions (2.5), which
in 3D reduces to the implicit equation

4περ2
jDc0

[
1
ε

− χj + O(ε)
]

1
ρj

= ε3κ0u0

4πρ3
j

3
.

(5.7)

Setting u0 = u0/ε3 then yields

ρ2
j =

3λ2c0

u0

[
1 − εχj + O(ε2)

]
. (5.8)

The O(1) contribution recovers the mean field result
(2.23) whereas the O(ε) coefficient χj , see Eq. (3.31),
is the correction to mean field theory that involves
diffusion-mediated interactions between the clusters.
It follows that keeping the O(ε) term results in an
implicit equation for the radii, which can also be solved
perturbatively. Introducing the series expansion ρj =
ρ
(0)
j + ερ

(1)
j + O(ε2), we have

ρ
(0)
j = ρ0 ≡

√
3λ2c0

u0
, (5.9)

and

ρ
(1)
j = −2πρ2

0D

(
R(xj ,xj) +

N∑
k �=j

G(xj ,xk)
)

.

(5.10)

As a simple example, consider the 3D configuration
shown in Fig. 7. The domain Ω is taken to be a sphere
of radius R0 with one cluster at the origin, x1 = 0 :=
(0, 0, 0) and the other at x2 = ξ := (ξ, 0, 0) with 0 <
ξ < R0. The 3D Neumann Green’s function for the
modified Helmholtz equation in the sphere is known
explicitly [59]:

G(x,x′) =
e−|x−x′|/λ

4πD|x − x′| − Gsp(x,x′), (5.11)

Fig. 7 Pair of spherical clusters in a sphere of radius R0.
The first sphere is at the origin and the other is at a radial
distance ξ from the center

Fig. 8 Plots of the multiplicative factors Fj(ξ) defined in
Eq. (5.18) as a function of radial separation ξ for the config-
uration shown in Fig. 7. The radius of the spherical domain
Ω is R0 = 5λ

with

Gsp(x,x′) =
1

4πDλ

∞∑
n=0

(2n + 1)Pn(cos θ)
k′

n(R0/λ)
i′n(R0/λ)

× in(|x|/λ)in(|x′|/λ). (5.12)

Here Pn is a Legendre polynomial, x · x′ = |x||x′| cos θ,
and in, kn are modified spherical Bessel functions,

in(x) =
√

π

2x
In+1/2(x), kn(x) =

√
2

πx
Kn+1/2(x).

(5.13)

The regular part of the Green’s function is

R(x,x) = − 1
4πDλ

− Gsp(x,x). (5.14)

Using the identities

i0(x) =
sinh x

x
, k0(x) =

e−x

x
, in(0) = 0, n > 0,

(5.15)
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we see that

G(0, ξ) =
1

4πDλ

[
e−ξ/λ

ξ/λ
− k′

0(R0/λ)
i′0(R0/λ)

i0(ξ/λ)
]

.

(5.16)

Further useful identities are

(2n + 1)i′n = nin−1 + (n + 1)in+1,

−(2n + 1)k′
n = nkn−1 + (n + 1)kn+1.

Equations (5.9) and (5.10) imply that

ρ1 = ρ0 + 2πεDρ2
0

(
1

4πDλ
+ Gsp(0,0) − G(0, ξ)

)
,

(5.17a)

ρ2 = ρ0 + 2πεDρ2
0

(
1

4πDλ
+ Gsp(ξ, ξ) − G(0, ξ)

)
.

(5.17b)

It is convenient to rewrite these equations in the form

ρj − ρ0

ρ0
= ε

ρ0

λ
Fj(ξ/λ), j = 1, 2. (5.18)

The functions Fj(ξ) are plotted in Figs. 8 for R0 = 5λ.
A number of observations can be made. (i) When the
clusters are well separated, the radius of the first cluster
approaches the mean-field value (2.23) since F1(ξ) ≈
1/2. (ii) Away from the boundary, ξ < R0, the two
clusters have approximately the same radius, which
is less than the mean-field value since Fj(ξ) < 1/2.
However, as the second cluster approaches the bound-
ary, its radius exceeds the mean-field value, that is,
F2(ξ) > 1/2. (iii) For sufficiently small ξ, we have
Jj(ξ) < 0 so that ρj < ρ0.

6 Discussion

In this paper, we used the theory of diffusion in sin-
gularly perturbed domains to calculate corrections to
the mean field theory of 2D and 3D models of par-
ticle clustering in the presence of anchoring sites. We
used matched asymptotics and Green’s function meth-
ods to derive implicit equations for the stationary clus-
ter sizes given by Eqs. (4.12) and (5.8), respectively.
The main result is that diffusion-mediated interactions
between the clusters generate corrections to the mean-
field average radius that depend on the positions of all
the anchoring sites and the exterior domain boundary
∂Ω. We illustrated the theory in the simple case of a pair
of clusters, where we explored how the radii depended
on cluster separation. We showed that corrections to
mean field theory can be significant, particularly in 2D.

In future work, it would be interesting to consider
configurations involving a large number of randomly
distributed anchoring points. The numerical solutions

for the radii could then be compared with detailed
particle-based simulations in order to determine to
what extent mean field corrections contribute to the
distribution of cluster sizes. In Ref. [25], the distribu-
tion of cluster sizes was investigated by considering sta-
tionary solutions of a set of non-spatial Smoluchowski
coagulation equations describing the aggregation of dif-
fusing particles outside of the anchored domains. Such
effects were incorporated into the mean-field model by
introducing a typical radius Rtyp and a typical diffu-
sivity Dtyp of diffusing clusters. Equations (2.10) and
(2.11) were modified accordingly [25]:

Dtyp∇2c(r) − κ0c(r) + I0 − φ0J(R∗) = 0 (6.1)

for r > R∗, where R∗ = R + Rtyp is the effective radius
at which diffusing and anchored clusters fuse, c(R∗) =
0, and (in the 2D case)

J(R∗) := 2πR∗Dtyp∂rc(R∗) = 4πR2κ0φ0. (6.2)

These modifications yielded mean field estimates for
the average cluster size that were more consistent with
the distribution of cluster sizes obtained using the rate
equations. However, ideally one would like to account
for the cluster size distribution using a fully spatial
model. The asymptotic methods used in this paper
provide a framework for achieving this. For example,
one can incorporate Dtyp and Rtyp into the analysis of
Sects. 4 and 5 by taking D → Dtyp, λ → √

Dtyp/κ0,
R∗

j = ερj and Rj = ε(ρj − ρtyp). A more difficult chal-
lenge is extending the theory to a fully spatial Smolu-
chowski coagulation model with anchoring points.

One natural generalization of the model given by Eq.
(2.2) would be to modify the absorbing boundary con-
dition on the surface of each cluster. For example, we
could replace the Dirichlet boundary condition c(x) = 0
by the Robin boundary condition D∇c(x)·nj = κ0c(x)
for x ∈ ∂Uj , where κ0 is the surface reactivity. (The
analysis of diffusion in domains with partially absorbing
traps has been analyzed elsewhere within the context
of narrow capture problems [60].)

As originally shown by Ward and Keller [45] within
the context of 2D and 3D eigenvalue problems, it is pos-
sible to generalize the asymptotic analysis presented in
this paper to more general cluster shapes such as ellip-
soids by applying classical results from electrostatics.
For example, given a general shape Uj ⊂ R

3, the solu-
tion w(y) to Eq. (3.25) has the far-field behavior

w(y) ∼ Cj

|y| +
Pj · y
|y|3 + . . . as |y| → ∞. (6.3)

Here Cj is the capacitance and Pj the dipole vector
of an equivalent charged conductor with the shape Uj .
(For a sphere, Cj = ρj and Pj = 0.) It turns out that
the O(ε) and O(ε2) contributions to the inner solution
only depend on Cj so that the various results of Sect.
3.2 still hold on making the replacements ρj → Cj for
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j = 1, . . . , N . Similarly, in 2D one can deal with non-
circular shapes by setting νj = −1/ ln εdj with dj the
associated logarithmic capacitance.

An implicit assumption of our analysis was that the
non-equilibrium steady-state solution consisting of mul-
tiple clusters is dynamically stable. This is consistent
with detailed particle-based simulations of cluster for-
mation in the presence of anchoring sites provide strong
evidence that multi-cluster states are stable and that
analytical approaches capture how cluster sizes depend
on the density of anchoring sites, for example, [25].
Moreover, it should be possible to establish stability
by extending the analysis of a singularly perturbed dif-
fusion problem that arises in a model of quorum sensing
[58].

Finally, another interesting open problem is to con-
sider the transient formation of clusters and time-
dependent processes that occur by possibly solving the
full time-dependent model (2.2), rather than the time-
independent version. So far the techniques of diffusion
with strongly localized perturbations have mainly been
applied to steady-state problems, with a few exceptions
in the narrow capture literature where one typically
works in Laplace space. The examples of protein clus-
tering and Ostwald ripening suggest that it would be
valuable to develop asymptotic methods where dynam-
ical effects are important to understand.
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