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Abstract To gain insights into the mechanisms of free surface oscillation in a rotating mixing container,
we observe the free surface deformation and measure the torque acting on the bar. The container was
half-filled with liquids. Periodic surface oscillation occurs. At the rotational speed where the amplitude of
the oscillation reaches its maximum, the time-averaged torque also takes the local maximum values. To
account for the sloshing mechanism, an equation of motion is derived using the Lagrangian mechanics;
we found that the sloshing occurs when the collision frequency of bar on the surface is consistent with
the natural frequency of the system and the damping coefficient is sufficiently smaller than unity. The
time-averaged torque increases when the sloshing becomes violent. We conclude that the hydrodynamics
of oscillation is successfully modeled using point-mass mechanics, and thus we can reasonably capture the
rotation speed at which violent oscillation occurs.

1 Introduction

The free surface in the moving container exhibits a
drastic deformation. Several configurations are possible
subjects for industrial facilities, including two immisci-
ble fluids such as stirrer reactors [1–3], coating equip-
ment [4–7], and food blenders [8]. Although the flow in
the gap between the concentric double cylinders, i.e., a
Taylor–Couette system, is a simple axisymmetric sys-
tem, the gas-liquid two-phase mixture exhibits a non-
axisymmetric flow pattern owing to the gravitational
force [9] unless the rotor rotates around the vertical
axis at relatively low rotation speed [8]. Two-immiscible
fluids at rest are stratified by gravity: a light gas layer
forms above, while a heavy liquid layer forms below.
As a result of an advancing interface driven by fluid
motion, which usually involves complex phenomena of
hydrodynamic instabilities or free boundary turbulence,
bubbles or droplets form therein, and strong shear also
leads to the generation of an emulsion [4].

Gas-liquid two-phase flows normally appear in a vehi-
cle power train and are related to power loss, which is
categorized into windage and churning (splash) losses
[10]. Windage loss is relevant to airflow and becomes
significant in high-speed gears. Churning loss is related
to the mixing of the gas-liquid phase in an oil-bath
and accounts for most of the losses in low-speed gears
[11]. Bubbles or droplets are continuously generated by
the penetration of a non-axisymmetric mechanical com-
ponent (e.g., crankshaft and differential gear) into the
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other phase. These components are partially dipped in
an oil-bath; their motion causes oil splash and plays a
major part in lubrication as well as by an oil-jet [12–
14]. In oil-jet lubrication, the position and flow rate can
be designed to maximize lubrication and heat transfer.
However, dip-lubrication is a passive method; gas-liquid
distribution is given by the interplay among centrifu-
gal, gravity, viscous, and surface tension forces in fluids
driven by moving bodies. In such power trains, rotat-
ing motions of a non-axisymmetric body impose peri-
odic forcing, which causes violent waves on a gas-liquid
interface [15–18]; this is called ‘sloshing’. This unsteady
motion of the free surface causes mechanical damage.
For this reason, the interior shape of a crankcase or
oil-sump is important for suppressing sloshing and con-
trolling the oil distribution. The fluid motion also varies
the power loss during mixing; thus, for safe and effi-
cient operations, estimating the flow pattern and con-
trolling the flow to the desired destination a priori to its
manufacture is usually required. However, because such
mixing facilities consist of complex mechanical compo-
nents, the details of the fluid motion and energy loss are
not fully understood. Resonant free-surface flows have
been the focus of extensive research on sloshing in tanks
[15,16]. The sloshing strongly interacts with the inter-
nal structures of a tank such as stiffeners, baffles, inte-
rior pipes, and pump towers. The stirrer drives liquid
and also causes impulsive force when it collides with the
free surface; and thus a periodic forcing is imposed on
the system. During this time, the stirring body also acts
as a swash bulkhead or baffle which suppresses sloshing.
The orientation of stirring body varies with its rotation;
therefore, the sloshing characteristics change over time.
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Furthermore, in mixing facilities, the bubbles modify
the liquid viscosity [19] and the foam usually mitigates
sloshing waves [20]. Due to these complex natures of
fluid motion in mixing facilities, it is nontrivial what
is an appropriate parameter to characterize the power
loss in two-phase mixing.

To address the sloshing behavior which is particu-
larly relevant to churning power loss, we introduce a
simple two-phase mixing facility which allow the visual
observation of the fluid motions such as generations of
bubble/droplet and motion of free surface owing to the
penetration of a solid into the other phase. Our objec-
tive is to derive important concepts of sloshing mechan-
ics in a rotating mixing facility, in which a stirrer rotates
around the horizontal axis. We performed experiments
on the gas-liquid distribution and measured the torque
acting on a rotating bar. We classified the flow patterns
and found that the sloshing commences at a moderate
rotation speed. The magnification of the time-averaged
torque negatively correlates with the kinematic viscos-
ity of the fluid. Suppose that a system consists of a
pendulum [21,22], the Lagrangian equations are used
to investigate the motion of the free surface and torque.
We successfully capture that the sloshing occurs when
the frequency of bar collisions on the free surface is con-
sistent with the natural frequency of the system and the
damping coefficient is sufficiently smaller than unity.

2 Experimental setup

2.1 Experimental apparatus

We conduct experiments using a mixing apparatus com-
prising a non-axisymmetric stirring bar, which rotates
around the horizontal axis, and stationary cylindrical
casing, as shown in Fig. 1. The rotating object has
two stirring bars with radius Ri = 100mm, width
W = 50mm, and thickness D = 10, 15, 20, 25, 30mm.
For a typical case, we restrict ourselves to introduce
the system comprising the two stirring bar. The cas-
ing with inner radius Ro = 109.5mm and depth of
H = 40mm is made of transparent plexiglass to allow
visualizing the motion of the gas-liquid interface. Tap
water and silicone oil at a kinematic viscosity of ν =
1, 10, 30, 50mm2/s and density of ρ ≈ 1000 kg/m3 are
used as test fluids, and these temperatures are main-
tained at 24 ± 3 ◦C which is measured by thermocou-
ples. The kinematic viscosity of the test fluids strongly
depends on temperature. From our preliminary mea-
surements of the relationship between kinematic viscos-
ity and temperature, the changes in the physical prop-
erties are estimated to be smaller than 9%. The physical
properties of the test fluid are listed in Table 1. The cas-
ing is half-filled with the test fluid. The x and y axes
are set along the horizontal and vertical directions; and
the z axis is set along the rotating axis of the bar. Note
that θ denotes the angle of the stirring bar from the
vertical position; and Θ denotes the angle of the free
surface from the horizontal position. The stirring bars

Fig. 1 Schematic outline of the experimental configura-
tion. The rotating bar is half immersed in working fluid:
tap water or silicone oil

Table 1 Physical properties of test fluids at 25 ◦C

Density Kinematic viscosity

ρ (kg/m3) ν (mm2/s)

Tap water 997 0.9
KF-96-10cs 932 10
KF-96-30cs 952 30
KF-96-50cs 957 40

are driven by a speed control motor via a torque meter;
its rotation speed Ω ranges in 5 rpm ≤ Ω ≤ 800 rpm.
We run the experiments at a constant rotation speed
using feedback control.

2.2 Measurement systems

To investigate the effect of rotation speed on the fluid
motion and torque acting on the stirring bars, we use
a data acquisition computer (DAQ-PC), which allows
the simultaneous measurement of temporal variations
in the rotation speed Ω, torque T , temperature of the
test fluid, and the gas-liquid distribution, as shown in
Fig. 2a. The optically visualized gas-liquid distribution
is captured using a high-speed video camera; in this
configuration, we can visualize the gas-liquid distribu-
tion projected on the x–y plane. We conduct this simul-
taneous measurement over ten rotations and obtain the
time-averaged value · · ·, phase-averaged value ˆ· · ·, and
power spectrum ˜· · · of the measured values. The phase
average gives the ensemble average over the conditional
samples at a given phase of Δθ = 2π/100.

To measure the natural frequency of the liquid in the
system, we also observe the impulse response of liq-
uid motion. Fig. 2b shows a schematic outline of the
impulse response measurement. The mixing apparatus
is mounted on a linear electric sliding actuator, in which
the stirring bar is fixed at an intended angle. The casing
is initially fixed; the linear actuator translates the appa-
ratus at a slow acceleration and stops it immediately;
and the liquid sloshes due to this sudden deceleration.
To probe the time response of the interface motion at a
fixed position, we use the temporally expanded image
extracted at the middle of the gap between the bar tip
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Fig. 2 Schematic outlines of measurement setup: a for torque T and surface height h and b for dynamic characteristics
in viscous-damping oscillation from h. c An example of a temporally expanded image

Fig. 3 Flow pattern for a various rotation speeds Ω at D = 10mm and ν = 1.0 mm2/s, b various bar thicknesses D at
Ω = 50 rpm and ν = 1.0 mm2/s, and c various kinematic viscosities ν at D = 10 mm and Ω = 50 rpm

and casing x = −(Ri + Ro)/2; a column of pixels is
extracted from each frame as shown in Fig. 2c, and the
gas-liquid interface is detected using the edge detection
method [23]. This measurement enables us to observe
the impulsive motion of the liquid in the housing and
to evaluate the effect of the bar angle.

3 Results and discussion

3.1 Flow pattern

We observe the liquid phase distribution at various
rotation speeds Ω, bar thickness D, and kinematic vis-
cosity ν as shown in Fig. 3. Note that, on the basis
of Ω = 50 rpm, D = 10mm, and ν = 1.0mm2/s,
one parameter is varied whereas the others are main-
tained constant. Firstly, from Fig. 3a, we find that the
flow pattern (i.e., the distribution of the liquid phase)
changes drastically and depends on the rotation speed
Ω. For sufficiently low rotation speed Ω ≤ 20 rpm,
gas and liquid phases are completely stratified owing
to the difference in gas-liquid densities: light gas layer
forms above, while heavy liquid layer forms below; we
call this flow pattern ‘stratified flow’. In this case, the
free surface remains flat. For a moderate rotation speed
Ω > 20 rpm, the surface deformation becomes notice-
able and exhibits periodic oscillation; this is called
‘sloshing flow’. At 100 rpm ≤ Ω ≤ 400 rpm, we find
that the flow includes the droplets and air slugs (bub-

bles); this flow pattern corresponds to the so-called
‘splash flow’. For a sufficiently high rotation speed
Ω ≥ 500 rpm, we find a sudden transition to ‘annular
(concentric air in liquid) flow’. In this case, the cen-
trifugal force is dominant rather than the gravitational
force, and thus, the liquid phase moves along the cas-
ing wall, which is known as separation by centrifuga-
tion. This flow transition occurs at the Froude number
beyond unity [14] and is very similar to that observed
in liquid-liquid flows [4] or foam reactors [3].

Here, we focus on the periodic surface deformation
caused by sloshing. In Fig. 3a, at 20 rpm ≤ Ω ≤
100 rpm, the oscillation amplitude of surface height at
the casing wall increases with increasing Ω and shows
a maximum value at Ω = 50 rpm, whereas it decreases
in the splash flow regime (200 rpm ≤ Ω ≤ 400 rpm).
The sloshing amplitude significantly depends on Ω and
is inferred to be maximized at a moderate Ω ≈ 50 rpm
(details are shown in Sect. 3.2). To overview the effect of
the bar thickness D and viscosity of liquid ν, we observe
the gas-liquid distribution at Ω = 50 rpm and find that
the droplets and bubbles form at small D (see Fig. 3b)
or small ν (see Fig. 3c). Further, we find that the surface
height weakly depends on D, but it strongly depends
on ν; the viscosity suppresses the sloshing amplitude.
Note that we test the effect of the surfactant (Triton X-
100) on the flow pattern; we observe that the addition
of minute concentrations of the surfactant to tap water
modifies the transition between the stratified and annu-
lar flow regimes modified but has only a minor effect on
the sloshing behavior. The addition of the surfactant
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Fig. 4 a Temporal variation of surface height h for dif-
ferent values of the rotation speed Ω at D = 10mm and
ν = 1.0 mm2/s

reduces the surface tension [24] and prevents bubble
coalescence due to the Marangoni effect [25]. The bub-
ble suspension behaves as a non-Newtonian liquid, lead-
ing to modifications turbulence and momentum trans-
fer. For this reason, the addition of surfactant signifi-
cantly affects the flow transition, similar to that in food
blenders [8]; however, the detail discussions are beyond
the present scope.

3.2 Sloshing amplitude

We now investigate the temporal variation of the sur-
face height h to evaluate the amplitude-frequency char-
acteristics of sloshing. Note that we measure the sur-
face height h at x = −(Ri + Ro)/2, at which we can
measure the maximum surface elevation due to the col-
lision of stirring bar on free surface. Figure 4a shows
the temporal variation in the surface height at the bar
thickness of D = 10mm and the kinematic viscos-
ity of ν = 1.0mm2/s for various rotation speeds Ω.
Although entrained bubbles and the meniscus of mov-
ing contact lines cause irregular ripples on the free sur-
face, they have only a minor effect on the measure-

Fig. 5 a Power spectrum density h̃2 for different values of
the rotation speed Ω at D = 10 mm and ν = 1.0 mm2/s.
Arrows in (a) corresponds to the excitation frequency fe =
kΩ/(2π), where k is the number of stirring bars. The
inset of (a) shows the response curve of liquid oscillation

h̃2(kΩ/(2π)) vs Ω/(2π) for different D. b The amplitude h̃
versus normalized exciting frequency f/fe. The inset shows

the log-log plot of PSD h̃2 versus f/fe

ment because the ripple heights are fairly small com-
pared to the sloshing motion. The surface height h is
found to exhibit repeatable wave motion and has the
maximum amplitude at Ω ≈ 50 rpm. For a more quan-
titative evaluation, Fig. 5a shows the power spectrum
density (PSD) of the surface height h̃2. The arrows
indicate the excitation frequency of the rotating stir-
ring bar fe = kΩ/(2π), where k is the number of stir-
ring bars. Figure 5b shows the relationship between
the amplitude of surface oscillation h̃ and scaled fre-
quency f/fe. From Fig. 5a, b, we can find that h̃ takes
the maximum value at the excitation frequency fe in
most cases. However, for Ω = 30 rpm, h̃ takes the max-
imum value at the second harmonic frequency 2fe (see
Fig. 5b), implying that the locked-in oscillation appears
at f ≈ 2Hz. We can also find that the prominent peak is
remarkably sharp and high-order harmonics are notice-
able in Fig. 5b. These results indicate the formation
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Fig. 6 Power spectrum map for various rotation speeds Ω at ν = 1.0 mm2/s: a D = 10mm, b D = 20 mm, and c
D = 30 mm

Fig. 7 Phase averaged values of surface height ĥ and
torque T̂ (Left), and typical snapshots of liquid distribu-
tions (Right) at Ω = 0.83 Hz (50 rpm) and ν = 1.0 mm2/s:

a D = 10mm, b D = 20mm, and c D = 30mm. The shaded
regions in the left panel correspond to envelopes given by
±3 standard deviation over 10 rotations

of sawtooth wave due to the nonlinear response of free
surface motion to the collision of stirring bar on free
surface; this waveform can be seen from Fig. 4. The
inset of Fig. 5a shows the frequency response curve (i.e.
the relationship between h̃2(kΩ/(2π)) and Ω/(2π)) for
various D. We find h̃2 takes the maximum value at
f ≈ 0.8Hz (= 48 rpm) which is nearly independent of
D, while the tail-decay behavior is highly correlated
with D. Further, to outline the amplitude-frequency
characteristics of sloshing, we draw a colormap of h̃2

in the f–Ω plane for various D as shown in Fig. 6. This
colormap displays that the oscillation of the sloshing
wave consists of a fundamental wave f = kΩ/(2π) and
also its harmonics; this feature is independent of Ω and
D. We also find that the amplitude of surface oscilla-
tion takes the maximum value at f ≈ 1.8Hz, which is
likely to be involved with the natural frequency of this
system fn (details are discussed in Sect. 3.4).

3.3 Torque behavior

The distribution and motion of the liquid are reflected
in the torque acting on the stirring bar. Figure 7
depicts the phase-averaged values of the surface height
ĥ and torque T̂ over ten rotations, which are displayed

together with the temporal variation of the liquid dis-
tribution. The deviation of the surface height increases
at θ = 0 and π/2 owing to the formation of bubbles,
droplets, and the meniscus of the moving contact line.
ĥ and T̂ show highly reproducible wave motions, and
are negatively correlated with the correlation coefficient
C(= cov(ĥ, T̂ )/[σ(ĥ)σ(T̂ )]) of −0.82 ≤ C ≤ −0.25,
where cov is the covariance and σ is the standard devi-
ation. From visual observation, we find that a traveling
wave is imposed on the free surface for a large D (i.e.,
thicker stirring bar); for this reason, ĥ and T̂ show con-
siderable phase differences, which results in a decrease
in the magnitude of C.

The time-averaged torque is crucial for designing a
mechanical system a priori to its operation. Figure 8a
depicts the experimentally obtained time-averaged torque
T exp as a function of rotation speed Ω, which includes
three remarkable aspects. Firstly, T exp shows a local
maximum at Ω/(2π) ≈ 5Hz, at which the transition
from stratified to annular flow occurs (see Sect. 3.1
and Fig. 3a). Secondly, the scaling exponent (i.e., the
slope s in the power-law scaling of torque T exp ∼ Ωs)
depends on the flow pattern: s ≈ 1.5 for stratified flow
and s ≈ 2 for annular flow; the details are summarized
in Table 2. This relation is analogous to the torque scal-
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Fig. 8 a Time-averaged torque T exp versus rotation speed
Ω. Fitted lines are obtained through least mean square
method. Triangles are a guides to eye of the slope; T exp ∝
1&2. b Dimensionless torque G versus the Reynolds num-
ber Re and the Froude number Fr. The lines show Wendt’s
empirical relation for Taylor–Couette flows [26]

ing in Taylor–Couette flows: s ≈ 1.5 for the transient
regime and s ≈ 2 for the fully turbulent regime of [26–
29]. Note that we use a least-square fitting that models
the torque as T fit = aΩs and obtain s for Ω < ΩM/2
(stratified flow) and Ω > 1.5×ΩM (annular flow), where
ΩM is the position at which T exp shows the local maxi-
mum at Ω ≈ 5Hz. In the transient regime of a Taylor–
Coutte flow in which the inner cylinder rotates whereas
the outer one is stationary, the nondimensional torque
G is uniquely scaled as [26]

G

(
≡ T

ρν2D

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1.45
η3/2

(1 − η)7/4
Re1.5

(4 × 102 < Re < 104)

0.23
η3/2

(1 − η)7/4
Re1.7

(104 < Re < 105)

, (1)

where η = Ri/Ro is the radius ratio and Re is the
Reynolds number given by

Re =
ΩRi(Ro − Ri)

ν
. (2)

The relationship between G and Re is shown in Fig. 8b,
in which the Froude number is also indicated. Although
G should be insensitive to the thickness of the stirring
bar D in this empirical expression Eq. (1), G depends
strongly on D in any flow regime. Furthermore, the
transition to annular flow also depends strongly on D;
the onset ranges broadly within 2 ≤ Fr ≤ 5, where Fr
is the Froude number given as

Fr = Ω

√
Ri

g
. (3)

Although there is a clear inconsistency in the magni-
tude of the nondimensional torque due to the shape
difference, the scaling exponent of torque is globally
similar to the one in Taylor–Couette flows. However, a
detailed and accepted explanation of the torque behav-
ior is lacking due to the complex phenomena of two-
phase flow. We now restrict ourselves to study on the
sloshing at Ω/(2π) ≈ 0.8 Hz because violent sloshing
often causes mechanical damage on a system. Thirdly,
in the stratified flow regime, T exp also exhibits steep
local maxima at Ω/(2π) ≈ 0.4 and 0.8 Hz. The lat-
ter rotation speed (Ω/(2π) ≈ 0.8Hz) is consistent with
that at which h̃2 reaches its maximum value (see the
inset of Figs. 5a and 6), leading to that the increase of
churning loss is particularly relevant to the fluid motion,
and vice versa. Here, we define the magnification fac-
tor T exp/T fit, which is the ratio of the experimentally
measured time-averaged torque T exp to the empirically
fitted value T fit.

Figure 9 shows the magnification factor as a func-
tion of Ω. T exp/T fit strongly depends on D. The maxi-
mum magnification factor Γ (≡ max(T exp/T fit)) shows
a maximum value of Γ = 1.6 at D = 10 mm and
decreases with increasing D. This is because increasing
the bar thickness reduces the axial gap δ(≡ H − D);
thus, the viscous force ∼ ρνΩRi/δ suppresses the
fluid motion. For this reason, the sloshing amplitude
h̃ decreases and exhibits a long-tail distribution in its
decay behavior (see inset of Fig. 5a). In such a dissi-
pative system, the energy input from external forcing

Table 2 Comparison of the slope s in the torque scaling
T fit = aΩs

D(mm) Stratified flow regime Annular flow regime
Ω < ΩM/2 Ω > 1.5 × ΩM

10 1.44 ± 0.03 1.90 ± 0.02
20 1.56 ± 0.02 1.84 ± 0.01
30 1.45 ± 0.02 1.81 ± 0.01
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Table 3 Nondimensional numbers

Description Symbol Value Related study on two-phase flow

Reynolds number Re = ΩRi(Ro − Ri)/ν O(101)–O(105) [9,12,13]

Froude number Fr = Ω
√

Ri/g O(10−1)–O(101) [8,12,14]
Aspect ratio of casing α = H/Ro 0.46
Aspect ratio of stirring bar β = W/Ri 0.50
Thickness ratio γ = D/H 0.25–0.75
Radius ratio η = Ri/Ro 0.91

Fig. 9 Magnification factor of time-averaged torque versus
Ω. Inset shows the maximum magnification factor of time-
averaged torque Γ for different values of bar thickness D

is required to maintain the sloshing motion, that is
to increase the potential energy. Therefore, the time-
averaged torque T (= (time-averaged energy input) ÷
(angular velocity)) increases when the sloshing motion
becomes violent.

3.4 Modeling of oscillation dynamics

As shown in Sects. 3.2 and 3.3, we have observed the
complex two-phase flow phenomena leading to violent
sloshing. The maximization of the torque is well corre-
lated with the sloshing, which is quantitatively charac-
terized by the surface height. In this section, based on
analytical mechanics, we present the simplest model of
the inertial and potential forces of the stirring bar and
the liquid phase, under the very bold but physically
consistent assumption that the displacement of the free
surface can be described only by a single oscillation
mode in which the free surface remains planar. From
this assumption, a simple pendulum model is derived
and is extended to include dissipation mechanisms and
external forcing. Herein, we demonstrate that the max-
imization of torque identified in the previous section
can be reasonably explained by our pendulum model.
The proposed model, despite its oversimplification, can
capture the essence of the violent sloshing phenomenon
that leads to the maximization of torque.

Here, we introduce several nondimensional numbers
based on the Buckingham theorem [30]. We consider

the relevant values: the radius of bar and casing Ri, Ro;
the width of bar W ; the thickness of bar and casing
D,H; the density and viscosity of liquid ρ, μ; the rota-
tion speed Ω; and the acceleration of gravity g. In the
present gas-liquid two-phase system, the density and
viscosity of air are sufficiently small. From our prelim-
inary experiment, we confirm that the sloshing behav-
ior is insensitive to the variation of surface tension. For
these reasons, we neglect the dynamics of flow in gas-
phase and the interracial phenomena including wetting
properties. We now obtain 6 nondimensional parame-
ters: the Reynolds number Re; the Froude number Fr;
the aspect ratio of casing α and stirring bar β; the thick-
ness ratio γ; and the radius ratio η, as summarized in
Table 3. The motion of the fluid is nondimensionalized
as follows:

Du

Dt
= −∇p +

1
Re

∇2u +
1 − η

η

1
Fr2

ey + f ext, (4)

where f ext is external forcing by the stirring bar which
varies in space and time. Although we can estimate the
torque acting on the rotating stirrer by using DNS,
the computational cost of DNS does not allow us to
measure the torque in parametric way to resolve the
local maxima in T–Ω curve. Nevertheless, for hypothet-
ical estimation of the onset of violent sloshing, a priori
experiment or simulation is important rather than an
accurate simulation. We then focus on revealing what
is an appropriate variable in the onset and violence of
sloshing.

To puzzle the sloshing phenomena, at first, we shall
model the liquid distribution and the torque acting on
the stirring bar using the simplest linearized motion of
the free surface [15,21,22], in which the free surface
remains planar (as outlined in Fig. 1). Figure 10a illus-
trates the displacement of fluid volume by the rotating
stirring bar and Fig. 10b outlines an equivalent pendu-
lum describing the movement of its center of gravity,
where � represents the length of the pendulum. For the
point-mass modeling, we consider the liquid domain
which subtracts the half-immersed stirring bar from
the half-cylinder. Based on hydrostatics, we consider
the rotational energy of the stirring bar KB(= IBθ̇2/2),
kinetic energy of liquid KL(= ILΘ̇2/2), and potential
energy of liquid ΠL. IB and IL are the moments of iner-
tia of the stirring bar and the liquid as follows:

123



   26 Page 8 of 13 Eur. Phys. J. E           (2024) 47:26 

IB
ρB

= 8
∫ W/2

0

∫ Ri−W/2

0

∫ D/2

0

(x2 + y2) dxdydz

︸ ︷︷ ︸
cuboid

+ 8
∫ W/2

0

∫ π/2

0

∫ D/2

0

{
(r cos θ)2 + (r sin θ + Ri − W/2)2

}
r drdθdz

︸ ︷︷ ︸
rounded tip

=
{

W (2Ri − W )(R2
i − RiW + W 2)
3

+
πW 2(8R2

i − 8RiW + 3W 2)
32

}
D, (5a)

IL
ρ

=
∫ Ro

0

∫ π/2

0

∫ H

0

r3drdθdz

︸ ︷︷ ︸
half-cylinder

− IB
2ρB︸︷︷︸

stirring bar

=
πR4

oH

4
−

{
W (2Ri − W )(R2

i − RiW + W 2)
6

+
πW 2(8R2

i − 8RiW + 3W 2)
64

}
D, (5b)

ΠL

ρg
=

∫ Ro

0

∫ 2π+Θ

π+Θ

∫ H

0

r2 sin θ drdθdz

︸ ︷︷ ︸
half-cylinder

− VB

2
yc(θ,Θ)︸ ︷︷ ︸

stirring bar

= −2R3
oH

3
cos Θ − VB

2
yc(θ,Θ), (5c)

VB = W (2Ri − W )D︸ ︷︷ ︸
cuboid

+
πW 2D

4︸ ︷︷ ︸
rounded tip

, (5d)

where θ and Θ are the angles of the stirring bar and
free-surface (see Fig. 1), g is the acceleration of gravity,
ρB is the density of stirring bar, VB is the volume of the
stirring bar, and yc is the y-component of the center of
gravity of the stirring bar which is half-immersed below
the free surface (details are given in Appendix A). The
Lagrangian for this system L can be defined as follows:

L = KB + KL − ΠL

=
IB
2

θ̇2 +
IL
2

Θ̇2 +
2ρgR3

oH

3
cos Θ

+
ρgVB

2
yc(θ,Θ), (6)

Using the Lagrange equation with imposing an exter-
nal moment (i.e., torque), the equation for rotational
motion can be written as follows:

d
dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= IBθ̈ − ρgVB

2
∂yc
∂θ

= T, (7)

where

∂yc
∂θ

= −
∞∑

n=1

4n2C2n cos {2n(θ − Θ)} sinΘ

− 2
∞∑

n=1

nC2n sin {2n(θ − Θ)} cos Θ. (8)

Note that the stirring bar rotates at a constant rota-
tion speed θ̇(= Ω); hence, its acceleration vanishes (i.e.,
θ̈ = 0). Here, we consider a very slow rotation speed,
in which the surface height is negligibly small (i.e.,
Θ → 0). From Eqs. (6) and (7), the torque acting on
the stirring bar can be modeled as follows:

Tmodel = ρgVB

∞∑
n=1

nC2n sin (2nθ) . (9)

A comparison between the modeled torque Tmodel

(Eq. (8)) and the experimentally obtained phase-
averaged torque which subtracted time-averaged torque
T̂ − T is shown in Fig. 10c, where the rotation speed
is very low Ω/(2π) = 0.1Hz in the experiments; the
results show excellent agreement between Tmodel and
T̂ − T . Consequently, when the free surface remains
stationary, the torque acting on the stirring bar can
be reasonably predicted from the distribution of the
hydrostatic pressure around it, i.e., the buoyancy. At
high rotation speed, the time-averaged torque becomes
larger than the fluctuation component and can be pre-
dicted using empirical relation in Table 2, even though
the model equation presented in Eq. (9) cannot esti-
mate the universal fluctuation component.

Next, the motion of the liquid is given as follows:

d
dt

(
∂L

∂Θ̇

)
−

(
∂L

∂Θ

)
= ILΘ̈ +

2ρgR3
oH

3
sin Θ

− ρgVB

2
∂yc
∂Θ

= −T, (10)
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Fig. 10 Schematic of the pendulum model. Displacement of a fluid volume and b center of gravity of the pendulum. c
Relationship between the torque and the position of rotating bar at Ω = 0.1 Hz (6 rpm). Error bars show standard deviation
over 20 rotations

where

∂yc
∂Θ

=

[ ∞∑
n=1

(4n2 − 1)C2n

× cos {2n(θ − Θ)} − C0

]
sinΘ. (11)

Suppose that the surface deformation is small |Θ| � 1.
By adding a viscous term into Eq. (9) and linearizing it
with respect to Θ, we obtain the equation for a damped
harmonic oscillator as follows:

Θ̈ + 2ζωnΘ̇ + ω2
nΘ = φ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ = −I−1
L T,

ωn =
√

mg�

IL
,

ζ =
c√

mg�IL
=

1
ωnτd

,

(12)

where ωn(≡ 2πfn) is the natural angular frequency, fn
is the natural frequency, c is the damping coefficient,
and ζ is the damping ratio, τd is the damping period,
m(= ρ(πR2

oH/2 − VB/2)) is the mass of fluid, � is the
length of the pendulum (see Fig. 10b), i.e., the distance
between the center of system O to the center of mass
of the liquid given by

� =
ρ

m

〈
2R3

oH

3
(13)

− VB

2

{
C0 −

∞∑
n=1

(4n2 − 1)C2n cos (2nθ)

}〉

θ

=
ρ

m

(
2R3

oH

3
− VB

2
C0

)
, (14)

where 〈· · · 〉θ stands for the average in the range of θ ∈
[0, 2π]. Here, we extend a mechanical pendulum model
in which the fluid is considered as a solid half-cylinder
[21,22].

To confirm the validity of this modeling and to eval-
uate the damping coefficient c, we observe the impul-
sive response of the damped oscillation of the free
surface (see Fig. 2b). Figure 11a shows the temporal
variation in the surface height h after imposing an
impulsive force. We estimate the damping frequency
fd and damping period τd by using the least squares
method, in which the fitting model is given as hfit =
A exp(−t/τd) sin(2πfd+ϕ). We find that the model dif-
fers only slightly from the experimental data at t � 3s.
From Fig. 8 and Table 2, we can find that the torque
resistance is proportional to ≈ Ω1.5 owing to the non-
linearity of flow, in which the drag force becomes to
proportional to the square of velocity. Therefore, the
oscillation of surface height h shows not only an expo-
nential decay (viscous damping) but also a reciprocal
decay (quadratic-velocity damping) [31]. The inset of
Fig. 11a shows the decay of h with respect to t, indicat-
ing excellent correlation with e−t at t � 3 s and t−1 at
t � 3 s. For this reason, the model shows noticeable dif-
ference from the experimental data at t � 3 s. whereas
at the initial stage of the surface oscillatio t � 3 s, hfit

is found to be in good agreement with hexp; Therefore,
this result confirms that the proposed model can rea-
sonably captures the damped harmonic oscillation. The
dependence of fd and τd on the kinematic viscosity of
liquids ν are respectively shown in Fig. 11b, c. The hor-
izontal lines in Fig. 11b indicate the natural frequency
fn(≡ ωn/(2π)) given by Eqs. (12) and (13). In this con-
figuration, we can see that fn depends only weakly on
the bar thickness D. The experimental results are fully
consistent with the modeled ones, even though there is a
clear difference between the modeled and experimental
results at D = 30mm and ν ≥ 10mm2/s; the frequency
fd depends strongly on the angle of the stirring bar. For
small ν, the values fn and fd are of the same order;
therefore, we can confirm that the pendulum model
[21,22] reasonably simulates that violent sloshing com-
mences at the resonance frequency of fn(≡ ωn/(2π)).
The damping period τd also characterizes the response
of the fluid motion. As shown in Fig. 11c, τd monotoni-
cally decreases as a function of ν because the viscosity of
the liquid involves damping of its motion. Note that the
drag force viscous and pressure drag reduce the ampli-
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Fig. 11 a Viscous-damping of surface height. The inset
shows log-normal plot to clarify the decay of h. b Oscil-
lation frequency fd and c damping period τd versus kine-
matic viscosity ν for different bar thickness D. In (b), fn
denotes the natural frequency of the system. Error bars show

the minimum and maximum values in several experimental
runs. The inset of (c) shows the relationship between τd and
velocity of surface oscillation ∂h/∂t, where we plot several
instances every 1 s of time-sequential data shown in (a)

Fig. 12 a Damping coefficient c and b damping ratio ver-
sus kinematic viscosity ν for different bar thickness D. The
inset of (a) shows the relationship between c and D at
ν = 1&50 mm2/s. c Log–log plot of the maximum mag-

nification factor of time-averaged torque Γ versus damping
ratio ζ. The inset shows the linear–linear plot to clarify the
decay of Γ to unity for ζ → 1

tude of surface oscillation; the former is proportional
to velocity and the latter is proportional to square of
one. From Fig. 11a, we analyze the time dependence
of damping period τd and then obtain the relation-
ship between τd and the velocity ∂h/∂t = 2πAfd as
shown in the inset of Fig. 11c. We find that τd is insen-
sitive to ∂h/∂t, except at low-velocity region ∂h/∂t �
O(10) mm/s. From Fig. 4, in the operation condition at
which violent sloshing occurs, we find that the maxi-
mum amplitude shows h ≈ 40 mm and surface velocity
takes ∂h/∂t ≈ 400 mm/s. In this case, τd is independent
of the velocity of surface oscillation. Moreover, the stir-
ring bar in the present configuration has sharp corners;
the separation point is fixed (i.e., not Reynolds num-
ber dependent). From our preliminary experiments on
the impact of size effect on sloshing motion, we confirm
that the effect of the Reynolds number on the damping
behavior is less significant [16].

To further analyze the damping behavior of surface
oscillation, we plot the dependence of the damping coef-
ficient c and damping ratio ζ on the kinematic viscos-
ity ν respectively in Fig. 12a, b. Note that we evaluate
c and ζ from the experimentally measured value τd,

and thus these values include ±20% uncertainty at the
maximum arising from broad deviation of experimental
duplicates. From these figures, we can observe c and ζ
are correlated with ν but depends strongly on D, indi-
cating that the power-law relation in ζ–ν with exponent
≈ 0.5. The scaling behavior is in excellent accord with
the empirical relation [15,32]. Following the previous
study on the viscous damping of sloshing, the magni-
tude of ζ depends on the tank geometry, i.e., shape and
liquid level; and thus we can evaluate how sloshing is
violent by measuring the damping characteristics and
estimate the viscosity at which sloshing occurs. Fig-
ure 12c shows the relationship between the maximum
magnification factor Γ (≡ max(T exp/T fit)) and damp-
ing coefficient ζ. For small ζ, Γ negatively correlates
with the ζ and is insensitive to the thickness of the stir-
ring bar D. In this region, the effect of viscosity becomes
less prominent; thus, the sloshing commences and its
amplitude negatively correlates with the kinematic vis-
cosity ν (see Fig. 11c). Although the viscous force has a
minor effect on sloshing, viscous dissipation reduces the
energy of fluid motion; violent sloshing requires extra
energy input to maintain its amplitude. Qualitatively,
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Fig. 13 Same as Fig. 12c but for different shapes of stir-
ring bars: standard bar (red), shorter bar (blue), wider bar
(green), smaller system (purple), four-bar (orange), and six-
bar (brown). The inset shows the linear-linear plot to clarify
the decay of Γ to unity for ζ → 1

the increased Γ at small ζ is attributed to the energy
balance with the magnitude of the surface height, even
though we cannot explain the unique scaling relation
between Γ and ζ. For a sufficiently large ζ, Γ weakly
depends on ζ and saturates at unity, indicating that
the surface height is likely to become small in a high-
viscosity liquid; as shown in Fig. 8, the local maxima
(i.e., the extra energy input) no longer appear in the
T–Ω curve.

We repeat the experiments on the different shapes
of the stirring bar and find similar flow patterns, i.e.,
stratified, sloshing, splashing, and annular flow modes,
regardless of the shape of the stirring bar. The rela-
tionship between Γ and ζ for the various bars is shown
in Fig. 13. We find striking features: a negative corre-
lation between Γ and ζ and saturation of Γ at unity,
even though Γ–ζ curves depend on the shape of the sys-
tem. To extract the essence of sloshing, we derived lin-
earized equations of fluid motion, in which the free sur-
face remains planar (i.e., eliminating nonlinear waves
imposed on the free surface). Although ζ for different
shapes of stirrer is measured a priori to the operation
of system, we can reasonably estimate the operating
condition at which the sloshing motion becomes vio-
lent. Our oversimplified modeling may result in incon-
sistencies between the Γ–ζ curves. Nevertheless, the
model qualitatively indicates that the sloshing becomes
violent when the resonance frequency is imposed, and
the damping ratio is sufficiently small. Improvement of
mechanical modeling is a key subject to predict further
details of fluid motion, e.g., sloshing amplitude, torque
behavior, and bubble/droplet formation.

4 Conclusion

We performed experiments on two-phase flow mix-
ing in which the system comprised a rotating non-

axisymmetric stirring bar in a stationary cylindrical
casing. Visual observations of the gas-liquid distribu-
tion helped to classify the flow modes, which depend
on the rotation speed of the stirring bar. For a suf-
ficiently low rotation speed Ω ≤ O(10) rpm, the flow
exhibits ‘stratified flow’ owing to the gravity force act-
ing on different densities of the gas and liquid phases;
a light gas layer forms above, while a heavy liquid
layer forms below. For sufficiently high rotation speed
Ω ≥ O(100) rpm, ‘annular (concentric air in liquid)
flow’ appears because the centrifugal force is dominant
rather than the gravity force; the liquid phase moves
along the casing wall. Between these flow patterns, a
periodic surface wave is imposed owing to the interplay
between the effects of gravity and inertia.

We found that sloshing becomes remarkable when the
frequency of the impulsive force imposed by the stirring
bar kΩ is consistent with the natural frequency of the
liquid phase fn(= (mg�/IL)1/2/(2π)). We also observed
that the time-averaged torque acting on the stirring
bar increased when the sloshing amplitude reached
its maximum value. In a damped harmonic oscillator,
energy input from an external forcing is required to
maintain the oscillatory motion. For this reason, the
time-averaged torque should increase when the sloshing
motion becomes violent, leading to that the increase of
churning loss is particularly relevant to the fluid motion,
and vice versa. Finally, the maximum magnification fac-
tor of the time-averaged torque is scaled by the damp-
ing coefficient. Although the Γ–ζ curve depends on the
shape of the system, for small ζ, Γ negatively corre-
lates with ζ, whereas for ζ → 1, Γ saturates at unity.
The derived equation of motion models the oscillatory
motion of the free surface, which remains planar under
the assumption of the simplest point-mass modeling
using the Lagrange equation. The limitations of our
modeling deserve further attention, such as the effect of
nonlinear waves or quantification of the magnification
of the time-averaged torque. This study lays the founda-
tion for predicting violent sloshing in turbo-machineries
or vehicle power trains as well as in mixing facilities.
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Appendix A: Estimation of center of mass

We calculate the center of mass below the free surface. We
define the virtual angle ϑ = θ − Θ, where θ is the angle of
the stirring bar and Θ is the angle of the free surface (see
the left panel of Fig. 14). As the shape of stirring bar is
given, we can numerically obtain the center of gravity Xc

and Yc in the virtual flame with respect to ϑ as follows:

Fig. 14 a Schematic outline of the stirring bar angle
and liquid distribution and b the relationship between the
center-of-gravity of the volume of stirring bar submerged in
liquid and the relative the angle of bar ϑ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xc(ϑ) = −2

∞∑

n=1

nC2n sin(2nϑ),

Yc(ϑ) = C0 +
∞∑

n=1

C2n cos(2nϑ),

(A.1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C0 = −32.196,

C2 = −17.139,

C4 = 2.292,

C6 = −0.550,

(A.2)

where Cn is the coefficient of the Fourier series, where the
unit is mm. Xc and Yc are shown in the right panel of Fig. 14.
The rotational transformation is applied to Xc and Yc, we
then obtain the center of mass yc(θ, Θ) = Xc sin Θ+Yc cos Θ
in the laboratory frame as follow:

yc(θ, Θ) = −2

∞∑

n=1

nC2n sin {2n(θ − Θ)} sin Θ

+

∞∑

n=1

C2n cos {2n(θ − Θ)} cos Θ

+ C0 cos Θ. (A.3)

References

1. E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, Hand-
book of Industrial Mixing (Wiley Online Library, 2004).
https://doi.org/10.1002/0471451452

2. F. Visscher, J. Van der Schaaf, T. Nijhuis, J. Schouten,
Rotating reactors—a review. Chem. Eng. Res. Des.
91(10), 1923–1940 (2013). https://doi.org/10.1016/j.
cherd.2013.07.021

3. M. Leon, R. Maas, A. Bieberle, M. Schubert, T. Nijhuis,
J. van der Schaaf, U. Hampel, J. Schouten, Hydro-
dynamics and gas-liquid mass transfer in a horizontal
rotating foam stirrer reactor. Chem. Eng. J. 217, 10–21
(2013). https://doi.org/10.1016/j.cej.2012.11.104

4. D.D. Joseph, Y.Y. Renardy, Fundamentals of Two-Fluid
Dynamics: Part I: Mathematical Theory and Applica-
tions, vol. 3 (Springer, Berlin, 2013). https://doi.org/
10.1007/978-1-4613-9293-4

5. S. Thoroddsen, L. Mahadevan, Experimental study of
coating flows in a partially-filled horizontally rotating
cylinder. Exp. Fluids 23(1), 1–13 (1997). https://doi.
org/10.1007/s003480050080

6. J. Peixinho, P. Mirbod, J. Morris, Free surface flow
between two horizontal concentric cylinders. Eur. Phys.
J. E 35, 1–9 (2012). https://doi.org/10.1140/epje/
i2012-12019-8

7. A.V.B. Lopes, U. Thiele, A.L. Hazel, On the multiple
solutions of coating and rimming flows on rotating cylin-
ders. J. Fluid Mech. 835, 540–574 (2018). https://doi.
org/10.1017/jfm.2017.756

8. T. Watamura, K. Sugiyama, Onset of axisymmetric
sloshing in a food processor. Phys. Rev. E 104(6),
065104 (2021). https://doi.org/10.1103/PhysRevE.104.
065104
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