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Abstract The study of phoretic transport phenomena under non-stationary conditions presents several
challenges, mostly related to the stability of the experimental apparatus. This is particularly true when
investigating with optical means the subtle temperature and concentration fluctuations that arise during
diffusion processes, superimposed to the macroscopic state of the system. Under these conditions, the tenu-
ous signal from fluctuations is easily altered by the presence of artifacts. Here, we address an experimental
issue frequently reported in the investigation by means of dynamic shadowgraphy of the non-equilibrium
fluctuations arising in liquid mixtures under non-stationary conditions, such as those arising after the impo-
sition or removal of a thermal stress, where experiments show systematically the presence of a spurious
contribution in the reconstructed structure function of the fluctuations, which depends quadratically from
the time delay. We clarify the mechanisms responsible for this artifact, showing that it is caused by the
imperfect alignment of the sample cell with respect to gravity, which couples the temporal evolution of the
concentration profile within the sample with the optical signal collected by the shadowgraph diagnostics.
We propose a data analysis protocol that enables disentangling the spurious contributions and the genuine
dynamics of the fluctuations, which can be thus reliably reconstructed.

1 Introduction

Light scattering methods represent a noninvasive
approach for the characterization of the transport coef-
ficients of simple and complex fluids, by exploiting the
fact that the fluid undergoes continuously spontaneous
temperature and concentration fluctuations determined
by the thermal agitation of the molecules [1]. These
fluctuations are always present in fluids, even under
equilibrium conditions, in the absence of a macroscopic
temperature or concentration gradient. According to
Onsager regression hypothesis, equilibrium fluctuations
relax by following the same equations of the macro-
scopic state. Therefore, the statistical characteriza-
tion of fluctuations under equilibrium conditions allows
investigating transport processes without the need to
induce a macroscopic non-equilibrium process. This fea-
ture has made light scattering methods a very popular
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and powerful tool for the characterization of complex
fluids.

During the last 25 years, it has been shown that
macroscopic transport processes are accompanied by
“giant” non-equilibrium temperature and concentra-
tion fluctuations, whose amplitude can be orders of
magnitude larger than those of equilibrium fluctua-
tions at small wave vectors [2,3]. Indeed, in the case
of mass diffusion processes, it has been shown that
these fluctuations represent mass currents at the meso-
scopic scale, whose overall contribution is the macro-
scopic Fick’s flux [4,5]. Due to the fact that they occur
in a fluid stratified in density, these fluctuations are
strongly affected by the gravity force at small wave vec-
tor, preventing their diffusive relaxation [6–10]. Due to
their large amplitude, non-equilibrium fluctuations rep-
resent a promising and powerful tool to characterize the
transport properties of complex fluids [11–13], includ-
ing phoretic coefficients of macromolecules in exter-
nal fields, which cannot be determined under equilib-
rium conditions. In the past, a huge attention has been
devoted to the theoretical and experimental investiga-
tion of fluctuations occurring either at equilibrium or
during a macroscopic transport process under steady-
state conditions [2]. In both these ideal configurations,
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the stationarity of the process allows the accumulation
of a statistical sample as large as desired of the fluc-
tuations, at the expense of a long measurement time.
Therefore, using dynamic light scattering techniques it
is possible to achieve a reliable characterization of the
mean square amplitude and relaxation time of feeble
temperature and concentration non-equilibrium fluctu-
ations [14–16]. A limitation of traditional dynamic light
scattering methods is that, to maximize the contrast of
the signal, one needs to collect the intensity fluctua-
tions from a single coherence area, thus strongly limit-
ing the spatial extension of the volume of sample that
can be investigated. Under these conditions, a statisti-
cal characterization of the fluctuations is possible only
by performing long measurements, so that the system
can explore all the accessible states. A further limita-
tion of traditional dynamic light scattering methods is
that the time correlation function of the scattered light
is typically collected at a single wave vector at a time.
Starting from the beginning of this century, several dif-
ferent optical techniques that allow overcoming the lim-
itations of DLS have been developed [17]. These tech-
niques include near-field scattering [18–20], quantita-
tive dynamic shadowgraphy [10] and Schlieren [21,22],
and differential dynamic microscopy [23–25], which typ-
ically work by collecting on a matrix sensor the light
scattered in the near field where it interferes with the
main probe beam that illuminates the sample. A great
advantage of these near-field methods is that, due to the
interference with the main beam, the signal collected by
the sensor is proportional to the scattered field rather
than to the scattered intensity, a feature that deter-
mines a sensitivity much larger than that of traditional
far-field scattering methods. The analysis of the signal
involves the Fourier decomposition of the interference
patterns collected in the near field and their processing
to achieve a statistical characterization of the static and
dynamic structure factors of the sample under inves-
tigation [17]. With respect to DLS, which requires a
small scattering volume to achieve an optimal contrast
of the signal, near-field methods work with arbitrar-
ily large scattering volume with two remarkable advan-
tages. The first one is that the scattered signal can be
collected simultaneously at several different wave vec-
tors. With the currently available sensors, whose resolu-
tion exceeds one megapixel, the number of wave vectors
explored can be typically of the order of one million.
The second advantage of these methods is that the large
number of independent wave vectors explored allows to
perform an ensemble average of different states of the
system. In the case of ergodic systems, this ensemble
average is equivalent to the time average performed in
DLS, which requires however much longer measurement
times. The significant advantages of near-field meth-
ods have made them increasingly popular in the sci-
entific community. Near-field scattering has been prof-
itably used to investigate colloidal aggregation induced
by critical Casimir forces under microgravity conditions
[26]. DDM has been applied widely to the investiga-
tion of biological systems [27–30], non-equilibrium fluc-
tuations in colloidal suspensions [31], and near-critical

binary mixtures [32] and will be used to investigate
fluctuations in sedimenting colloidal suspensions under
various gravitational conditions on the International
Space Station within the framework of the “Sediment-
ing Colloids” project of the European Space Agency.
Quantitative Shadowgraphy is the technique of choice
to investigate non-equilibrium fluctuations induced by
thermal gradients in single component liquids [33] and
in multi-component liquid mixtures [11,34,35], where
the temperature gradient induces a mass flow through
the Soret effect. It has been profitably used to investi-
gate non-equilibrium temperature fluctuations in CS2

[36] and concentration fluctuations in a polymer solu-
tion [13,37,38] in the absence of gravity in the frame-
work of the GRADFLEX project of the European
Space Agency, which flew on FOTON M3 in 2007. All
these near-field methods have proven their effectiveness
for the characterization of fluctuations in equilibrium
and non-equilibrium systems under stationary or quasi-
stationary conditions in the presence of small gradients.
These are the ideal conditions that allow a theoreti-
cal modeling of fluctuations by using linearized hydro-
dynamics [2,39,40]. Currently, the attention has been
shifted to the investigation of non-equilibrium fluctu-
ations in systems undergoing non-stationary diffusion
processes [38,41–43], because many natural and tech-
nological diffusion processes occur under these con-
ditions that cannot be tackled easily with linearized
hydrodynamics, unless an adiabatic approximation can
be made to separate macroscopic and mesoscopic vari-
ables on the basis of their different evolution times [44].
On Earth, gravity determines a stabilization of non-
equilibrium fluctuations at small wave vectors [6–8,45]
and the macroscopic and mesoscopic variables can be
separated. In the absence of gravity, this separation is
not possible, and the diffusion process involves simul-
taneously all the length scales from the microscopic to
the macroscopic ones. For these reasons, the investiga-
tion of transient diffusion processes in the absence of
gravity has a broad fundamental interest. Indeed, cur-
rently, several space projects of the European Space
Agency are focused on the fundamental investigation
of fluctuations during transient diffusion processes in
complex fluids under various gravitational conditions,
because the understanding of the stability of liquid mix-
tures in space is a strategic habilitating factor for space
exploration [46,47]. These projects include Giant Fluc-
tuations (Neuf-Dix) and TechNES on the International
Space Station (ISS) [48,49], Sedimenting Colloids on
the Flumias facility of the ISS, and NESTEX on the ISS
and the Chinese Space Station. The facility developed
for the Giant Fluctuations project is a sophisticated
2-colors shadowgraph diagnostics in combination with
thermal gradient cells, with optical windows perpendic-
ular to the gradient. The imposition of a thermal gra-
dient to a multi-component liquid mixture determines
a mass flow of its components and in turn the develop-
ment of macroscopic concentration gradients that give
rise to non-equilibrium concentration fluctuations.
The mutual alignment of the temperature gradient ∇T
and gravitational acceleration g strongly affects the sta-
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bility of the sample during experiments. When the ther-
mal gradient is perpendicular to the gravitational accel-
eration, the configuration is that of a thermogravita-
tional column [50], and the sample is unstable against
convection, which occurs in the presence of an arbitrar-
ily small gradient. The case of interest for the investi-
gation of non-equilibrium fluctuations is the stable con-
figuration where the temperature gradient is parallel to
the acceleration of gravity and the density profile inside
the sample is stable [2]. In practice, attaining an exper-
imental configuration where ∇T and g are perfectly
parallel is impossible, and the two will be in general
aligned within an arbitrarily small tilt angle θ.
In this work, we investigate the impact of such a small
inevitable tilt on the investigation of non-equilibrium
fluctuations by means of quantitative shadowgraphy.
We show that the tilt does not affect measurements per-
formed under steady-state conditions, but determines
the presence of a spurious quadratic term that affects
the long time behavior of the correlation function of
non-equilibrium fluctuations during transient diffusion
processes. The modeling of the propagation of the beam
shows that the presence of a tilt gives rise to a compo-
nent of the concentration gradient perpendicular to the
beam, which determines its deflection. During a tran-
sient diffusion process, this deflection is time-dependent
and gives rise to a gradual shift of the shadowgraph
images collected by the sensor. The deflection of the
beam occurs under generic conditions, both in the pres-
ence of a linear concentration profile, or of a nonlinear
concentration profile characterized by a concentration
dependence of the diffusion coefficient [43]. We develop
a protocol for the analysis of the experimental results
that allows decoupling this spurious contribution from
the actual time correlation function of non-equilibrium
fluctuations.

2 Materials and methods

2.1 Sample

All experiments presented in this paper are performed
on a binary mixture of polystyrene polymer of molec-
ular weight 9,100 g mol−1 and toluene. The sample is
prepared with a polystyrene concentration c = 2.0%
w/w. The same sample has been utilized in previous
work in the area of non-equilibrium fluctuations, such
as the GRADFLEX space mission [37], and its thermo-
physical properties are well characterized in the litera-
ture [51–53]. For reference, at 30◦C, the solutal diffusion
coefficient is D0 = 1.97 ·10−6 cm2/s, the kinematic vis-
cosity ν = 6.39 · 10−3 cm2/s, the Soret coefficient is
ST = 6.486 · 10−2 K−1, the concentration optical con-
trast factor is dn

dc |T,p = 8.951 · 10−2 and, finally, the
thermal conductivity is κ = 0.1309 W/(m K).

2.2 Experimental setup

The sample is confined laterally by an O-ring with
inner diameter of 43 mm and sandwiched between two

sapphire windows through which a temperature gradi-
ent is applied (Fig. 1a). The thickness of the sample
is defined by the distance between the two sapphire
windows, which is determined by five calibrated Delrin
spacers with a thickness h = 1.30 mm. The temperature
of the sapphire windows is controlled by two annular
thermoelectric devices (TEDs), with an inner opening
that provides optical access to a circular region with
a diameter of 27 mm. One side of each TED is ther-
mally coupled to a sapphire window by means of an
aluminum ring, while the other side is in contact with
an annular flange maintained at a constant tempera-
ture of 19.0 ◦C by means of a water circulating thermo-
stat. In this work, we consider both experiments per-
formed under stationary and non-stationary NE condi-
tions. In all cases, at the beginning of the experiment,
the sample is in a stratified state, characterized by a
steady linear concentration gradient generated by ther-
mophoresis. This is obtained by imposing a steady tem-
perature gradient across the sample for a suitably long
time (∼ 4000 s), heating from above, so that a station-
ary concentration gradient ∇c = ST c(1 − c)∇T grad-
ually develops in time. Experiments under stationary
conditions are performed maintaining the same tem-
perature difference for their whole duration. Experi-
ments under non-stationary conditions are performed
by first bringing the sample into a stationary condi-
tion and then at the initial time t = 0, suddenly turn-
ing off the temperature gradient, so that the sample
gradually relaxes toward a homogeneous equilibrium
state. Under these conditions non-equilibrium temper-
ature fluctuations are not present, and the exponential
decay of the correlation function is entirely determined
by the relaxation of non-equilibrium concentration fluc-
tuations. After a short transient with a duration of the
order of τT ≈ 100 s dictated by the thermal inertia of
the sample cell, the system reaches an isothermal state,
where the temperature profile is fully relaxed and the
associated temperature NEFs are no longer present.
The relaxation of the concentration profile requires a
much longer time τc ≈ h2/(D0π

2) � 900 s, during which
time-dependent concentration NEFs are expected to be
still detectable. The experiments described above have
been repeated multiple times, starting from different
initially imposed temperature differences ΔT (4 K, 8
K, and 17 K). The cell is mounted on a support that
can be tilted, so to achieve different values of the angle
θ between the direction perpendicular to the cell plates
and the acceleration of gravity and to mimic the small
unavoidable misalignments present in experiments.

2.3 Image acquisition and analysis

Each experiment consists of the acquisition, starting
from the initial time t = 0, of a sequence of N = 60, 000
images of the sample at a constant frame rate f0 = 30
Hz. To visualize non-equilibrium fluctuations, images
are acquired using an optical technique called dynamic
shadowgraphy [10]. The sample is illuminated with a
collimated, spatially coherent beam of light, which is
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partially scattered by fluctuations of the index of refrac-
tion determined by temperature and concentration fluc-
tuations. As the transmitted beam propagates away
from the fluid layer, it interferes with the scattered light
and gives rise to an intensity pattern on the sensor. The
distribution of this pattern reveals the non-uniformity
of the local refractive index [54,55], and the statistical
analysis of the shadowgraph images allows characteriz-
ing both the static and dynamic structure factor of the
sample. To apply this technique, we employ the opti-
cal setup shown in Fig. 1a. The light passing through
the sample and generating the images is emitted by
a superluminous diode (Superlum, SLD-MS-261-MP2-
SM) with a wavelength of λ = (675 ± 13) nm. The
diode is placed on the focal plane of an achromatic
doublet with a focal length of f = 200 mm, which col-
limates the beam. Dynamic shadowgraph images were
acquired with a scientific sCMOS camera (PCO.panda)
positioned at distance z = 45 cm from the sample cell.

The total duration of the acquisition tmax = N/f0 =
2000 s exceeds the characteristic diffusion time across
the sample cell τc � 900 s. The image resolution, upon
4×4 binning, is 512×512 pixels, while the effective pixel
size, is deff = 26µm. The collected images are analyzed
according to a Fourier domain-based differential algo-
rithm, often referred to as differential dynamic analysis
(DDA) [10]. In the context of optical microscopy, the
same approach is better known as differential dynamic
microscopy (DDM) [23,25]. A detailed description of
the method can be found in Refs. [23,25]. In brief, DDA
is based on the calculation of the so-called image struc-
ture function:

D(q,Δt) = 〈|Î(q,Δt + t) − Î(q, t)|2〉t, (1)

where Î(q, t) is the two-dimensional Fourier transform
of the image intensity distribution I(x, t) collected at
time t, and the symbol 〈·〉t indicates a temporal aver-
age with a fixed time delay Δt. Under suitable condi-
tions, namely, if a linear space-invariant relation exists
between image intensity and refractive index distribu-
tion within the sample [25], D(q,Δt) encodes informa-
tion on the relaxation dynamics and the mean squared
amplitude of the corresponding Fourier mode, with
wave vector q.

The analytical models used to extract such informa-
tion will be discussed in more detail in the next section.

Under non-stationary conditions, we perform DDA at
different stages during the relaxation of the concentra-
tion profile, considering time windows of amplitude T
= 200 s, centered around t̄ = [300, 450, 675, 1013, 1520,
1800] s. Accordingly, the first image to be considered
in the analysis is the one collected at t = 200 s, when
the contribution of thermal NEFs, as well as possible
artifacts due to mechanical displacements of parts of
the setup induced by thermal expansion, is expected to
be negligible.

3 Modeling the effect of a uniform drift in
the images

A typical shadowgraph image of the gradient cell
under spatially coherent illumination exhibits a strong
optical background, on top of which the subtle inten-
sity modulations due to temperature and concentra-
tion fluctuations are superimposed (Fig. 1b). The back-
ground intensity distribution results from the super-
position of the diffraction patterns of dust particles,
scratches on the surfaces of lenses and confining plates,
and impurities present along the optical path. In a typ-
ical shadowgraph experiment performed under station-
ary conditions, the optical background does not affect
the measurement, as it is efficiently subtracted by the
differential procedure.

In Fig. 1, we report representative image sequences
and image structure functions obtained in experiments
performed under stationary (c,d) and non-stationary
(e,f) conditions, respectively. As can be appreciated
from the figure, while in stationary conditions taking
the difference between two images collected at different
time points is very effective in removing all stray-light
contributions, this is not the case for the non-stationary
experiment. In this case, the image differences display
a superimposed intensity pattern resembling the static
background (see Fig. 1a), whose contrast increases with
the time delay between the images, a behavior compat-
ible with the presence of a rigid translation of the whole
image.

To test this hypothesis, we introduce in this sec-
tion a simple analytical model accounting for the effect
of a slow, uniform drift in the images collected dur-
ing a dynamic shadowgraph experiment. We show that
such a drift introduces a spurious additive term in the
image structure functions, similar to the one shown in
Fig. 1f, whose amplitude and functional form can be
calculated from the drift velocity and the spectrum of
the image background. In the next sections, the valid-
ity of the model will be systematically tested against
the experimental data, and the physical origin of the
drift observed during the transient phase will be inves-
tigated.

Following Ref. [24], we write the image intensity dis-
tribution I(x, t), as the sum of three independent con-
tributions

I(x, t) = δI(x, t) + I0(x) + IN (x, t), (2)

where δI(x, t) accounts for the intensity fluctuations
generated by refractive index inhomogeneities within
the sample, I0(x) is the background intensity distribu-
tion, and the term IN (x, t) accounts for the noise in the
detection chain. We assume IN (x, t) to have zero-mean
〈IN 〉 = 0 and to be delta-correlated in space and time
〈IN (x + Δx, t + Δt)IN (x, t)〉 = 〈I2

N 〉δ(Δx)δ(Δt).
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Fig. 1 Dynamic shadowgraph experiment in stationary
and non-stationary conditions: a Schematic representation
of the experimental apparatus, including the thermal gradi-
ent cell and shadowgraph diagnostics. The distance between
the sample cell and the camera sensor is z = 45 cm. b Rep-
resentative raw shadowgraph image. The red dashed square
corresponds to the ROI shown in (c) and (e). c Sequence of
images collected at different times in stationary conditions
during a typical experiment, where a steady temperature
difference ΔT = 17 K is imposed across the sample. The
image collected at a reference time t = 0 has been subtracted
from all the other images. This enables efficiently removing
the optical background and highlighting the contribution
of thermal and solutal NEF to the image intensity. d Cor-

responding normalized image structure functions d(q, Δt)
for different q-values in the range [0.72–3.2] ·102 cm−1 fea-
turing two distinct decays corresponding to the relaxation
of thermal and solutal NEF, respectively. e Sequence of
images collected at different times in non-stationary con-
ditions, after switching off, at time t = 0 s, the thermal
gradient. As a reference image, we consider the one col-
lected at time t = 200 s, which has been subtracted from all
the other images. f Corresponding normalized image struc-
ture functions d(q, Δt) for different q-values in the range
[0.72,3.2] ·102 cm−1, displaying a single decay (correspond-
ing to the relaxation of solutal NEF) followed by a marked
divergence for long time delays
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3.1 Stationary conditions: no drift

We start considering the case where there is no drift in
the images. Substituting Eq. 2 into Eq. 1, we obtain:

D(q, Δt) = 〈|δÎ(q, Δt + t) − δÎ(q, t)|2〉t + 2〈|ÎN (q, t)|2〉t

= A(q)(1 − �{f(q, Δt)}) + B(q), (3)

where A(q) = 2〈|δÎ(q, t)|2〉t is proportional to the
static scattering amplitude of the fluctuations [10],
B(q) = 2〈|ÎN (q, t)|2〉t accounts for the camera noise,
the symbol �{·} stands for the real part, and f(q,Δt)
is the intermediate scattering function (ISF), which
encodes the dynamics of the fluctuations [56]. If, as
in the case of interest for this work, the dynamics is
isotropic, one can also consider the azimuthally aver-
aged image structure function D(q,Δt) =
〈D(q,Δt)〉q=

√
q2
x+q2

y
. If the dynamics is characterized

only by a single exponential decay, the image structure
function takes the form:

D(q,Δt) = A(q)
(
1 − e−Γ (q)Δt

)
+ B(q), (4)

where Γ (q) is the relaxation rate of the process.
As shown in Fig. 1d, the normalized image struc-

ture functions d(q,Δt) = D(q,Δt)−B(q)
A(q) under stationary

conditions at large delay times saturates to a constant
value, due to the decorrelation of the fluctuations.

3.2 Non-stationary conditions: uniform drift

We consider now the effect of a rigid translation of the
whole image with constant velocity v0 during the exper-
iment. Let us introduce the “moving” intensity distribu-
tion IM (x, t) which, in terms of the stationary intensity
distribution I(x, t), reads

IM (x, t) = I(x + v0t, t).

Taking a spatial Fourier transform of both sides, and
applying the shift theorem, the above equation takes
the form

ÎM (q, t) = e−jq·v0tÎ(q, t). (5)

We can now calculate the image structure function

D(q,Δt) = 〈|ÎM (q,Δt + t) − ÎM (q, t)|2〉t,

which, using the expression in Eq. 2, can be written as

D(q, Δt) = |1 − e−jq·v0Δt|2|Î0(q)|2
+〈|e−jq·v0ΔtδÎ(q, t + Δt) − δÎ(q, t)|2〉t + 2〈|Î2

N (q, t)〉t,

(6)

or, using the notation of Eq. 3

D(q,Δt) = 2[1 − cos (q · v0Δt)]|Î0(q)|2
+A(q)[1 − cos (q · v0Δt)�{f(q,Δt)}
− sin (q · v0Δt)
{f(q,Δt)}] + B(q),

(7)

where 
{·} stands for the imaginary part. Assuming
that the displacement Δx of images during the time
interval Δt is small |Δx| = |v0|Δt � 1/q, we can
expand the cosine and sine functions up to the second
order in |v0|qΔt

cos (q · v0Δt) � 1 +
1
2
(q · v0Δt)2,

sin (q · v0Δt) � q · v0Δt.

Substitution into Eq. 7 yields

D(q,Δt) � A(q)(1 − �{f(q,Δt)}
−q · v0Δt 
{f(q,Δt)}) + α(q)Δt2 + B(q), (8)

where α(q)is related to the drift velocity v0 through
the relationship

α(q) = (q · v0)2|Î0(q)|2. (9)

If the genuine dynamics is isotropic and characterized
by a single exponential relaxation with rate Γ (q), the
azimuthal average of Eq. 8 takes the form

D(q,Δt) � A(q)
(
1 − e−Γ (q)Δt

)
+ α(q)Δt2 + B(q),

(10)

with

α(q) =
1
2
q2v2

0 |Î0(q)|2. (11)

In obtaining Eqs. 10 and 11, we have made use of the
identities 〈q ·v0〉q=

√
q2
x+q2

y
= 0, and 〈(q ·v0)2〉q=

√
q2
x+q2

y

= 1/2q2v2
0 . Equations 10, 11 represent the main result

of this section, as they show how a slow global drift
in the images gives rise to an additive term, quadratic
in Δt, in the image structure function D(q,Δt), whose
q-dependent amplitude results from a combination of
the drift velocity and the spectrum of the background
intensity distribution.

It is worth mentioning that, besides explicitly includ-
ing a drift term in the image structure function as
done in Eq. 10, other strategies could be attempted to
deal with a drift in the data. For example, at least in
principle, the effect of a global drift could be removed
by applying a registration algorithm (see, e.g., [57])
to the images before performing DDA. Unfortunately,
this approach does not represent a viable option in the
present case for two main reasons. On the one hand,
as discussed in detail in the following section, the drifts
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observed in our experiment are very slow (correspond-
ing to displacements between consecutive frames of the
order or 10−3 pixels). As such, they are not easy to cap-
ture by the cross-correlation algorithms used by most
registration routines and are even more challenging to
compensate for with the required precision. Moreover,
not all the features present in the images participate
in the drift. For example, the dark spots due to dust
particles present on the camera sensor’s surface are
perfectly static. This situation, corresponding to the
simultaneous presence of different features in relative
motion, cannot be dealt with by any rigid registra-
tion procedure. This feature, combined with the fact
that the optical background has much stronger con-
trast than the fluctuating signal, also prevents the use
of other variants of DDA like, for example, far-field
DDM [58] which should be intrinsically less sensitive
to drifts.

A further alternative strategy could be, instead of
performing the azimuthal average of the image struc-
ture function, to consider only q-vectors orthogonal to
the drift direction, i.e., such that q · v0 = 0, as this
would automatically eliminate all drift-related terms in
Eq. 8 (see, e.g., Ref. [59]). Unfortunately, besides intro-
ducing an additional step in the analysis (the iden-
tification of the drift direction, which is not known
a priori), this procedure would also lead to a dra-
matic degradation of the signal-to-noise ratio in the
image structure functions, due to the poorer statis-
tics. Given the extremely low signals typical of these
experiments, this would make practically impossible
to extract any meaningful information on the sample
dynamics.

4 Results and discussion

In the previous section, we obtained an analytical
expression for the image structure function in the pres-
ence of a uniform drift with constant velocity v0 in the
images. In the following, we show that this model accu-
rately captures the dynamical behavior observed during
a typical experiment in non-stationary conditions. As
described in Sect. 2, we consider experiments in which
the system undergoes a transition from a stationary
non-equilibrium condition (characterized by the pres-
ence of a steady temperature and concentration gradi-
ent across the sample) toward an equilibrium, homo-
geneous, one. After the temperature gradient is turned
off, the temperature inside the sample becomes homo-
geneous nearly instantaneously, because the relaxation
time of the macroscopic concentration profile is much
larger than the thermal equilibration time. For this rea-
son, the system is always gravitationally stable and we
can rule out the presence of thermohaline convection.

Representative normalized image structure functions
obtained at different times t̄ after suddenly switching
to zero the initial temperature difference ΔT = 17 K
are reported in Fig. 2 a-b, for two different wave vectors
q = 1.3 · 102 cm−1 (a) and 3.9 · 102 cm−1 (b). Contin-

Fig. 2 Differential analysis: a, b Representative normal-
ized image structure functions of non-equilibrium concentra-
tion fluctuations during a transient diffusion process at dif-
ferent t̄ ranging from t̄ = 300 s (blue) to t̄ = 1800 s (green),
for q = 1.3 · 102 cm−1 a and q = 3.9 · 102 cm−1 b. The con-
tinuous lines are the best fitting curve assuming as a model
Eq. 10. Time evolution of the mean squared amplitude c and
relaxation rates (d) of non-equilibrium fluctuations during
the approach to steady state. In (c), red-squared symbols
represent the noise contribution B(q), which is identical at
all the times t̄. A(q) exhibits oscillations in q, due to the
modulation of the typical shadowgraph transfer function
[54]. In d, the dot-dashed lines correspond to the best fitting

curve to Γ (q) with a model Γ (q) = D0q
2
[
1 +

(
qro
q

)4]
[44].

The black vertical dashed lines correspond to the q-values of
a, b, respectively. e Ratio between α(q) obtained from the fit
to the ISFs with Eq. 10 and the power spectrum of the static
image intensity optical background |Î0(q)|2. The red dashed
lines represent the best fitting curve with a quadratic model.
The fit has been performed over wave vectors in the range
[2.5–5.5] · 102 cm−1. Inset: drift velocity estimated from the
fit plotted as a function of time

123



   25 Page 8 of 12 Eur. Phys. J. E           (2024) 47:25 

uous lines correspond to the best fitting curves using
the model in Eq. 10. From the fitting procedure, we can
simultaneously determine, for each time t̄, the ampli-
tude A(q) and the relaxation rate Γ (q) of the solutal
NEFs (Fig. 2c,d), the noise B(q) (Fig 2c), as well as the
drift-related term α(q) (Fig. 2e).

A thorough discussion of the temporal evolution of
the statics and the dynamics of NEFs during the tran-
sient phase leading to equilibrium is beyond the scope
of this technical paper and will be addressed in future
work. Here, we merely note that the q-dependent relax-
ation rate Γ (q) (Fig. 2d)) is well captured at all times
t̄ by the theoretical expression [44]

Γ (q) = D0q
2

[
1 +

(
qro

q

)4]
, (12)

which holds when a constant concentration gradient
∇c is present across the sample. In the above expres-
sion, qro = (χg∇c/νD0)1/4 is the so-called roll-off wave
vector, which describes the effect of gravity on NEFs
[6,22,31], where χ is the solutal expansion coefficient.
Fitting Eq. 12 to the data enables estimating the mass
diffusion coefficient, which is almost time-independent
D = (1.45 ± 0.04) · 10−6 cm2/s, as well as the roll-off
wave vector qro, which displays over time a progressive
shift toward lower and lower values, as predicted by
theory.

According to Eq. 11, we expect the ratio 2α(q)/
|Î0(q)|2 to scale as q2, the proportionality constant
being the squared modulus v2

0 of the drift velocity. As
it can be appreciated from Fig. 2e, the ratio displays
a rather clean quadratic dependence on q, at least in
the wave vector range q ∈ [2.5 − 5.3] · 102 cm−1, which
corresponds to the regime where the contribution of
the drift-related term to the image structure function
is particularly relevant. Exploiting Eq. 11, we can thus
evaluate the global drift velocity by fitting a quadratic
model to 2α(q)/|Î0(q)|2. The static background contri-
bution |Î0(q)|2 is obtained as the azimuthal average of
the power spectrum of 〈I(x, t)〉t, where the temporal
average is performed over the considered time window
(see also Eq. 2).

The absolute value v0 of the estimated drift velocity
decreases over time while approaching the stationary
regime (inset of Fig. 2e). Taken together, the results
show that the simple model introduced in the previous
section provides a fully consistent formal description of
the experimental structure functions of non-equilibrium
fluctuations during a transient diffusion process, and
it is effective in decoupling the genuine dynamics of
NEFs and the spurious drift associated with the rigid
translation of the shadowgraph images at all stages of
the experiment.

A problem that remains open is the physical origin of
the drift observed during the relaxation of the concen-
tration profile. A useful indication to address this point
comes from the inspection of the temporal evolution of
the estimated drift velocity (see inset of Fig. 2e), which
displays a marked decrease over time while approaching

the stationary regime. This observation, combined with
the fact that we do not observe any drift under station-
ary conditions, suggests that the drift could be directly
related to the progressive relaxation of the concentra-
tion gradient across the cell. To test this hypothesis, we
repeated the above-described experiment for different
values of the temperature difference ΔT between the
plates of the gradient cell, and thus of the initial con-
centration gradient ∇c = ST c(1 − c)ΔT/h. As can be
observed in Fig. 3a, the drift velocity clearly depends
on the imposed temperature difference. Plotting the
velocity measured at a fixed time point t̄ = 300 s as a
function of ΔT reveals a nice linear dependence (inset
of Fig. 3a), indicating that the drift velocity is directly
proportional to the amplitude of the concentration gra-
dient across the sample.

A possible explanation for this behavior can be pro-
vided as follows. In a liquid mixture subject to a ther-
mal gradient ΔT/h, a concentration gradient builds up,
due to the Soret effect. Neglecting gravity, the con-
centration gradient would be perfectly parallel to the
imposed temperature gradient and thus orthogonal to
the confining plates. On the other hand, in the pres-
ence of gravity, assuming that the sample cell is slightly
inclined with respect to the horizontal direction, the
stationary state of the mixture would entail the pres-
ence of a non-convective flow parallel to the confining
plates, with a velocity field that deforms the concentra-
tion profile leading to isoconcentration surfaces perpen-
dicular to gravity [50,60,61]. This situation is schemat-
ically represented in Fig. 3b, where we have assumed
without loss of generality that the average index of
refraction of the sample is equal to that of the surround-
ing medium. According to the discussion above, in the
presence of a steady temperature difference across the
cell, a vertical concentration gradient is present. After
switching off the temperature difference, the mixture
rapidly reaches an isothermal state. In this condition,
the refractive index within the fluid only depends on the
local concentration. In particular, the refractive index
drop across the cell is given by Δn = ∂n

∂c Δc, where
Δc is the concentration difference between the plates.
The fact that the confining plates are inclined by an
angle θ with respect to gravity, while the concentration
gradient is parallel to it, determines the presence of a
component of Δn parallel to the plates. The stratified
cell thus behaves like a prism, which imposes an angu-
lar deflection δθ � θΔn to a collimated beam imping-
ing on it (Fig. 3b, dark red line). Over time, the con-
centration difference between the plates progressively
decreases, and so does the refractive index drop across
the cell, leading to a change in the angular deflection
of the transmitted beam (Fig. 3b, light red lines). In
our collection geometry (see Fig. 1a), any small angular
change in the propagation direction of the transmitted
beam leads to a proportional displacement of the inten-
sity distribution on the sensor plane. We can thus write
the relation between the velocity associated with the
time-dependent linear displacement of the transmitted
beam on the sensor plane and the rate of change of Δc
as
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Fig. 3 Drift Velocity: results for the drift velocity v, esti-
mated from Eq. 11. a Velocity for the same angle of inclina-
tion and different temperature gradients ΔT = 4 K ( black
squares), 8 K (dark gray triangles) and 17 K (light gray cir-
cles). Inset: velocity estimated at time t = 300 s as a func-
tion of the temperature gradient. b Schematic illustration
of the effect of the cell tilt on the optical beam displace-
ment. The sample cell is tilted by an angle θ with respect
to gravity. Without loss of generality, the average refrac-
tive index n of the sample is assumed to be the same as
the surrounding medium. At the beginning of the experi-
ment, the sample is in a stratified state, characterized by a
uniform refractive index gradient parallel to gravity, with a
higher (lower) refractive index near the top (bottom) plate
of the gradient cell. The horizontal gray lines correspond
to isorefractive surfaces. In this case, according to Snell’s
law, the presence of a component of the refractive index

gradient perpendicular to the beam determines a deflection
by an angle δθ � Δnθ with respect to the incident direc-
tion (dark red line), where Δn is the refractive index differ-
ence across the cell. As the concentration gradient progres-
sively relaxes by diffusion, the angular deflection becomes
less and less pronounced until it vanishes when a homoge-
neous state is reached (light red lines). c Drift velocity for
different angles of the gradient cell with respect to grav-
ity, nominally θ = −1.3 · 10−2 rad (green), +1.3 · 10−2 rad
(red) and 0 rad (blue). Circles represent the velocity esti-
mated from the differential dynamic analysis and squares
stand for the velocity computed by the real-space tracking
of the global displacement. The dashed line represents, up to
a multiplicative factor, the time derivative of the concentra-
tion difference across the sample. Inset: real-space estimated
global displacement in time for the three different inclina-
tion angles, plotted with the same color scheme

v0 ∝ θ
∂n

∂c

d
dt

Δc. (13)

To validate this picture, we performed additional
experiments, this time by carefully controlling the tilt
angle θ of the cell, which is rotated around a horizon-
tal axis. Nominally, we used θ = 1.3 · 10−2 rad, 0 rad
and −1.3 · 10−2 rad. The results are shown in Fig. 3c.
We observe that for θ = ±1.3 · 10−2 rad (green and
red markers), the velocity is significantly larger than
for θ = 0 rad (blue markers). We attribute the discrep-
ancy between the two symmetric angles θ = ±1.3 ·10−2

rad to a systematic error in the alignment of the sam-
ple cell, which we estimate to be Δθ = 3.5 · 10−3 rad.
In addition, the time dependence of the drift veloc-
ity is in excellent agreement with the time derivative
of the concentration difference Δc across the sample
(dashed black line in Fig. 3c—numerically calculated by
solving the diffusion equation with suitable boundary
and initial conditions [62]). To check the accuracy of
these results, we performed also a real-space analysis by
tracking the global displacement. This is done by using
a customized cross-correlation-based registration algo-
rithm based on the Image-J Stack-Reg plugin, which
returns the transformation matrices of the registration
[57,63]. The cross-correlation analysis is performed on
a sub-sequence obtained by keeping one image every
thirty. In this way, the typical displacement between

consecutive images becomes large enough (of the order
of 10−2 pixels) to be reliably measured. We compute the
global displacement from the transformation matrices,
and then the mean velocity on the same times t̄ consid-
ered in the differential analysis. The obtained results,
shown as square symbols in Fig. 3c, are in very good
agreement with the velocities estimated with the dif-
ferential analysis (circles). We also checked that, upon
changing the sign of the tilt angle, the image drifts in
the opposite direction (inset of Fig. 3c), providing fur-
ther compelling evidence that the velocity is strongly
dependent on the tangential component of the gravity
parallel to the fluid layers. To complete the systematic
investigation of the experimental parameters that could
determine a drift of the images, we analyzed the depen-
dence of the drift velocity on the inclination angle β of
the main beam with respect to the normal to the opti-
cal sapphire windows. We did this by keeping fixed the
angle θ between gravity and the normal to the opti-
cal windows and displacing the light source perpendic-
ularly to the optical axis to change the inclination of
the illumination beam impinging on the sample cell.
The experimental results shown in Fig. 4 show that the
deflection of the beam is not affected by β, and this is
confirmed by simulations of the ray tracing inside the
cell. This result provides further evidence that the only
physical effect responsible for the drift of the images
is the alignment of the layer of sample with respect to
gravity.
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Fig. 4 Drift Velocity for different angles of incidence: a–c
schematic illustration of the effect of variable angle of inci-
dence β of the main beam on the sample cell. If, as in the
case shown in the figures, the refractive index gradient and
the inclination of the cell with respect to gravity are kept

constant, the deflection δθ is not expected to depend on β.
d Accordingly, different experiments, corresponding to dif-
ferent values of β, provide consistent results for the time
evolution of the drift velocity

5 Conclusion

In this work, we have addressed an experimental prob-
lem experienced in the investigation with optical means
of non-equilibrium fluctuations in fluid mixtures under
non-stationary conditions, namely the presence of a
time-dependent quadratic contribution in the measured
structure functions. Until now, the presence of this con-
tribution has been addressed empirically, but the sig-
nificant investment made for the development of the
Giant Fluctuations and TechNES projects of ESA has
made a full understanding of its origin a priority for
the analysis of the huge amount of data that will be
generated during these space missions. We have shown
that this contribution is due to a progressive deflec-
tion of the probe beam, leading to a global translation
in the intensity distribution on the sensor plane. This
is caused by the evolving concentration profile within
the cell, the drift velocity being directly proportional
to the time derivative of the concentration difference
across the cell. This effect is particularly relevant when
the sample cell is tilted with respect to gravity, while
it is minimized when it is almost perfectly horizontal.
We have introduced an analytical model that, fitted to
the experimental data, enables disentangling the effects
of the drift and the genuine dynamics of the system,
which can be thus reliably reconstructed. Our results,
by providing practical indications on the design and the
fine-tuning of the experimental setup, as well as analyt-
ical tools to correctly interpret the data, will enable the
investigation of the largely unexplored domain of NEFs
in non-stationary conditions.

Moreover, the simple analysis scheme proposed in
this work could be relevant in a wider range of applica-
tions involving the use of Fourier domain-based quan-
titative imaging methods [64]. Indeed, the presence of
intrinsic or spurious drifts that superimpose the sig-
nal of interest is a widespread feature, for example,

in rheomicroscopy experiments [59,65,66], in the pres-
ence of advective flows [67], or collective directed migra-
tion [68]. We expect our methodology to be particularly
effective in the presence of slow drifts involving a strong
optical background, a regime where the use of alterna-
tive approaches requiring the precise identification of
the drift direction or its accurate frame-by-frame com-
pensation can be challenging.
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