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Abstract We compare three different setups for measuring cell–cell adhesion. We show that the measured
strength depends on the type of setup that is used. For identical cells different assays measure different
detachment forces. This can be understood from the fact that cell–cell detachment is a global property
of the system. We also analyse the role of external force and line tension on contact angle and cell–cell
detachment. Comparison with the experiments suggest that viscous forces play an important role in the
process. We dedicate this article to Fyl Pincus who for many of us is an example to be followed not only
for outstanding science but also for a marvelous human behavior.

1 Introduction

Integrity of a tissue is maintained by cell–cell adhesion
mediated by specific proteins [1,2]. The adhesion sites
provide mechanical connectivity but also act as signal-
ing hubs in the cell and are vital for tissue development
and homeostasis. It has been shown that a differential
expression of these adhesion proteins is essential for cell
sorting [3,4] and plays a central role in determining cell
shape [5].

Quantifying cell–cell adhesion is critical to under-
standing tissue mechanics. Significant experimental and
theoretical progress have been made in our understand-
ing of the molecular processes underlying cell–cell adhe-
sion. It has been long understood that adhesion medi-
ated by specific linker proteins differs fundamentally
from nonspecific adhesion [1,6,7]. In the former case,
the contact angle is set by the two dimensional pres-
sure of the gas of mobile bound linkers [1,8]. Imaging
of protein distribution on the surface has shed light on
the spatio-temporal dynamics of the adhesion molecules
that has further lead to a fruitful dialogue between the-
ory and experiments on cell–cell adhesion.

A complementary approach to understanding adhe-
sion has been to study cell–cell detachment. Differ-
ent in-vitro assays have been designed to measure the
response of a cell to shear force (due to fluid flow) or
pulling (micropipette or a plate) with the aim to under-
stand the parameters that determine the ability to cell
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to stay attached, either to another cell or to a substrate
[9,10].

The aim of this work is to synthesize these stud-
ies and highlight the differences in the measurement
of detachment force for seemingly similar experimental
setup and to compute the correlation between adhe-
sion and detachment force. We compare three different
setups used to measure the force required to detach two
adherent cells: pipette-pipette [11–15], plate-plate [16–
18], plate-pipette [19] (Fig. 1).

In this article we restrict our theoretical analysis to
quasi-static conditions. This work follows closely Ref.
[20]. We analyze cell geometry, cell–cell detachment
force, and force dependence of the contact angle. We
provide analytical results for detachment force and cell
shape in the pipette-pipette setup and compare it with
that for the plate-plate and plate-pipette setups. We
show that the detachment force depends not only on
the cell specific parameters like adhesion tension and
cell surface tension but also strongly depends on the
parameters of the experimental setup like pipette radius
or cell-plate adhesion. For example, the detachment
force for the same cells is always smaller when a pipette
instead of a plate is used to hold the cells.

2 Cell shape and detachment force

We consider a doublet of identical cells adhering
to each other. We take the cells to have a constant
isotropic surface tension and a fixed volume. The cell
interior is treated as an incompressible fluid. The cells
are also either sticking to a plate or sucked into a
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Fig. 1 a–c Schematic of the different experimental setups
to measure cell–cell detachment force. a Schematic of adher-
ent cells with contact angle θc > 0 pulled apart by pipettes
of radius rP . b Schematic when cells are attached to a plate
with cell-plate contact angle θs > 0 and cell–cell contact
angle θc > 0. c Schematic of the mixed system where one
cell is attached to a plate with contact angle θs > 0 and the
other cell is sucked in a pipette with on a substrate and the
other pulled by a pipette with cell-pipette angle θp < 0

pipette, in such a way that the three contact planes–
cell–cell, cell-plate, or the cell-pipette–are parallel (with
their normal along z-axis). Figure 1 shows the three
setups that we analyze.

At steady-state the stress in the cell interior, given
by the hydrostatic pressure, and the cell tension can
be taken to be constant. As the problem is axisym-
metric, the shape of the cell is completely specified by
the function r(z) (see Fig. 1). For all z, the total force
on the cross-section of the cell, perpendicular to z axis
should be equal to the external force, applied along z-
axis, which reads [20]:

2πr(z)γ cos θ(z) − πr2(z)ΔPcell = F, (1)

where r is the radius of the cell at z, γ is the cell tension,
ΔPcell = Pcell − Pext is the pressure difference between
the inside and outside of the cell, θ is the angle between

the tangent to the cell surface at (r, z) and the z−axis,
and F is the external force applied on the cell. Posi-
tive value of F implies pulling force on the cells. See
“Appendix A” for the derivation of Eq. 1. The force
balance along the local normal of the cell is given by
the Young-Laplace equation: ΔPcell = γH, where H
is the mean curvature, which is therefore a constant.
Substituting this in Eq. 1 we get:

r2 − cos θ r rH + rF rH = 0, (2)

where we have defined rF = F/2πγ and rH = 2/H.
Note that both rF and rH can be negative. Equation 2
gives us the full cell shape (see “Appendix B”). In Fig. 2
the shape obtained from Eq. 1 is plotted for a given
value of rF and rH . For a given θ, from Eq. 2 we get

r± =
rH cos θ ± √

r2
H cos2 θ − 4rF rH

2
. (3)

This solution is invariant under the change of sign of
θ. The roots are shown in Fig. 2 for a given value of
rH and rF . For a given radius there are two angles
of equal magnitude and opposite sign, and for a given
angle there are two radii. The shape of the cell doublet
is obtained by imposing the right boundary condition.
For cell–cell contact this is determined by the force bal-
ance in the contact plane. For the simple case of a con-
stant adhesion energy this imposes a constant contact
angle given by:

γ sin θc = γ − w, (4)

where w is the adhesion tension and θc is the contact
angle. The effect of external force on contact angle is
discussed in more details below. The contact radius is
given by Eq. 3 with θ = θc. this implies we need to
further specify which of the two solutions is the contact
radius at the boundary. On the other side the boundary
condition is given by the size of the pipette, or by the
adhesion strength of the cell-plate contact.

The roots in Eq. 2 are real when rH cos2 θ > 4 rF . For
rF > rH/2, there is no solutions to the shape equation.
When there is an angle imposed at the boundary, like
contact angle due to cell–cell adhesion, then the value
of maximum force is rF = rH cos2 θc/4 [20]. Above this
value of force, one of the assumptions of the model
breaks down. If the tension remains constant then the
cell needs to detach. This relation was first analyzed in
Ref. [20], where the detachment force is characterized
in terms of the contact radius and the maximum radius.

The contact radius at detachment is rH cos θc/2. The
force needed to detach the cell–cell contact reads:

Fdc =
1
2
πγ rH cos2 θc. (5)

Note that, depending on the setup, both rH and θc can
be a function of rF .
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Fig. 2 Shape of constant curvature obtained by solving
Eq. 1 for rH = 5 µm and rF = 0.6 µm. The maximum and
the minimum radius are given by Eq. 3 setting θ = 0. The
plot also shows the two radii r± corresponding to θ = π/6.
Note that we get the same solution for θ = −π/6, r+ shown
by the blue dotted line and r− shown by the red dotted line

3 Detachment force for micropipette setup

We now analyze, in detail, the case of two adhered cells
pulled apart by pipettes Fig. 1a). For a cell to be held
in a pipette we need ΔPpip < 0 where ΔPpip is the
pressure difference between the inside and the outside
of the pipette. To know the pressure inside the cell
we need to know the shape of the cell in the pipette,
the cell tension in the pipette, and boundary condi-
tions between the cell and the pipette. For simplicity
and since in experiments careful coating ensures the
absence of adhesion, we ignore any adhesion between
the cell and the pipette. As a result, the extremity of the
tongue inside the pipette is a hemisphere, which corre-
sponds to zero contact angle. Furthermore, we consider
quasi-static situations and we take the cell tension to
be uniform inside and outside the pipette.

The external force applied along the z axis on a plane
perpendicular to the pipette is

F = Fp − πr2
P ΔPpip, (6)

where Fp is the external force applied on the pipette,
and rP is the radius of the pipette. Using the Young-
Laplace equation inside the pipette we get ΔPcell −
ΔPpip = 2γ/rP . There is an important observation to
be made here, for a cell of a given tension, the pressure
inside the cell is fixed by the pressure and the radius of
the pipette.

2γ

rH
= ΔPpip +

2γ

rP
. (7)

We see that rH and rP are not independent, the mean
curvature of the cell can be varied by changing the
pipette radius or the pressure in the pipette. From Eq. 6
and Eq. 7 we see that changing Fp changes rF but it

cell-cell 
detachment

cell-pipette
 detachment

(a) (b)

Fig. 3 a The plot shows the contact radii as a function of
external force obtained from Eq. 3 for θ = θc, where the
two solutions are shown by the dashed and solid part of the
curve. The red plot is for θc = 0 and blue is for cos θc = 0.8,
for both plots rH = 2. b The plot shows the values of the
contact angle and the pipette radius at a given value of
rH = 2 for which the cell–cell or the cell pipette detaches
first

does not lead to a change in rH . However, changing
ΔPpip leads to a change in both rF and rH .

Since the radius of the pipette is fixed, the angle
between the pipette and the cell at cell-pipette contact
changes in response to the applied force. Equation 2
evaluated at r = rP gives the angle at the pipette,
which reads

cos θp =
(r2

P + rHrF )
rP rH

. (8)

We define the force for which θp = 0 as the cell-
pipette detachment force. Substituting Eq. 7 in Eq. 8,
the detachment force for cell-pipette contact reads:

Fdp = −πr2
P ΔPpip. (9)

Thus we see that the cell-pipette detachment force
depends on the pipette pressure and size. Substitut-
ing the value of rH from Eq. 7 in Eq. 5 the cell–cell
detachment force reads:

Fdc =
πrP γ2 cos2 θc

2γ + rP ΔPpip
. (10)

The cell–cell detachment depends not only on the adhe-
sion strength and cell tension (that defines θc) but also
on the pipette size and the pipette pressure.

Whether it is the cell–cell contact or the cell-pipette
contact that detaches first depends on the size of the
pipette and the contact angle. If Fdc < Fdp then the
cell–cell contact detaches before the cell-pipette con-
tact. Figure 3b shows the region in which cell–cell
detachment happens before cell-pipette detachment for
different contact angles and pipette radius. The ratio
of the cell–cell contact size at detachment and for zero
force, as obtained from Eq. 2 is exactly half.
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4 Comparison between micropipette and
microplate setups

In the microplate setups the cells are adhered to a plate
[21–24] (Fig. 1b). Superficially the microplate and the
micropipette setups look similar, in both cases the cell
shape is given by Eq. 2 and the detachment criterion
is given by Eq. 5. However, there is one fundamental
difference, the value of rH in the cell-pipette setup is
set by the pipette radius and pipette pressure (Eq. 7),
whereas rH in the cell-plate setup needs to be deter-
mined self-consistently from the constraint on the cell
volume. One can even think of the micropipette setup as
a constant pressure ensemble and the microplate setup
as a constant volume ensemble.

Figure 4a shows the comparison between the detach-
ment force for the same cells in pipette-pipette and
plate-plate setup. For a given contact angle, the detach-
ment force measured by the latter is consistently higher
than the detachment force measured by the former
setup. This can be understood by noting that the value
of rH is larger in the case of plate-plate setup than that
in the case of pipette-pipette setup, and from Eq. 5 we
see that the detachment force is proportional to rH .

In the cell-plate setup the detachment force depends
on the contact angle, cell tension, cell volume, and cell-
plate adhesion, whereas in the cell-pipette setup the
detachment force depends on the contact angle, cell
tension, pipette radius, and pipette pressure. Figure 4a
shows the effect of cell volume on the detachment force.
The bigger the cell, the smaller is the hydrostatic pres-

Fig. 4 a Detachment force as a function of contact angle.
The blue curve is for micropipette setup for rH = 5 µm,
and the red and green curves are for the microplate setup
with zero cell-plate contact angle, for initial cell radius of
5 µm (red) and 8 µm (green). b Plot showing a comparison
between detachment forces for cell-plate contact angle of
−π/10 (purple solid line),π/10 (purple dashed line), and
zero (green curve). The cell size cell is 8 µm. c Detachment
force in plate-pipette setup. As in the previous plot the blue
curve corresponds to the micropipette setup, the green curve
is for the cell size 8 µm and the red curve is for 5 µm. d
The angle φ at detachment as a function of contact angle.
For force calculation we have taken γ = 1 mN/m

sure difference(larger rH); hence, bigger is the detach-
ment force. Figure 4b shows the effect of the cell-plate
contact angle on the cell–cell detachment force. The
detachment force is larger for smaller contact angle.
This dependence of detachment force on the cell-plate
contact angle can be understood from the inverse rela-
tion between the cell-plate contact angle and rH for a
given cell–cell contact angle. We also note that for the
micropipette setup the detachment force is the same for
positive and negative θc. However, for the microplate
setup it is not the case. This is because the pressure in
the cell is not the same for the positive and negative
value of θc; the pressure in the cells with negative θc is
smaller than that of the cells with positive θc.

We now discuss the case when one cell is pulled
by a pipette while the other is attached to a sub-
strate (Fig. 1c). When the cell plate contact angle is
zero, the plate-pipette setup also corresponds to the
cell detachment experiments on cell-triplets [4]. This
system is asymmetric even if the two cells are iden-
tical. For identical volume and tension the two cells
have different hydrostatic pressures and as a result the
cell–cell interface is curved. The radius of curvature of
the interface is given by rI = 2γc/(P2 − P1), where
γc = γ −w is the tension in the adhesion plane, P1 and
P2 are the hydrostatic pressures in the cells attached
to plate and pipette, respectively. From the geome-
try we get rc/rI = sin φ (see Fig. 1b). For simplicity
we take the surface tension of the two cells to be the
same. Substituting ΔP2 = 2γ/rH2 , ΔP1 = 2γ/rH1 , and
γc = γ sin θc we get: rI = rc/ sin φ. We want to com-
pute the angle φ at the point of cell–cell detachment.
The effective contact angle for the cell attached to the
pipette is θc − φ. The detachment condition gives rc =
rH2 cos (θc − φ) /2, and the detachment force is rF =
rH2 cos2 (θc − φ) /4. Substituting rc we get after few
steps of algebra rH1/rH2 = cos (θc − φ) / cos (θc + φ).
Substituting rF and rH1 in term of φ in the volume con-
servation equation of the cell attached to the microplate
we obtain φ.

Figure 4c shows the comparison between the detach-
ment force for the same cells in pipette-pipette and
plate-pipette setups for two different cell sizes. We see
that the detachment force is consistently larger for the
plate-pipette setup when θc > φ (bold part of the curve)
and just like the microplate setup the lager cell has
larger detachment force. Figure 4d shows the φ as a
function of contact angle for two different cell sizes.
The dotted part of the plot in Fig. 4c corresponds to
the value of θc for which θc < φ at detachment, i.e,
the effective contact angle is less than zero. For these
values of contact angle the detachment force for the
plate-pipette can be smaller than that of the pipette-
pipette.

To summarise, the detachment force measured by the
pipette-pipette setup is smaller than that in the plate-
plate setups. The difference decreases with increasing
contact angle. The detachment force for the plate-
pipette setup as a function of contact angle is non-
monotonic, it can be smaller than the pipette-pipette
detachment force for contact angles smaller than a
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threshold. This result shows the subtlety involved in
interpreting the detachment force as a proxy of adhe-
sion strength.

5 Force dependence of contact angle

The above analysis shows that for the same contact
angle different experimental setups measure different
detachment force. We now take a closer look at what
sets the contact angle and whether taking the contact
angle to be constant under changing external force is
justified.

A prevailing idea is that when the cells are pulled
apart the adhesion molecules are stretched and are more
likely to detach than they are in the absence of force.
Since the adhesion strength is determined by the num-
ber of adhered molecules the adhesion tension then
decreases with increase in force [6,23]. Although this
sounds reasonable, one flaw in this argument is that
the applied force is not directly felt by the adhesion
molecules.

Here we present a simple model of adhesion which
includes linkers that can bind and unbind. When the
linkers can freely diffuse on the cell surface, the adhe-
sion leads to a decrease in cell tension given by the two
dimensional pressure of the gas of mobile bound linkers
[1,8]. In the simple case of dilute bound linkers the two
dimensional pressure is kBTnb, where nb is the density
of bound linkers [1,8]. Substituting w = kBTnb in Eq. 4
gives us the contact angle.

For quasistatic pulling rates, the density of bound
linkers is given by a Boltzmann distribution nb ∝
nb0e

−βk(l−l0)
2/2, where β = 1/(kBT ),kB is the Bolzt-

mann constant, l the length of the linkers, l0 the length
at zero force, and k the stiffness. In practice the qua-
sistatic pulling rate is obtained when it is much slower
than the time it takes for the linker density to reach
equilibrium. Away from the periphery of the adhesion
zone the membrane is flat, the only force on the link-
ers is the hydrostatic pressure difference between the
cell and the adhesion zone. The force balance reads
−knb0(l − l0) = ΔP which gives

nb = nb0e
−βΔP 2/2kn2

b0 . (11)

Substituting in Eq. 4 w = kBTnb and using Eq. 11 the
contact angle reads

sin θc = 1 − kBTnb0

γ
e−βΔP 2/2kn2

b0 . (12)

For the micropipette experiment the value of ΔP can
be maintained constant while changing the applied
force. In this case the contact angle is constant but
it depends on the experimental condition. For the
microplate experiment the value of the contact angle
indeed depends on the applied force as the cell pressure
depends on it. The limit ΔP → 0 gives us the upper

limit of the detachment force and ΔP = 2γ/r0, where
r0 is the radius of the free cell, gives us the lower limit
on the detachment force.

For k ≈ 1 pN/µm = 10−5N/m, ΔP ≈ 100Pa,
nb0 ≈ 1000/µm2 = 1015/m2, β ≈ 2 × 1020J−1 we get
βΔP 2/2kn2

b0 ≈ 1. This shows that the effect of hydro-
static pressure difference on adhesion strength can be
appreciable for physiologically relevant parameter val-
ues.

6 Detachment force with line tension

A clever experiment allowing to visualize the distribu-
tion of E-cadherin, actin and myosin at the cell–cell
interface, shows that under quasistatic conditions, these
three molecules are essentially expelled from the bulk
of the contact region and concentrated in a ring with
an actin-myosin distribution reminiscent of stress fibers
[25]. This structure is very likely to be contractile. To
include its effect on the adhesion mechanics we add a
line tension term in the Eq. 4. The force balance in the
direction tangent to the contact place now reads

γ sin θc = γ − w +
γl

rc
, (13)

where γl is the line tension, which can be positive or
negative. Positive line tension leads to a weaker adhe-
sion compare to that without it. Substituting the con-
tact angle obtained from Eq. 13 in Eq. 2 we get

x4 +
(

2rF

rH
− cos2 θ0

)
x2 +

2 sin θ0rl

rH
x +

r2
F

r2
H

+
r2
l

r2
H

= 0,

(14)

where we have defined x = rc/rH ,γ̄ = 1 − w/γ, and
rl = γl/γ.

From Fig. 5 we see that for positive line tension the
cells detach at a smaller force and smaller contact radius
in comparison to the cell without line tension. For the
particular choice of θ0 of Fig. 5 the relative reduction
in contact radius is only of a few percent whereas the
detachment force has changed by a large factor. rl/rH =
γcd/γrH , where γc is tension in the contractile ring that
is effectively treated as line tension and d is the width
of the ring. For γc ≈ 1.5γ, rH = 5µm and d = 500 nm
we get rl/rH ≈ 0.15 that is used to plot Fig. 5.

7 Discussion

The main conclusion of this work is that the differ-
ent experimental setups discussed in this article mea-
sure different detachment forces for the same doublet of
cells, and in no case measure an adhesion energy. The
detachment force measured in the microplate setup is
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Fig. 5 Plot showing the contact radius as a function of
force for different values of line tension: rl = 0 (gray),
rl/rH = 0.15 (red), and rl/rH = −0.15 (blue). For all the
plots θ0 = π/6. The dotted black lines show the contact
radius and the force at cell–cell detachment

always larger than that measured in the micropipette
one, whereas in the mixed case the detachment force
has an intermediate value. We can infer the adhesion
tension (w in Eq. 4) in all cases if we know some of
the geometric and mechanical parameters related to the
cell and the setup. To compute the adhesion tension
in the pipette-pipette and plate-plate cases the knowl-
edge of different combination of parameters is required.
The detachment force in the former case, depends on
adhesion tension, surface tension, pipette radius, and
hydrostatic pressure in the pipette. Thus to infer adhe-
sion tension the only cell parameter needed is cell ten-
sion. For the plate-plate setup we need to know the cell
volume as well as the cell tension to infer the adhe-
sion tension. One must keep in mind though, that w is
not the adhesion energy but rather the two dimensional
pressure of the gas of mobile bound linkers.

Although generally the focus of the experiments is
on adhesion tension, the detachment force is an impor-
tant physiological parameter in its own right. These two
quantities are related but can be independently modu-
lated.

Our analysis is valid for circularly symmetric geome-
tries and includes cases where the cortex in the contact
zone is strongly depleted, except in a narrow zone close
to the edge of the cell–cell contact. In this case the line
tension introduced in Eq. 13 plays an important role.
Cases, with phase separated domains would require a
different analysis [26].

In this work we consider pulling rates slow enough
that the cell tension can be taken to be constant. For a
finite pulling rate the cortical tension can be approx-
imated as the sum of a static part given essentially
by the cell cortex contractility γss and a dynamical
term due to cortex viscosity γdynamic, that is γ(t) =
γss + γdynamic, where γdynamic ≈ ηh dA/Adt, where η
is 3d viscosity of the cortex, h is cortical thickness,
and A is the cell surface area. We can approximate
dA/Adt ≈ 1/τ , where τ is the timescale of pulling. Tak-
ing γss ≈ ζh with contractility of the cortex ζ ≈ 5 kPa,

h ≈ 200 nm we get γss ≈ 1 mN/m. For η ≈ 105 Pa.s
we get γdynamic ≈ 20/τ mN/m. For strong adhesion
the detachment force is πγrH/2 which leads for slow
pulling rates detachment forces on the order of 10 nN
for rH of few micrometers. Such detachment forces are
consistent with some measurements [4]. Note that the
dynamics of the linkers of the cortex in the contact
place can only lead to a lower detachment force not
higher than obtained in the limit θc = 0. A detachment
force of the order of 100 nN , as noted in other exper-
iments [14], implies that there is a significant viscous
contribution to the stress. A complete dynamic model
is outside the scope of this work but could be studied
using the framework of active surfaces [27,28].
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Appendix A Force balance

The local force balance at any point in space is given by

∇ · σ = fext, (A1)

where σ is total stress and fext is the external force density.
Integrating Eq. A1 over the volume of a closed cylinder of
radius R, aligned along the z-axis between z1 < z < z2,
taking fext = 0 inside the cylinder, and after using Gauss’s
theorem we get

∫ R

0

rdr σzz(r, z1) =

∫ R

0

rdr σzz(r, z2). (A2)

Note that for an axisymmeteric case the radial force inte-
grated over the surface is zero. Ignoring shear stresses, in
the quasistatic approximation, the stress at the end of the
cylinder when z1 is inside the cell and the cell surface is at
r = r(z1) reads:

σzz(r, z1) =

⎧⎪⎨
⎪⎩

−Pext r(z1) + w < r < R

σcell r(z1) − w ≤ r ≤ r(z1) + w

−Pcell 0 < r < r(z1) − w

,

(A3)

where 2w is the width of the cell cortex and σcell is the stress
in the cortex. Similarly, the stress at the other end of the
cylinder when z2 is inside the pipette reads:

σzz(r, z2) =

⎧⎪⎨
⎪⎩

−Pext r(z2) + wp < r < R

σpip r(z2) − wp ≤ r ≤ r(z2) + wp

−Ppip 0 < r < r(z2) − wp

,

(A4)

where 2wp is the thickness of the pipette and σpip is the
stress in the pipette surface. Substituting the stresses in
Eq. A2 we arrive at Eq. 1 in the main text:

2πr(z)γ cos θ(z) − πr2(z)ΔPcell = F, (A5)

where γ = 2σcellw, F is defined in Eq. 6, with FP =
4πRpσpipwp.

Appendix B Shape for constant curvature

We can obtain the shape of the cell form Eq. 1 [21,29]. The
shape is of constant curvature surface shown in Fig. 2. The
shape is axisymmetric, we parametrize it by arc length s
starting from sc at the cell–cell contact to sp at the cell-
pipette contact. Using Eq. 1 and dr/ds = sin θ we get

dr

ds
= ±

√
1 −

(
r

rH
+

rF
r

)2

. (B1)

The positive and negative sign corresponds to positive and
negative θ, respectively. After integration this gives

± 2s

rH
= − arccos

[
(r2 − r2max) + (r2 − r2min)

(r2max − r2min)

]
, (B2)

where rmax = (rH +
√

r2H − 4rHrF )/2 and rmin = (rH −√
r2H − 4rHrF )/2. Note that rH = rmax+rmin. The constant

of integration is chosen such that s = 0 corresponds to r =
rmax.

r(s) = rmax

√
1 − α sin2

(
s

rH

)
, (B3)

where α = 1 − r2min/r2max. Using Eq. 1 and dz/ds = cos θ,
we get

dz

ds
=

(
r

rH
+

rF
r

)
, (B4)

Upon integration this gives

z(s) = rH

[
rmax

rH
E2

(
∓ s

rH
, α

)
+

rF
rmax

E1

(
∓ s

rH
, α

)]
,

(B5)

where E1 and E2 are incomplete elliptic integrals of the first
and second kind, respectively. We have set the origin of z-
axis at s = 0. Assuming the pipette and the cell–cell contact
to lie on the opposite side of the maximum and within the
two minima, the distance between the cell–cell contact and
the pipette is L = z(−sc) + z(−sp), where sc and sp are
obtained from B2 for r = rc and r = rP , respectively. The
separation between the pipettes is given by

2L = −2rH

(
rmax

rH

[
E2

(
sp
rH

, α

)
+ E2

(
sc
rH

, α

)]

+
rF

rmax

[
E1

(
sp
rH

, α

)
+ E1

(
sc
rH

, α

)])
. (B6)

The negative sign is obtained using the relation E1,2(s, α) =
−E1,2(−s, α).

The surface area and the volume of the cell can also be
obtained in term of elliptic integrals [23]. Note Eq. B6 is the
expression of length for both plate and the pipette setup.
Since rH is know for the pipette setup this equation gives
us the separation for a given force. However, for the plate
setup, we need an additional equation to compute rH . A
constraint of volume provides this additional constraint that
can be used to compute rH .

The surface area of the cell outside the pipette is given
by

A =

∫ sp

0

2πr(s)ds +

∫ sc

0

2πr(s)ds. (B7)

Substituting r and integrating we get:

A = −2πrHrmax

[
E2

(
sp
rH

, α

)
+ E2

(
sc
rH

, α

)]
. (B8)

The volume of the cell outside the pipette is given by

V =

∫ zp

0

πr2dz +

∫ zc

0

πr2dz. (B9)
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3. J.L. Mâıtre, C.P. Heisenberg, Curr. Opin. Cell Biol. 23,
508 (2011). https://doi.org/10.1016/j.ceb.2011.07.004
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