
Eur. Phys. J. E (2024) 47:27
https://doi.org/10.1140/epje/s10189-024-00419-6

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Soft Matter

A hard sphere model for single-file water transport
across biological membranes
Gerald S. Manninga

Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, USA

Received 21 August 2023 / Accepted 22 March 2024 / Published online 15 April 2024
© The Author(s) 2024

Abstract We use Gürsey’s statistical mechanics of a one-dimensional fluid to find a formula for the Pf/Pd

ratio in the transport of hard spheres across a membrane through a narrow channel that can accommodate
molecular movement only in single file. Pf is the membrane permeability for osmotic flow and Pd the
permeability for exchange across the membrane in the absence of osmotic flow. The deviation of the
ratio from unity indicates the degree of cooperative transport relative to ordinary diffusion of independent
molecules. In contrast to an early idea that Pf/Pd must be equal to the number of molecules in the channel,
regardless of the physical nature of the interactions among the molecules, we find a functional dependence
on the fractional occupancy of the length of the channel by the hard spheres. We also attempt a random
walk calculation for Pd individually, which gives a result for Pf as well when combined with the ratio.

1 Introduction

The search for an understanding of how water and ions
are transported across cell membranes has always been
a central feature of fundamental research in botany,
physiology, and medicine [1,2], acting even very early
as the stimulus for van’t Hoff’s quantification of the
equilibrium pressure difference across a semi-permeable
membrane, and Vegard’s ideas on the mechanism of
osmotic water flow through membranes [3,4]. Urgent
contemporaneous needs for efficient energy production
and for an increased supply of pure water has aug-
mented biology in creating a vast effort in membrane
science and engineering [5–8].

The internal structure of a membrane determines
how water flows through it. Water can flow through
a coarse porous membrane, like those used in early
research [3,9], or even capillary walls with pores about 5
nm diameter [10], in more or less its bulk form. Current
indications are that the membranes used in the purifi-
cation of water by reverse osmosis, although densely
structured, may be sufficiently porous to accommodate
water in bulk form as well [7]. Carbon nanotubes of,
say, about 1 nm diameter (two to three water molecules
abreast) convey water in interesting structural modifi-
cations from bulk [11]. The fast transport inside these
nanotubes cannot be modeled by the macroscopic no-
slip condition at the walls of the tube [12–15]. The lipid
bilayers comprising animal cell membranes are thought
to dissolve small amounts of water, much as oil does, so
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that transport through them occurs as separate discrete
water molecules [2,4]. Animal cell membranes are punc-
tuated by narrow protein channels [16] through which
water molecules can flow, but only in single file [17].
Sufficiently narrow carbon nanotubes can also restrict
water flow to single file [18]. The present paper is con-
cerned with certain theoretical questions that arise from
specifically single-file transport.

Water transport across membranes can be charac-
terized by two distinct membrane permeabilities, the
hydraulic or osmotic (historically, “filtration”) perme-
ability Pf , and the diffusion, or exchange, permeabil-
ity Pd [2,4]. The Pf/Pd ratio provides useful informa-
tion about the mechanism of flow. If it equals unity,
as for lipid bilayers [2,19], one may assume that water
crosses the membrane as widely separated individual
molecules. If it is much larger than unity, then water
presumably exists inside the membrane in its usual
bulk liquid form, and its flow under applied pressure,
or, equivalently, in osmosis, is predominantly convective
[9,20].

Biological membranes are spanned by protein chan-
nels so narrow that water molecules traverse them in
single file, molecule after molecule [2]. It might have
been expected that the osmotic and diffusion perme-
abilities would be equal for these channels, but as it
has turned out, the Pf/Pd ratio is measurably greater
than unity [2,21–23], although not nearly as large as
for bulk flow through relatively open synthetic mem-
branes [9,20]. To explain this experimental observation,
an early idea was that the single-file ratio Pf/Pd should
equal N , the number of water molecules in the col-
umn, as following from the mutual impenetrability of
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the water molecules [2]. However, a focus on the per-
meability ratio was all but lost before resolution of this
question. In this paper, we show that the inability of the
water molecules in a column to pass each other does not
necessarily lead to the answer N for the permeability
ratio. Nonetheless, we find that the ratio exceeds unity
for a hard sphere model.

Our primary tool will be the analysis given by Gürsey
in 1950 of a one-dimensional fluid [24], one of the few
exact results of statistical mechanics. The molecules of
the fluid are freely moving, but subject to short-range
interaction forces that prevent the molecules from pass-
ing through one another. It is precisely this latter prop-
erty that Gürsey understood would permit exact evalu-
ation of the partition function by application of the con-
volution theorem. The short-range interactions allowed
are otherwise quite general, although for present con-
siderations we restrict our application to a hard sphere
potential (impenetrable balls, all with the same diame-
ter, with no forces between balls when not in contact).

The present paper supersedes a previous one where,
due to an unrealistic boundary condition, we erro-
neously proposed that Pf and Pd should be equal [25].

2 Background

The osmotic permeability coefficient Pf for the molar
water flux Jw across a membrane (number of moles per
unit membrane area per second) as induced either by an
applied pressure difference ΔP or an osmolyte concen-
tration difference ΔCs (osmolyte concentration is the
total concentration of impermeable solute) is defined
by the equation [2],

Jw = −Pf(ΔP/RT − ΔCs) (1)

which can be called the Fundamental Law of Osmo-
sis [4]. As follows from Debye’s analysis of the van’t
Hoff equation [26,27], an osmolarity difference induces
a pressure gradient across the membrane identical [3,4]
to the gradient induced by an applied pressure differ-
ence [28].

It is of interest to compare the value of Pf with the
value of a different permeability coefficient Pd for the
same membrane, defined by,

J∗
w = −PdΔC∗

w (2)

where J∗
w is the molar flux of a tracer water isotope

across the membrane as induced by a concentration
difference ΔC∗

w of tracer water with equal pressures on
both sides of the membrane and no osmolyte present [2].
From its definition, we see that Pd measures the rate
of water exchange across the membrane in the absence
of any driving forces, and due only to the self-diffusion
of the water molecules, that is, their thermal random
movement.

For membranes allowing bulk, or convective, flow of
water,

Pf = Pc + Pd (3)

where the total observed osmotic flow is understood
to consist of independent convective and diffusive com-
ponents, the latter due to the stochastic movements
of water molecules that are random in the absence of
directed forces but biased in the direction of a force
such as a pressure gradient [4]. The osmotic permeabil-
ity Pf can be measured experimentally from its defini-
tion, Eq. (1), and also the diffusion permeability from
its definition, Eq. (2), but the convective component Pc

can only be inferred by difference from Eq. (3). In this
way, Mauro [9] and Robbins and Mauro [20] were able to
find that the convective component strongly dominates
in a series of synthetic collodion membranes, indicating
the presence of bulk water inside the membrane. The
diffusive component is always present, however, and
becomes increasingly significant with increasing density
of membrane polymer material [20]. For lipid bilayers,
the same experimental procedures (once the difficulty of
stirring the solution right up to the membrane is over-
come [2]) show the absence of a convective component.
Both Pf and Pd are independently measured and found
to be equal [2,19], meeting the expectation that water
crosses the lipid bilayer as widely separated molecules.

It is useful to rearrange Eq. (3) to the form,

(Pf/Pd) − 1 = Pc/Pd (4)

For the synthetic collodion membranes, since measure-
ments show that Pf/Pd >> 1, it follows that Pc >>
Pd, in words, convection dominates diffusion. But if
Pf/Pd = 1, as in lipid bilayers, Pc = 0, and there is
no convective water flow.

In the setting of biological cell membranes, a signifi-
cant part of water exchange and flow is directly across
the lipid bilayer, 10–20% [2,23]. But biological mem-
branes are punctuated by proteins like the aquapor-
ins [16] that provide narrow channels allowing efficient
single-file flow of water molecules, and these pores carry
most of the transmembrane flow. In fact, it was the
measurements of Pf/Pd ratios, and their observed val-
ues substantially greater than unity, that first suggested
the existence of these protein channels [21,22].

The reason that Pf/Pd greatly exceeds unity in sit-
uations involving bulk water is obvious. The diffusion
permeability Pd measures the rate of random thermal
movement of the water molecules in macroscopically
quiescent bulk water. The osmotic permeability Pf mea-
sures the much greater rate of pressure-driven collec-
tive bulk flow. In the following, we show that Pf can
be greater than Pd in single-file flow for essentially the
same reason, but the collective nature of osmotic flow
in this case is described differently.
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3 The Pf/Pd ratio in single-file flow

We start with the equation,

Pd = KD∗/L (5)

where D∗ is the self-diffusion coefficient of water
molecules inside a membrane of thickness L. If the
water molecules cross the membrane through a protein
channel, we assume for simplicity that the length of the
channel also equals L. With reference to the definition
of Pd in Eq. (2), the driving force for tracer diffusion
across the membrane on the molecular level is not the
concentration difference between tracer concentrations
in the reservoirs bathing the membrane but the tracer
concentration gradient inside the membrane. Since the
factor 1/L does not appear explicitly in the definition,
it must be included as a factor in any expression for Pd.
The constant factor K accounts for the dependence of
the permeability on the amount of water in the mem-
brane relative to the outside reservoirs. Equivalently, it
accounts for the probability that a molecule enters and
exits the channel, and for interactions with the walls
of the channel once the molecule is inside. An explicit
expression for K, given subsequently, is not needed in
this section.

Next, we consider osmotic water flow across the mem-
brane. As discussed above in the Background section,
it is caused by a pressure gradient. Thus for a mem-
brane containing liquid water, the flow is predominately
bulk, or convective, flow. A lipid bilayer contains a
slight amount of water dissolved in it as discrete inde-
pendent molecules, and in osmosis these molecules are
transported across the bilayer by a pressure gradient
[4]. The molecules drift in a stochastic diffusive manner
in the direction of lower pressure. In single file also,
the movement of water molecules in osmosis is best
described in terms of the diffusive movement of the dis-
crete molecules in the column, since the water does not
exist there in bulk. We therefore postulate the same
starting point for Pf as for Pd,

Pf = KD/L (6)

but for Pf the diffusion coefficient D may not be equal
to the self-diffusion coefficient D∗. The Pf/Pd ratio is
therefore,

Pf/Pd = D/D∗ (7)

Notice that the partition coefficient K cancels from the
ratio Pf/Pd, being the same for both permeabilities.

The concentration dependence of diffusion coeffi-
cients is crucial for present purposes. In self-diffusion,
the environment of a thermally agitated molecule is
on average symmetric, and the influence of surround-
ing molecules is not biased in any particular direction.
But in diffusive flow caused by a concentration gradi-
ent, the more numerous molecules on one side of any
given diffusing molecule exert a stronger concentration

Fig. 1 Graphical representation of Eq. 11 for the Pf/Pd

ratio as a function of fractional occupancy of single-file chan-
nel with hard spheres

effect (from intermolecular forces) than the less numer-
ous ones on the other side. Because of this asymmetry,
we can write [29–34],

D

D∗ = 1 +
dμex

d lnφ
(8)

where in this equation μex, in dimensionless units of
kBT , is the “excess” part of the chemical potential
of the diffusing species, which accounts for non-ideal
concentration effects, and therefore tends to zero when
the concentration is low and intermolecular interactions
become negligible. For the concentration derivative in
the single-file case of diffusing hard spheres, we have
defined φ as a measure of the linear density of the
spheres,

φ = Na/L (9)

In words, then, φ is the average fraction of the length of
the column occupied by the spheres, each sphere pos-
sessing diameter a.

The interaction between hard spheres is entirely
repulsive (the potential energy of interaction jumps
from zero to infinity when two spheres make contact).
It follows that the more numerous hard spheres at the
high concentration side of a given sphere will push that
sphere toward the low concentration side, augmenting
self-diffusion. The derivative in Eq. (8) is thus expected
to be positive. We confirm the expectation by making
an exact calculation. From the statistical mechanical
analysis of a linear assembly of molecules as presented
in 1950 by Gürsey [24], we find for the special case of
hard spheres in single file [34],

μex = φ(1 − φ)−1 − ln(1 − φ) (10)

Both terms in this expression increase when φ increases.
When φ tends to zero, so does μex.
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Fig. 2 The diffusion permeability normalized to the pref-
actor B

The result for the Pf/Pd ratio follows,

Pf

Pd
=

1
(1 − φ)2

(11)

Notice that in this section we did not attempt to calcu-
late Pf and Pd individually but only their ratio, which
is plotted in Fig. 1. At low densities, a regime where
the molecules do not interact at all, so that the effect
of asymmetric interactions in osmotic flow vanishes,
φ → 0, and we see that Pf becomes equal to Pd. But as
φ increases, the expression for the Pf/Pd ratio becomes
significantly greater than unity, until finally diverging
at φ = 1, when the spheres are in contact (closest
packed) at infinitely high interaction energy, and the
slightest asymmetry of a hard sphere environment has
a dominantly strong effect.

Despite the divergence at closest packing, Eq. (11)
yields realistic values for the Pf/Pd ratio when the den-
sity parameter φ is given in a realistic range. For gram-
icidin A pores [2], the measured value of Pf/Pd is 5.3,
which matches Eq. (11) for φ = 0.57. The value of
Pf/Pd measured [23] for aquaporin is 12.7, matched by
Eq. (11) when φ = 0.72. It is worth observing that
for values of φ greater than 0.5, the average single-file
spacing of hard spheres cannot accommodate another
sphere. In other words, in a model such as we have been
exploring, it is not necessary for meaningful interpreta-
tion of “full occupancy” that φ be assigned the value
unity.

As a further example, we may recall Robbins and
Mauro’s measurements of Pf/Pd for synthetic collodion
membranes [20]. For the membrane most dense in poly-
mer material, the measured value of Pf/Pd was 36. The
passage of water across membranes of higher density
could not be detected. We therefore take the number
36 as a speculative measure of a maximum value that
evolutionary selection could have reached for Pf/Pd

by means of a narrow protein pore in exploiting the
advantages of concerted flow over diffusion of isolated
molecules into and out of a cell. The corresponding
value of φ from Eq. (11) is 0.83.

4 The individual permeabilities

We regard the result for the Pf/Pd ratio as our central
one. However, at the cost of further modeling, we will
also try to find individual expressions for the osmotic
and diffusion permeabilities. Actually, we need only an
expression for the latter, since Pf will follow immedi-
ately from their ratio.

For Pd in Eq. (5), we need expressions for both K and
D∗. The water partition coefficient K = Cw,m/C0

w =
v0
wCw,m, that is, the ratio of water concentrations (num-

ber of molecules per unit volume) inside the membrane
and in the ideally dilute reservoirs, where v0

w is the vol-
ume per molecule of pure water. For the concentration
Cw,m of water in the membrane, the volume of the mem-
brane is AL, where A is the area of a cross section,
and if the water crosses through n single-file channels,
each containing N hard-sphere “water” molecules, then
Cw,m = nN/AL = nφ/aA, where we have used the frac-
tional occupancy φ of the channel, Eq. (9). We therefore
have K = (nv0

w/aA)φ.
As in traditional diffusion theory, we describe the

thermal movement of the molecules in the channel by a
random walk, in this case one-dimensional. The mean
free path l = (1 − φ)l0, where l0 is the mean free
path when φ → 0. In words, l0 is the mean free path
for a molecule in a channel so sparsely occupied that
other molecules offer negligible interference with its
thermal movement. The only obstacles to movement of
the water molecule when φ → 0 comes from its inter-
actions with the fixed molecular groupings comprising
the walls of the channel. In a one-dimensional random
walk, D∗ = (1/2)νl2 = (1/2)νl20(1 − φ)2, where ν is
the collision frequency, which in this model we assume
independent of φ.

With these expressions for K and D∗, we arrive at a
formula for the diffusion permeability,

Pd = Bφ(1 − φ)2 (12)

where for the prefactor,

B = (1/2)νl20(nv0
w/aAL) (13)

The dependence of Pd on φ is shown in Fig. 2. When
φ → 0, the permeability tends to zero. This behavior
is reasonable, since water molecules cannot cross the
membrane if the membrane holds no water. The per-
meability rises to a maximum value at φ = 1/3, then
falls back to zero at φ = 1, where the hard spheres
are touching and diffusional movement in the channel
is suppressed. This condition is never achieved for tem-
peratures above zero, and the mean field calculation
given here should be understood as meaningful only if
φ is not too close to unity.

With Pd in hand and Eq. (11) for the Pf/Pd ratio,
the result for Pf follows,

Pf = Bφ (14)
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Thus Pf rises linearly with φ from zero at zero occu-
pancy (for the same physical reason that Pd vanishes
there) to its maximum value B at φ = 1.

Since Pd vanishes at φ = 1 in this model, an interest-
ing interpretation of the course of the Pf/Pd ratio as a
function of φ (see Fig. 1) is that it describes a transition
from all-diffusive flow at low densities, Pf/Pd → 1, to
all-convective flow at φ = 1. The critical point for the
transition is at φ = 1, where the diffusive component
disappears. Of course, we know that one-dimensional
systems do not exhibit phase transitions, which again
shows the limitations of our mean-field interpretation
of φ.

We can arrive at a numerical result if we convert Pf

to the osmotic permeability per pore pf = (A/n)Pf [2].
For the gramicidin A pore, pf has been measured in two
laboratories by distinct procedures as 1 × 10−14 cm3/s
and 6 × 10−14 cm3/s [2]. In our model, the combina-
tion (1/2)νl20 is the self-diffusion constant for water
molecules in the pore under conditions of low fractional
occupancy. If we use for it the value of the self-diffusion
constant of bulk water, along with φ = 0.57 (see discus-
sion involving gramicidin A in Sect. 3), the diameter a
of a water molecule, and L = 2.5 nm for the length of
the gramicidin A pore, we get 5.6 × 10−14 cm3/s for pf
from Eq. (14).

5 Discussion

For water transport across lipid bilayers, the Pf/Pd

ratio is found to be equal to unity, as expected for diffu-
sive movement of sparsely distributed water molecules
dissolved in an oily environment [2,4,19]. For synthetic
membranes more receptive to liquid water, the ratio
is orders of magnitude greater than unity, indicating
the dominance of bulk liquid flow [9,20]. There was an
early focus, currently all but lost, on the interesting
question of why the Pf/Pd ratio is greater than unity
for water molecules moving in single file across nar-
row protein channels spanning biological membranes
[2]. The answer was that Pf/Pd = N , the number of
water molecules in the channel, as a seemingly plau-
sible condition if the passage of one molecule requires
previous passage of all molecules ahead of it [2]. In this
view, the permeability ratio equals N regardless of how
large N might be (how long the pore), or of the frac-
tional occupancy φ of the pore, or of the nature of the
liquid (it need not be water, the degree of hydrogen
bonding does not matter), or of the interaction poten-
tial of any theoretical particles used as a model (hard
spheres, Lennard–Jones 6–12, etc.).

In arriving at the stark answer N for the permeability
ratio in single-file flow, no use was made of the develop-
ment in the theory of liquids of one-dimensional mod-
els that could be solved exactly [24,35,36]. In fact, the
no-pass condition is inherent in these liquid models, as
well as in the calculations of this paper. For example,
Gürsey’s evaluation of the partition function integral
for a one-dimensional fluid explicitly uses the condition

that the coordinate xi of the ith molecule is integrated
only between the coordinates xi−1 and xi+1 of the two
neighboring molecules. But even though in developing
our analysis we have made use of no-pass models, we
did not arrive at the answer N for the single-file Pf/Pd

ratio.
There is also a more recent simulation that finds

Pf/Pd = N (or N + 1) [37]. However, the authors
do not simulate the laboratory measurements that
define the two permeabilities according to Eq. (1) and
Eq. (2). Instead, they essentially assume the answer
N in advance by characterizing Pf as the rate for a
molecule to take a single step in the channel, while Pd

is taken as the rate, expected to be N times smaller, for
a molecule to take all steps corresponding to the entire
length of the channel.

The hard sphere model adopted in the present
paper is certainly not an accurate portrayal of water
molecules. Can the values of Pf/Pd exceeding unity for
single-file flow of water be explained, as here for hard
spheres, by invoking only ordinary thermal and pres-
sure driven movements of independent molecules, or
are specific properties of water molecules necessarily
involved, such as their propensity (in an inhospitable
carbon nanotube environment, for example [38]) to link
by direct hydrogen bonding into a connected chain, like
monomers in a polymer? In this case, it would be dif-
ficult to justify the asymmetric distribution underly-
ing our use of Eq. (8), or the picture of freely mov-
ing small molecules used here to calculate Pd individ-
ually.

The tools in the exploding field of flow in confined
spaces have not yet been brought to bear on the Pf/Pd

ratio for single-file flow. For a review emphasizing the-
oretical aspects, see [39].
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A Appendix

Consider the ordinary diffusion of a solute in water (or any
other solvent), or the pressure equalization in a real gas
(which can also be regarded as a diffusion process, given
the one-to-one relation between gas pressure and number
density, or concentration). The flux of particles j is related to
the negative gradient of chemical potential µ by the friction
coefficient at uniform concentration f ,

j = −c∇µ/f (15)

where c is solute or gas concentration. With units chosen
such that kBT = 1, the self-diffusion coefficient D∗ is 1/f
(Einstein relation), and the relevant part of µ can be written
as ln c + µex, where the ”excess” term accounts for interac-
tions among the solute or gas molecules,

j = −D∗(∇c + c∇µex) (16)

Since µex depends on c, and for the diffusion process, c
depends on location r,

∇µex = (dµex/dc)∇c (17)

Finally, then,

j = −D∗
(

1 +
dµex

d ln c

)
∇c (18)

from which the diffusion constant D is identified as,

D = D∗
(

1 +
dµex

d ln c

)
(19)

or Eq. 8 of the text. It is also Equation (127), Chapter XI, in
De Groot and Mazur [29], and Equation (21-8) in Tanford
[31].
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