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Abstract We report a study on granular matter with and without small additions of silicon oil, under
low-frequency and large amplitude oscillatory shear strain under constant normal pressure, by running
experiments with a rotational rheometer with a cup-and-plate geometry. We analysed the expansion with
the Chebyshev polynomials of the orthogonal decomposition of stress–strain Lissajous–Bowditch loops. We
found the onset of the strain amplitude for the yielding regime indicated a regime change from filament-like
structures of grains to grain rearrangements for the dry granulate and from oscillations to the breaking
and regeneration of liquid bridges for wet granulates. We have shown that this viscoelastic dynamics can
be characterized by a noise temperature following Sollich et al. (Phys Rev Lett https://doi.org/10.1103/
PhysRevLett.78.2020, 1997). The analysis of the first harmonics of the Chebyshev expansion showed that
the state of disorder of dry and wet granular matter in pre-yielding and yielding regimes involved ensembles
of different inherent states; thus, each of them was governed by a different noise temperature. The higher-
order harmonics of the Chebyshev expansion revealed a proportionality between the viscous nonlinearity
and the variation in the elastic nonlinearity induced by the deformation, which shows the coupling between
the elastic deformation and the viscous flow of mesoscopic-scale structures.

1 Introduction

Plasticity models based on the Coulomb friction approach
have been proposed to study different powder flow regi-
mens [1]. The constitutive equations for describing how
the granulate flows and deforms were derived from this
picture using the Mohr–Coulomb extended theory; this
is achieved through a plastic potential and by includ-
ing the dilatancy and consolidation laws of the granu-
lar media [2]. The flowing powder is approached as a
Mohr–Coulomb or frictional fluid [3–8]. Given a flow-
ing ensemble of rigid beads of density ρ and diameter
d, under confinement pressure P , the dimensional anal-
ysis reveals a selection rule between the shear stress τ
and the shear rate γ̇: τ = μ(I) · P , where μ is an effec-
tive friction coefficient dependent on a dimensionless
number I [9,10]. To complete this model, the packing
fraction is set by a dilatancy law φ = φ(I). The iner-
tial number I is given by the ratio of two time scales
I = γ̇ · D/

√
P/ρ, the inertial time scale and the time

scale for rearrangements. Further, this number permits
the attainment of the evaluation of an apparent viscos-
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ity ηapp = μ(I)·P/γ̇. The experimental conditions drive
to a steady homogeneous shear state, which enables
the measurement of macroscopic constitutive laws; it is
then possible to write the dilatancy and consolidation
laws in terms of the inertial number [9].

These studies represent an important advancement
in describing different flow configurations under a con-
trolled shear rate. The validity of this frictional pic-
ture, also known as μ(I) rheology, is further extended
for cohesive granular materials under flow [11]. Despite
the effectiveness of this model in describing frictional
fluids, it was found to be an improper description of
the non-locality of the powder rheology. Subsequently,
a granular fluidity model emerged, where the fluidity
is the inverse of viscosity, defined as g = γ̇/μ(I). The
fluidity g is only a mathematical artefact without a real
physical meaning; since it considers the non-locality of
rheological events, it worked to model many flow sce-
narios where μ(I) rheology does not work properly [12–
14].

Boutreux and De Gennes [15] developed a free vol-
ume model and found that the relation between the
compaction and the grain mobility can be described
by the Vogel–Fulcher–Tammann equation, while Lumay
and Vandewalle [16] reported the experimental evi-
dence. The important experiments conducted by D‘Anna
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revealed the similarity between the glassy state and
jammed granular matter, since it was found that the
route to the jammed transition follows a modified
Vogel–Fulcher–Tamman behaviour [17,18]. Philippe and
Bideau [19] concluded that in the case of a weak
excited granulate, its compaction and the relaxation
of an out-of-equilibrium thermal system exhibit simi-
lar behaviour. The compaction of the excited granular
bed can be fitted by a stretched exponential function
or the Kohlrausch–Williams–Watts law (KWW), where
the relaxation time depends on the time scale for the
rearrangement. The resistance to flow occurs when the
bulk granulate goes from one configuration to the next.
This rearrangement process under gravity drives the
grains to be jammed in a new configuration; thus, the
compaction dynamics of dense granulates is related to
the energy that is necessary to dissipate to go from one
configuration to the other. Lu et al. [20] contributed
an important step in this research line by stating the
relationship between the steady-state rheology and the
compaction behaviour of powders as part of a more gen-
eral jamming theory. Their model is based on granular
compressibility, retaining the Coulomb yield conditions
and dilatancy behaviour. A first view of compaction
and rheological tests suggests that the time scale τr for
the rearrangement is to be related with the jumping
energy for a single void. From shear flow experiments,
they deduced the non-equilibrium equation of state 1,
relating the confinement pressure P with the volume
fraction written as the flowing shear band volume ref-
erenced to the dynamic random close packing volume
ε = V − VRCP and then normalized to the minimum
free volume ε0, with κ = [∂V/∂P ]γ̇ /V being the com-
pressibility, and C and γ̇0 the constants related to the
dependence of the volume fraction to the shear rate,
dependent on the confinement pressure and rearrange-
ment events [20,21].

κ · P (ε, γ̇) = ln
[

ε

ε0
· 1
1 − C · exp(−γ̇/γ̇0)

]
(1)

The confinement pressure in the equation of state 1
could be read as an energy density, in which the inverse
of the compressibility, in a mean-field picture, is related
to the viscoelastic energy landscape of the granular
assembly.

Following these findings, we found it interesting that
an alternative approach for understanding powder flow
has been shown to experimentally complement the
research of emerging concepts in non-equilibrium ther-
modynamics. A rheological model for soft glassy materi-
als (SGM) was proposed by Sollich et al. [22] and devel-
oped by Fielding [23,24], in which the model describes
them as an ensemble of elastic elements, each storing
elastic energy, whose dynamics is set by a parameter
called the noise temperature. The elastic noise of these
elements was depicted in the model as the jumping over
strain-modulated energy barriers. The noise tempera-
ture governing their dynamics can be understood as a
genuine thermodynamic temperature E0 = kB · Θ [25],

Fig. 1 Oscillatory rheology on monodisperse dry sand of
d = (145 ± 5) μm carried out by pushing sand through a
tube experiment as it was reported in [27]: a schematic rep-
resentation of the cylindrical test cell containing the sam-
ple and two adjacent chambers filled with water where the
pressures p1 and p2 are measured. b differential pressure
σ = p1 −p2 versus strain γ. A family of Lissajous loops from
a range of strain amplitudes between γ0 = 0.1 and γ0 = 0.8.
The parameters of the last loop are indicated as follows:
the loop’s amplitude τ , the tangent modulus G′

M and the
strain amplitude γ0. c Dissipated energy Ed =

∮
σ dγ, d

tangent modulus G′
M , and e amplitude of the loop τ vs.

strain amplitude γ0

as in the frame of the shear transformation zone (STZ)
theory, developed by Falk [26]. During shear deforma-
tion of dry granulates, mesoscopic-scale rearrangements
can be identified as slow configurational degrees of free-
dom or ‘inherent states’ far from equilibrium with a
configurational non-thermal kind of thermostat. Those
degrees of freedom maximize a configurational entropy;
thus, their viscoelastic state of disorder should be char-
acterized by a configurational temperature. The two
aforesaid approaches were presumed distinct and unre-
lated; however, the SGM rheology can bring physical
understanding from first principles to the μ-rheology
originated in fluid mechanics to predict the physical
parameters that influence the flow, with a profound
orientation towards its practical and industrial appli-
cations.

Contributing to this research line, we carried out
our experimental studies in particular, the noise tem-
perature [27] and the connection between compaction
experiments and rheology [28,29]. Our previous stud-
ies on oscillatory rheology on wet and dry granulates
were carried out with a so-called tube rheometer [27],
a device described first in the thesis by Geromichalos

123



Eur. Phys. J. E (2023) 46 :54 Page 3 of 18 54

[30]. The device we used is schematically depicted in
Fig. 1a. The granulate is poured in to a cylindrical test
cell of diameter D and equal longitude D = L, sealed
with latex membranes of 300 μm. Two adjacent cham-
bers are filled with water and two syringe-pistons drive
the membranes quasi-statically in an oscillatory manner
between volumes ±ΔV , while keeping the global pack-
ing fraction φ of the granulate constant. Pressure sen-
sors inside the chambers measure the pressures p1 and
p2 complete the set-up. The granulate is then pushed,
enforcing a Poiseuille profile; thus, the maximum ampli-
tude can be estimated as γ0 = 32ΔV/πD3 [31]. Run-
ning this experiment for a range of γ0 permitted us to
characterize the granulate from a family of Lissajous
loops σ − γ, where σ = p1 − p2, as shown in Fig.
1b, and in this particular case study, for a sample of
monodisperse dry sand of diameters in the range of
d = (145 ± 5)μm and with global packing fraction
φ = 0.63. Nonlinear loops occur for γ0 > 0.1, which
corresponds with nonlinear events in the case of the
dry granulate related to rearrangements in the meso-
scopic scale of force chains, which occurs for displace-
ments of roughly larger than one grain diameter. In
Fig. 1b, the important parameters of the loop are indi-
cated, with its amplitude τ , the strain amplitude γ0

and the minimum strain elastic or tangent modulus at
γ = 0, G′

M = dσ/dγ|0, both related to the storage elas-
tic energy and the area of the loop Ed =

∮
σ dγ, the

dissipated energy per circle. In Fig. 1c, d and e, our
most important finding is shown, which is the repre-
sentation of Ed, GM and τ in function of the strain
amplitude γ0, in the nonlinear rage from γonset

0 . The
corresponding fittings with Eq. 2 revealed that all of
them are related to a unique parameter, identified as
the noise temperature E0, where G0 is a constant.

τ

τ0
= ln x, x =

γ0

γonset
0

GM = G0 − G0
M · ln x

Ed

E0
=

x

4
· ln x

(2)

For this particular case, the fit parameters resulted in
τ0 = (53 ± 2) kJ/m3 and γonset

0 = (0.12 ± 0.01); being
τ0 ≡ G0

M ≡ E0, as the fittings validated in Fig. 1.
We also found in our previous work [27], for the

wet granulate, the noise temperature is in good agree-
ment with the estimation of the energy loss occurring
at the mesoscopic scale when the liquid bridge breaks
and regenerates; whereas, for dry powders, these meso-
scopic oscillators are the force chains that lose energy
when branching out.

At Liege University, in collaboration with Lumay and
Vandewalle [28,29], we conducted compaction exper-
iments using the same monodisperse sand as in [27]
with small amounts of different fluids. For these exper-
iments, we used an energetic approach by assuming the
existence of an energy barrier B. The model considers
the mechanical energy per grain Ξ injected in the gran-
ular bed at each tap, being the characteristic relaxation

time measured by τ1/2, i.e. the time required to reach
half of the difference between the initial and asymptotic
packing fraction values. This resulted in Eq. 3:

τ1/2 =
1
α

· exp
(

− Ξ
B

)
·
[
Ei(

2B

Ξ
) − Ei(

B

Ξ
)
]

(3)

where α is a dissipation factor and Ei(y) =
∫ y

−∞ f(θ)dθ
is the exponential integral of the dimensionless vari-
able y. For granulates with small additions of fluids
of surface tension γf, we found B/Ξ = γf/γ0

f ; where
γ0
f is a constant. The same result was found from the

experiments with the tube rheometer, where the noise
temperature can be tuned with the surface tension
B ≡ E0 ∝ γf. This observation highlights the relation of
the noise temperature that governs the rearrangement
between jammed states. This was remarked by Lu et al.
[20] as a key to understand jamming within the relation
between rheological tests and compaction experiments.

We continued these investigations, and we report here
oscillatory rheology studies with a rotational rheome-
ter, implementing a large amplitude oscillatory shear
strain (LAOS-strain). This allowed us to explore pow-
der flow nonlinearities from the non-sinusoidal response
we derived by a sinusoidal excitation. This protocol first
used by Gemant et al. [32] is clearly discussed by Rogers
[33] as ‘hard to interpret’ despite the large body of lit-
erature related to polymer research that attempts to
explain the viscoelasticity of polymers; for example, one
study relates their macromolecular structure and poly-
mer branching to the higher harmonics evaluated from
the nonlinear response [34]. Measurements are repre-
sented as a family of Lissajous–Bowditch (LB) loops in
the planes σ − γ and σ − γ̇ obtained from orthogonal
stress decomposition [35] and expanded using Cheby-
shev functions [36], from which the Chebyshev coeffi-
cients are analysed and interpreted [37–40].

There are concerns about the physical explanation
of nonlinear responses in relation to this methodology
[41–44]; however, in this study, we report the relation
of the Chebyshev coefficients with the energy landscape
of the granular assembly as it emerges from the exper-
imental results. In this report, we use the knowledge
from our previous work with the ‘tube rheometer’; pow-
der compaction experiments of dry and wet granular
assemblies, where we found that the onset of the yield-
ing range γonset

0 occurred for a deformation provoking a
displacement of the order of the diameter of one grain,
followed by rearrangements of grains happening mostly
in cages of a size of four grain diameters; and the break-
ing and regenerating of liquid bridges in the case study
of the wet granulates [27–29]. In our previous anal-
ysis of the LAOS-strain measurements obtained with
the ‘tube rheometer’, we were interested in parameters
that characterize the granulate in average. Our find-
ings were reproducible within a wide range of strain
rates, from quasi-static regime, where we applied step-
by-step deformation smaller than the diameter of one
grain, to continuous deformation, where we tested shear
rates until 0.1 s−1, establishing a steady state with-
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out observing differences in the LB-loop, i.e. in the
loop area or dissipating energy. In this study, we did
similar oscillatory rheology experiments with a rota-
tional rheometer under constant normal force, without
deforming the grains and enough to guarantee the con-
tact between the sensor and the granulate. From the
results of these experiments, we examine the Cheby-
shev coefficients in relation to the SGM model, referred
to in previous paragraphs, applied to powders under
confinement, characterizing them with the noise tem-
perature, without interpreting them in the usual way,
i.e. as directly related to transient changes affecting the
intracycle strain distribution.

This report is organized as follows: Sect. 2 describes
the granular media preparation and the experimental
procedures, while in Sect. 2.1, we first briefly overview
Fourier transform rheology used to evaluate our σ − γ
Lissajous–Bowditch loop measurements. In Sect. 2.2,
we present the granular assemblies used in the experi-
ments. In Sect. 2.3, we present a description of the set-
up and experimental protocol, based on a rotational
rheometer for measuring Lissajous loops of the sample
under confinement, similar to the set-up used by Lu et
al. [21]. Given the set-up of the cup-and-plate geometry,
we estimated a correction for the rheometer calibration.
In Sect. 2.4, we provide, for the case of wet granulates,
an estimation of the rupture energy of capillary bridges.
Section 3 corresponds to the report of the experimental
results and their expansion with Chebyshev polynomi-
als, where in 3.1, we proposed an equation of state based
on the first harmonic elastic and viscous moduli, and
in 3.2 we analysed the contribution of the higher-order
nonlinearities. In Sect. 4, we offer stand-alone conclu-
sions on the reported results and an outlook consider-
ing our previous contributions to this research line in
the framework of the SGM rheology.

2 Materials and methods

2.1 Fourier transform rheology

A rotational rheometer was used in large amplitude
oscillatory shear strain mode LAOS-strain. The stress
response was measured for an input signal of a temporal
sinusoidal strain, given by γ(t) = γ0 ·sin (ωt), with ω the
imposed oscillation frequency, t time, and γ0 the strain
amplitude [37–40]. Being γ̇(t) = γ0 ·ω ·cos (ωt) the eval-
uated strain rate, the elastic and viscous moduli, G

′
(ω)

and G
′′
(ω) can be determined. A typical representa-

tion of a LAOS test is the Lissajous–Bowditch plots,
where the cyclic variations of shear stress as a function
of strain (elasticity) and the evaluated strain rate (vis-
cosity). These are displayed in Fig. 2 [38]. In Fourier
transform (FT) rheology, not only the first harmonics
but also higher harmonics (odd only) contain valuable
nonlinear information [37,38]. Only odd harmonics are
considered because of the assumption that stress–strain
exhibit odd symmetry with respect to the propagation

of shear strain or rate [38]. Also, the presence of even
harmonics in the output response would imply that the
deforming material sticks to the boundary wall [45].
We introduce the working of FT-rheology and expan-
sion with Chebyshev polynomials of the stress–strain
Lissajous–Bowditch (LB) loops. Following the article
by Wilhelm et al. [46], the Fourier series expansion of
the stress is given in elastic scaling in Eq. 4:

σ(t; γ0, ω) =
∑

n, odd

[an · cos(ωnt) + bn · sin (ωnt)]

(4)

where ω and γ0 are the independent variables, ωn =
2πn is the angular frequency, an and bn are the Fourier
coefficients of the nth harmonic as they are defined in
Eq. 5, where it is also shown their relation with the
corresponding viscoelastic moduli:

an =
2
T

∫ T

0

σ(t) · cos(ωnt)dt = γ0 · G
′′
n

bn =
2
T

∫ T

0

σ(t) · sin(ωnt)dt = γ0 · G
′
n

(5)

Furthermore, the intensity of the nth harmonic is
defined in 6 as:

In =
√

a2
n + b2

n (6)

To characterize the amount of nonlinearity, the rel-
ative intensity of the higher odd harmonics compared
with the first harmonic is commonly used [47], as shown
in 7:

In1 =

√
a2

n + b2
n

a2
1 + b2

1

(7)

In a standard rheological test, only G′
1 and G′′

1 are
measured and they fully describe the linear viscoelas-
tic response of the material. Nonlinear properties can be
determined by FT-rheology, but an open question is the
physical interpretation of the higher-order harmonics
[38]. Furthermore, fitting a Fourier response, for exam-
ple A = a0 · f0(x)+a1 · f1 +a2 · f2 + · · · without violat-
ing the limit of orthogonality over the finite integration
domain [−1,+1] results in a half sided Fourier trans-
form, which is similar to a complex Laplace transforma-
tion. Hence, one loses half of the measured information
[46]. From the work by Cho et al. [35] on orthogonal
stress decomposition and further extension by Ewoldt
et al. [36], the relation between elastic σ

′
and viscous

stresses σ
′′

and the Fourier decomposition can be writ-
ten as in Eq. 8:
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Fig. 2 Orthogonal decomposition of a Lissajous–Bowditch
loop from a LAOS-strain experiment for polystyrene beads
of 500 μm diameter with small additions of silicon oil, fol-
lowing Cho et al. [35]: a stress versus strain and elastic stress
σ′ and b stress versus strain rate and viscous stress σ′′ vs
strain rate. These loops permit us to show the nonlinear
moduli as the derivatives, and the slopes at the coordinates
indicated in (a) and (b) (see text for detailed explanation)

σ′ ≡ σ(γ, γ̇) − σ(−γ, γ̇)
2

= γ0

∑

n, odd

G
′
n(ω, γ0) · sin(nωt)

σ′′ ≡ σ(γ, γ̇) − σ(γ,−γ̇)
2

= γ0

∑

n, odd

G
′′
n(ω, γ0) · cos(nωt)

(8)

where G
′
n and G

′′
n are the amplitudes of the higher-

order viscoelastic moduli. The total oscillatory shear
stress is then given by σ(t) = σ

′
(t)+σ

′′
(t), which leads

to the alternative derivation of stress decomposition
compared to the classical FT-Rheology [39]. McKin-
ley and Ewoldt identified the Chebyshev polynomials,
a cogent choice for the decomposition as they exhibit
stress–strain symmetry at vanishing strain amplitudes,
they are orthogonal over a finite domain [−1,+1] and
they can be thoroughly correlated to the Fourier coef-
ficients. Since the Chebyshev polynomials have the
advantage of being orthogonal to all the modes of odd
harmonic signals, this allows us to efficiently describe
the nonlinear viscoelastic moduli in a series of basis
functions, thereby nullifying the interference of one
mode with another and offering a near-optimal poly-
nomial interpolation of higher harmonics [36].

The elastic and viscous contribution to the measured
stress is given in the Chebyshev basis as follows in Eq.
9:

σ′(x) = γ0

∑

n: odd

en(ω, γ0)Tn(x)

σ′′(y) = ω · γ0

∑

n: odd

vn(ω, γ0)Tn(y)
(9)

where x = γ/γ0, y = γ̇/(ω · γ0) and Tn(x) is the nth-
order Chebyshev polynomial of the first kind, en(ω, γ0)
and vn(ω, γ0) are the elastic and viscous Chebyshev
coefficients, respectively. This particular Chebyshev
basis-set permitted Ewoldt et al. [36] to evaluate the
coefficients en and vn in the strain or strain rate domain
by the following relations with the Fourier coefficients
in the time domain, Eq. 10:

en = G
′
n(−1)(n−1)/2, ω · vn = G

′′
n, n : odd (10)

An example for an LB-loop orthogonal decomposition
using aforementioned procedure is shown in Fig. 2 [35],
including the definitions for viscous and elastic moduli,
a geometrical extraction of nonlinear elastic moduli and
dynamic viscosities via tangential slopes are shown [36,
38]. They are rigorously defined by Eqs. 11 to 14:

G′
M ≡

[dσ

dγ

]

γ=0
=

∑

n: odd

nG
′
n

= e1 − 3e3 + · · ·
(11)

G
′
L ≡

[σ

γ

]

γ=±γ0

=
∑

n: odd

G
′
n(−1)

(n−1)
2

= e1 + e3 + · · ·
(12)

G
′′
M ≡ ω · η

′
M = ω ·

[dσ

dγ̇

]

γ̇=0
=

∑

n: odd

n · G
′′
n(−1)

(n−1)
2

= ω · v1 − 3ω · v3 + · · · (13)

G
′′
L ≡ ω · η

′
L = ω ·

[σ

γ̇

]

γ̇=±γ0ω

=
∑

n: odd

G
′′
n = ω · v1 + ω · v3 + · · ·

(14)

where G
′
M is the minimum strain elastic or tangent

modulus at γ = 0. Referring to the tangent at the coor-
dinate σM (0), G

′
L is the large strain elastic or secant

modulus at γ = γ0 (secant at σL(γ0)) (Fig. 2a). Simi-
larly, η

′
M is the minimum-rate viscosity, the tangent at

σM (γ̇ = 0), or the tangent loss modulus G
′′
M and η

′
L is
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the large-rate dynamic viscosity, the secant at σL(ωγ0),
or the secant loss modulus G

′′
L (Fig. 2b). G

′
1 and η

′
1 are

the first harmonic elastic modulus and dynamic vis-
cosity, respectively, evaluated at the coordinates of the
intersection of the loops with the symmetry lines, cor-
responding to the elastic and viscous stress, in Fig. 2a
σ1(γ1) and (b) σ1(γ̇1).

As Rogers discussed in his work [43], a complete inter-
pretation of the Chebyshev coefficients remains unpub-
lished, as the research on this methodology progressed
there was a tendency to carry out interpretations of
intracycle and dynamical changes based on relations
between the Chebyshev coefficients, which gave rise to
confusion in some case studies, as so happened in the
case of the strain softening/strain hardening paradox
resolved by Mermet-Guyennet et. al. [48]. They first
applied this way to analyse LAOS experiments, called
‘sequence of physical processes’ (SPP), to yield stress
fluids [41], also developing solid arguments from the
discussion of nonlinear theoretical models [42], where
it was shown that the symmetry assumptions for the
Chebyshev functions are too restrictive in relation to
such models, this is not making invalid to analyse LAOS
measurements applying the stress decomposition plus
the expansion with Chebyshev functions, but again
it is signalling that despite of the Chebyshev coeffi-
cients are hard to interpret, their interpretation must
be the proper one. The SPP methodology has been
shown to provide great clarity in understanding the
intracycle structural and dynamical changes as they
happen in granular materials as local rearrangements,
breakage of liquid bridges and reformation. This pro-
vides detailed microstructural interpretations with the
time-dependent rheological behaviour of the material
throughout the oscillation cycle; however, in this study,
we are only interested in the characterization of the
energy landscape of the confined granulate, where it
seems, as it emerged from our analysis of the experi-
ments reported here, that the Chebyshev coefficients as
an ensemble of viscoelastic moduli are related to aver-
age characteristic energy densities describing the energy
landscape of the granulate. Analysis using the sequence
of the physical processes in relation with soft glassy rhe-
ology, as it was applied by Park and Rogers [44], will be
reported in future manuscripts related to our research
of the granular system presented here.

2.2 Materials

In the reported experiments, we used polystyrene beads
of 500 μm diameter, purchased from Microbeads, USA
(trade name: Dynoseeds R©). The fluid content of the
mixture is defined as the ratio between the liquid vol-
ume and the volume occupied by the beads. The sil-
icon oil Shin Etsu SE KF-6011 was dispersed in the
volume of beads to get a paste with 2 vol% of fluid.
The viscosity of the pure oil is μ = 0.18Pa s,, its sur-
face tensionγoil = 21 mN m1 at 21circC, and its den-
sity ρ = 1070 kg m−3, very close to the density of
the Dynoseeds’ beads. As we discussed in our previ-

Fig. 3 Polystyrene beads of diameter 500 μm, two dimen-
sional layer. a Dry and b wet beads form dimers and trimers.
c beads wetted with 2 vol% of silicon oil in relation to the
volume of the beads and d with 3 vol.%. e s monolayer of
wet beads with coordination 6. f geometrical representa-
tion of the capillary bridge between two beads. Images were
inspired by Kudrolli [50]

ous work [27] explained in the introduction Sect. 1,
i.e. for the wet sand, its characteristic energy or noise
temperature stays constant in the range of existence of
the liquid bridge network, in which a water content of
0.01 � w � 0.03 results in good agreement with the
findings of Scheel et al [49]. Inspired in this, we explore
also a similar range of oil content in which we got a sta-
ble liquid network; thus, we decided to prepare the wet
granulate by mixing the beads with 2 vol%, by stirring
the mixture until noticing all the beads covered with a
layer of silicon oil enough to get into the pendular state,
being sure of the homogeneity of the liquid bridge net-
work and the very well-defined energy landscape.

Figure 3 shows the micrographic bright-field images
of the polystyrene granulate used in this study. Fig-
ure 3c, d shows partially saturated polystyrene beads.
A small fraction of interstitial fluid is sufficient to form
a capillary pendular bridge causing a spring-like action
and cohesivity between grains [51]. In this so-called
pendular regime, the shear stress largely depends on
the cohesive forces and results in higher yield strength
and flow dynamics [52–54]. Figure 3b–d, respectively,
shows the formation of dimer-, trimer- and pentamer-
like structures. Figure 3e shows the 2-D case with the
maximum number of capillary bridges. Figure 3f shows
a close-up of a capillary bridge between two polystyrene
beads with a geometrical representation to evaluate

123



Eur. Phys. J. E (2023) 46 :54 Page 7 of 18 54

Fig. 4 a The confined cup–plate geometry as it is in the
Haake Mars rheometer set-up and b a closer view of the cup
with the layers of spherical beads. c stress–strain Lissajous
loops measured at a frequency of f = 1.5 Hz and at a strain
amplitude of γ0 = 0.43 for the increasing number of layers
of polystyrene spherical beads of 500 μm diameter. d depen-
dence of the dissipated energy Ed =

∮
σ dγ with the number

of layers; the grey box indicates the approximate range in
which there is no stagnated shear band at the bottom of
the cup, and the inset a sketch in which the sample high
h, the applied normal force F and measured torque T are
indicated

capillary and viscous forces and will be invoked in Sect.
2.4.

2.3 Experimental set-up

Oscillatory rheological experiments on granulates were
performed using a Haake Mars II rotational rheome-
ter (Thermo Fisher, Germany) at a room temperature
of T = 23 ◦C. A cup–plate geometry was utilized for
shearing the grains (see Fig. 4a, b). We implemented
a set-up and protocol similar to that of Lu et al. [21],
such that under confinement the gap between the diam-
eter of the plate and the internal diameter of the cup is
smaller than the diameter of the grains, with a given ini-
tial packing fraction and constant normal force during
the measurement. The cup was composed of a Plexiglas
cylinder of diameter d = 50 mm that permitted see-
ing the shearing or jamming. The cylinder was firmly
attached to the stainless steel bottom plate. The rotat-
ing upper plate was made of steel–titanium alloy, which

was sandblasted to avoid slipping and to allow uniform
stress transmission. Fresh granulates were used for each
test. The sample was loaded into the cup and, in the
case of dry grains, carefully shaken. For wet grains,
the upper plate was rotated for a minute to obtain a
homogeneous surface. Both dry and wet grains were
subjected to a pre-shearing step at 500 rotations per
minute for 90 s at the normal force maintained at zero
to homogenize the granular assembly. The procedure
was performed to achieve an initial height of a pre-
determined number of layers of equally sized spherical
beads by adjusting the initial height until reaching an
initial packing of φonset = 0.61. To repeat the same con-
ditions for all the experimental runs with dry and wet
samples, we checked the initial packing fraction after
the pre-shearing φonset, before and after the rheologi-
cal measurement φoffset, by measuring the height of the
granular bed.

After the granular sample preparation, the large
amplitude sinusoidal shear strain was driven by the
plate with a given amplitude γ0 and frequency f .
The measured torque was recorded to be represented
in stress–strain Lissajous–Bowditch (LB) loops. The
experimental runs were conducted in the range 0.005 ≤
γ0 ≤ 400, at which γ0 ≈ 0.1 is found consistent with the
onset for grain rearrangements and breaking and regen-
eration of liquid bridges, which also roughly correspond
to local displacements of the order of the diameter of
the bead; within this range, we identified the range of
interest for our study 0.1 � γ0 � 7 as the yielding
range.

For a given gap, the rheometer calibration permits
evaluation of the stress in the occupied volume of the
cup, assuming that the torsional flow within the cup
evolves to a steady-state. In the parallel plate geometry
and in our particular case of plate and cup, the applied
shear strain experienced by the granulates is not uni-
form, due to which the partial fluidization of the grains
prevented all the grains in the cup from contributing
to the measured torque. To illustrate this experimen-
tally, Fig. 4c shows several LB-loops for an increasing
number of layers from 1 to more than 200, measured
in the yielding range at γ0 ≈ 0.43. The energy dissi-
pated in one cycle was evaluated for each strain–stress
loop by integrating the area of the loop Ed =

∮
σ dγ.

As shown in Fig. 4d, the dependence of Ed on the
number of packed layers allowed us to set as high as
h � 40 layers in which the dissipated energy saturates
to a constant value corresponding to a stationary shear
band. Note that, for the first h ∼ 40 layers, the dissi-
pated energy increases logarithmically with the num-
ber of layers, such that the number of active fluidized
beads causing dissipative flow in each layer decreases
inversely proportional to the number of layers with off-
set at the shear plate. Therefore, for experimental prac-
tice, we found that approximately 30 layers prevented
the formation of a stagnated shear band at the bottom
of the cup. For a packing fraction of 0.61, the number
of Dynoseeds spheres in the cup can be estimated to be
246593, and assuming that all the beads in the first two
layers are fluidized, then the fraction of fluidized beads
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in the cup resulted in ∼ 0.31 of the total, equivalent to
∼ 78737 beads under dissipative flow. Hence, for 30 lay-
ers, the measured dissipated energy was 72 J/m3, and
the dissipated energy per active bead should be in the
range 8nJ/bead � Wd � 24 nJ/bead, depending on the
fraction of fluidized beads between the total number to
the estimated fraction of ∼ 0.31 of the total.

For all the experiments presented in our study, we
reproduced the same initial conditions and the pack-
ing fractions were as follows for wet grains φonset =
(0.612 ± 0.001) and φoffset = (0.619 ± 0.003) and for
dry grains φonset = (0.611 ± 0.002) and φoffset =
(0.620± 0.005). During the experimental runs, the nor-
mal force of F = 1N stayed constant, the applied
frequency was 1.5 Hz, and the strain amplitude var-
ied between γ0 = 0.001 and 500. For chosen condi-
tions of this experiment, the savage number results
Sa = ρ.(ω.d/3)2/(F/(π.d2/2)) ∼ 0.05 [21]. We verified
that the LB-loops are reproducible and stable during 10
cycles. We checked in the frequency range from 0.1 Hz
to 10 Hz at constant γ0, for a few selected values, and
found that the loss and storage moduli were roughly
independent of the frequency. The LAOS test results
were previewed in the form of LB-loops on the Rhe-
owin software. In the next step, the raw stress–strain
data were exported and subsequently processed with
the MITLAOS script (Version 2.1 Beta for MATLAB),
to proceed with their orthogonal decomposition and
expansion with the Chebyshev polynomials.

2.4 Liquid bridge rupture energy

Before we plunge into the report of the experimental
results, evaluating the forces between beads and rup-
ture energy of the capillary bridges is necessary, using a
schematic approach based on the Derjaguin approxima-
tion [55]. The variables and parameters required to esti-
mate the force between particles can be calculated by
geometrically tracing a micrographic representation of
a typical liquid bridge between two Dynoseeds spheres
as shown in Fig. 1f. Thus, the force can be calculated
as the sum of capillary and viscous forces as explained
by Pitois et al. [56] by Eq. 15:

Fc = 2πR.γoil · cos θ · ζV

Fv =
3
2
π · R · γoil · Ca

Ĥ
· ζ2

V Ca =
μ · Vr

γoil

ζV = 1 − 1
√

1 + 2·V̂
π·Ĥ

(15)

where Ĥ = H/R is the dimensionless distance between
the surface of the two beads of radius R, V̂ = π ·
x2 · H/R3 is the dimensionless bridge volume, x is its
azimuthal at its contact line, θ is the solid–liquid con-
tact angle, γoil is the surface tension of the fluid, μ is
the viscosity of the wetting fluid and Ca the capillary
number and Vr is the relative speed of the two beads.
For the typical bridges between Dynoseeds polystyrene

beads with R = 250 μm, as shown in Fig. 1f, we
measured H ≈ 48 μm, x ≈ 60 μm, θ ≈ 32.3◦, and
we got Ĥ ≈ 0.19, V̂ ≈ 0.035 and a capillary force
Fc ≈ 1.5 μN. Taking into account the experimental
conditions, the possible relative speed between the two
Dynoseeds spheres, and the range of deformations in
which the rupture and regeneration of the liquid bridges
are allowed reveal a possible range for the capillary
number as 0.0065 � Ca � 0.065. As the oscillatory
shear strain in one cycle of period T = 1/f = 0.67 s
for γ0 ∼ 0.1 corresponds to a relative displacement of
the order of the diameter of a bead 2.R, relative speed
associated with the rearrangement of one bead should
be Vr ∼ 2.R/T ∼ 0.75 mm s−1; whereas for the yield-
ing range, as we report in this article, it appeared as
if the possible rearrangements or jumping events from
one to ten successive beads jumps in one cycle resulted
in a relative speed similar to the viscous force evaluated
from Eq. 15 not larger than Fv ∼ 24nN.

By using the same aforesaid arguments, a typical
bridge rupture energy can be estimated from Eq. 16
as shown in [56], as the sum of capillary and viscous
rupture energies:

Wc = 2πR2 · γoil · cos θ · A1

Wv =
3
2
πR2 · γoil · Ca ·

[
ln

A2 · √
π

(1 + A2)2
− f(D̂m)

]

A1 = (1 + θ/2) · (1 − A2) · V̂ 1/3 +

√
2 · V̂

π

A2 =

√

1 +
2 · V̂ 1/3

π · (1 + θ/2)2

f(D̂m) = ln D̂m − 2 · ln
[
D̂m +

√

D̂2
m +

2 · V̂

π

]

+
1
2

ln (π · D̂2
m + 2 · V̂ ) (16)

where D̂m = Dm/R is a dimensionless scale for surface
asperities and Dm ∼ 0.05 μm is an estimated average
to account for the surface asperities of the Dynoseeds
polystyrene beads. From this evaluation, we obtain a
range of possible values for the bridge rupture energy,
such as Wc ∼ 0.9 nJ and the viscous contribution not
larger than Wv ∼ 1.2 nN. For a polystyrene bead with
six liquid bridges (coordination 6 as shown in [57]),
breaking all the bridges in a jump, the dissipated energy
resulted in the range of 6 nJ � W6 � 12 nJ.

3 Chebyshev polynomials expansion of the
experimental results and discussion

As it was explained above in Sect. 2.3, the experimental
results reported in this section were measured by driv-
ing confined granular assemblies with a low-frequency
controlled sinusoidal strain in time γ(t) = γ0 · sin (ωt),
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Fig. 5 Dynamical regimes of wet (blue) and dry (red)
Dynoseeds under large LAOS-strain and under a normal
force of F = 1 N at a frequency of 1.5 Hz. Measured typi-
cal stress–strain Lissajous loops: in the linear pre-yielding
range for wet (a) and dry (e) granulate; in the nonlinear
yielding regime for wet (b and c) and dry (f and g) gran-
ulates, respectively; and in the slip regime for wet (d) and
dry (h) granulates

additionally implying a cosinusoidal strain rate γ̇(t) =
ω · γ0 · cos (ωt) transmitted by the sensor plate, with
a given frequency ω = 2πf and a large strain ampli-
tude γ0, while the torque and the strain are measured,
from which we got the stress response as σ(γ0, ω, t).
Regarding the dissipated energy per unit of volume in
one cycle, we considered our measurements with respect
to the beads that were fluidized, expressing its dissipa-
tion in units of energy per volume of one bead. In all
cases the frequency for this study was selected to be
1.5 Hz and the normal force of F = 1N was kept con-
stant. The normal force was enough to maintain the
plate in contact with the granulate under confinement
without deforming the grains, only following the gentle
compaction of the granular assembly during the exper-
iment. Figure 5 shows a few of the stress–strain curves
for illustrating different flow regimes for wet and dry
Dynoseeds. As we did in our previous work with the
‘tube rheometer’ [27], from these stress strain curves,
we were able to identify the pre-yielding strain range

and the onset of the yielding range. To discuss here
the physical transitions that took place on a time scale
shorter than the period of oscillation, we use our pre-
vious knowledge from our research on rheological and
compaction experiments of granular assemblies, i.e. the
oscillatory strain applied through the membranes of
the ‘tube rhemometer’ was clearly read in units of the
diameter of one grain. The linear viscoelastic behaviour
with the characteristic ellipsoid loop is identified in
Fig. 5a. In this pre-yielding range, the liquid bridges
undergo small elastic deformations until they start to
break and regenerate from the onset of the yielding
regime at γ0 ∼ 0.1, indicated by a non-ellipsoid loop, as
shown in Fig. 5b, c. At γ0 > 10, the slipping of grains
largely affects the stress–strain response as shown in
Fig. 5d with, i.e. G′

M < 0, characteristic of shear band-
ing [58] possibly due to the coalescence of the liquid
bridges locally ending the pendular state and provok-
ing inhomogeneity in the liquid distribution. In the case
of dry grains, where the system is governed by fric-
tional forces, in Fig. 5e the stress–strain response is
linear, and the dynamics are governed by branching
out force chains until the onset for deformations larger
than the size of one bead diameter at γ0 ∼ 0.1, provok-
ing grain rearrangements and the establishment of new
contact points at higher strain until γ0 ≤ 10. The vis-
cous effects are still more important than elastic ones
(Fig. 5f, g). At very large strain, as shown in Fig. 5h,
the dry polystyrene beads begin to deform as a solid-
like material, causing the stress–strain response to be
quasi-Newtonian [59].

In relation with our previous work [27], Eq. 2
shows the relation between the storage and dissipated
energy measured from the stress–strain LB-loops with a
parameter we identified as the noise temperature. In the
case study reported here we proceeded in similar way,
we evaluated the amplitude τ and the area Ed =

∮
σ dγ

of the LB-loops in function of the strain amplitude γ0 as
it is shown in Fig. 6a, b, respectively. The fits according
to Eq. 17 are shown that are related to a unique param-
eter E0 identified as the noise temperature. From the
data points in Fig. 6a, b, we got E0 = (56.4±0.5) J/m3

and E0 = (16.7 ± 0.5) J/m3 for the dry and wet gran-
ulate, respectively, for the range 0.1 � γ0 � 7. As we
explained in the introduction the parameter E0 is a
kind of characteristic energy density and by consider-
ing the volume of one bead and the fraction of the flu-
idized beads in the cup, estimated in Sect. 2.3, we got
in terms of energy per active bead: ∼ 19 nJ and ∼ 6 nJ
for the dry and wet granulate, respectively; thus, we
found that we can get into similar discussion as we did
related with our experiments with the ‘tube rheometer’;
from this analysis of our findings, in the next sections
we will examine it from the point of view of the Cheby-
shev coefficients.

τ

E0
= 2 · ln x, x =

γ0

γonset
0

Ed

E0
=

x

4
· ln x (17)
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Fig. 6 Parameters extracted from the LB-loops of the
experimental runs shown in Fig. 5 for dry (red close squares)
and wet (blue open circles) Dynoseeds: a the loop’s ampli-
tude τ versus γ0, and b dissipated energy Ed =

∮
σ dγ ver-

sus γ0 (where the inset is shown the detail of the smallest
strain amplitude range in a log-log graph). In a and b the
lines indicate the corresponding fittings with 17

3.1 First harmonic elastic and viscous
moduli

Using the MITLAOS framework applied to the mea-
sured stress–strain loops by its orthogonal decomposi-
tion and fitting the Chebyshev expansion to their sym-
metry lines, we evaluated its coefficients. In parallel, we
extracted the tangent and secant moduli by applying
the approach as geometrically shown in Fig. 2. Then
as shown in Fig. 7a, c, we were able to obtain the
first harmonic elastic and viscous moduli G′

1 and G′′
1

as functions of the strain amplitude γ0 and the evalu-
ated strain rate amplitude ωγ0, respectively. Similarly,
the tangent and secant moduli are shown in Fig. 7b, d.
At small deformations γ0 � 0.05, we observed all har-
monics of the viscoelastic moduli showed practically no
dependence on the strain amplitude in the pre-yielding
regime. The yielding onset γonset

0 ≈ 0.1 indicates the
regime change at the maximum of the moduli. These
moduli decrease significantly faster for dry grains than
for wet grains, suggesting the rearrangement of the
mesoscopic-scale structures caused by shear fields. In
this deformation range, grains are under the influence
of anisotropic forces, which are eventually dissipated by
non-affine motions, though at varying relaxation time
scales [59]. In the case of the wet granulate, the rear-
rangement of the liquid bridge network is dissipated
by releasing the capillary energy. At high strain, the

Fig. 7 Semi-logarithmic representations of the first har-
monic elastic (a) and viscous (c) moduli G′

1 and G′′
1 , or

first Chebyshev coefficients e1 and v1 as a function of strain
amplitude and the strain rate amplitude ωγ0, for dry (closed
symbols) and wet (open symbols) Dynoseeds beads, respec-
tively, where ω = 9.4 rad s−1. Corresponding fits in (a) and
(c) were evaluated with Eqs. 18 and 19. Semi-logarithmic
representations of (b) the nonlinear elastic moduli as a func-
tion of strain amplitude γ0, where squares and circles: secant
elastic modulus G′

L, triangles: tangent elastic modulus G′
M;

and the (d) nonlinear loss moduli as a function of the strain
rate amplitude ωγ0, where squares and circles: secant loss
modulus G′′

L, triangles: tangent loss modulus G′′
M. The corre-

sponding fits of (a) and (c) were used in (b) and (d) as a ref-
erence to show the agreement in the slope attributed to the
‘noise temperature’ (for detailed explanation see text). The
grey box indicates the range γonset

0 ≤ γ0 ≤ γoffset
0 , defined

from (a) by the fits with Eq. 18

liquid between adjacent grains would squeeze out due
to compressive stresses and thus the pendular state of
the liquid bridge network would be destroyed; in both
cases, for high deformations, strain amplitude γ0 > 7 in
the slip regime was developing shear banding and got
jammed and eventually rotated as a single body.

The Chebyshev coefficients should be understood as
viscoelastic moduli. We shall discuss them in our partic-
ular case of powders, as we did in our previous work of
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the reference [27] with the proposed Eq. 2, and explor-
ing them through a semi-logarithmic representation of
the elastic and viscous first harmonic, as shown in Fig.
7a, c. We proposed to fit the first elastic harmonic in
the nonlinear range with Eq. 18:

γ0

γoffset
0

= exp
(

− G′
1

G
′0
1

)
γonset
0 ≤ γ0 ≤ γoffset

0 ,

(18)

From the data points in Fig. 7a, we got the fol-
lowing fitting parameters: γoffset

0 = (7.3 ± 0.6), G
′0
1 =

(56±1) J/m3,, and γoffset
0 = (7±2),, G

′0
1 = (17±1) J/m3

for the dry and wet granulate, respectively. These
results were found consistent with what we were dis-
cussing in the previous section related to Fig. 6. The
characteristic modulus is assumed to be proportional
to a kind of characteristic energy that set the state of
the system dynamics, G

′0
1 ·ν ∝ E

′0
1 ; as we defined in [27]

with ν the volume of one bead and considering only the
fraction of fluidized beads in the cup, estimated in Sect.
2.3, we got E

′0
1 ∼ 19 nJ and E

′0
1 ∼ 6 nJ for the dry and

wet granulate, respectively. Given that γonset
0 = 0.1, we

found γoffset
0 ∼ 7 corresponds to the onset of the wall-

slip regime as previously discussed. Following up on our
previous work as shown in [27], in the yielding range,
it seems appropriate to understand this characteristic
energy for the wet granulates, as the noise tempera-
ture governing the dynamics of breaking and regenera-
tion (br) of liquid bridges E

′0
1,br ≡ kB · Θbr ∼ 6 nJ, or

Θbr ∼ 0.4 PK (peta Kelvin). In Sect. 2.4 the bridge rup-
ture energy range was estimated to be 1 nJ � W � 2 nJ,
assuming a coordination six, being of the order of the
noise energy set by kB · Θbr. In the case of the yielding
range for the dry granulate, the noise temperature gov-
erning the dynamics of grain rearrangement (gr) should
be E

′0
1,gr ≡ kB · Θgr ∼ 19 nJ or Θgr ∼ 1.4 PK. Besides

also in this range, the smaller noise temperature for the
wet granulate than for the dry Θbr < Θgr corroborates
the finding that, under confinement, the wet granular
assembly flows dissipating less energy than the energy
dissipated by the dry one [27].

We also conducted a similar analysis for the viscous
first harmonic, with Eq. 19 written for different ranges
identified in Fig. 6b, for the wet γ0 ≤ γonset

0 and dry
powder γ0 ≤ γoffset

0 as follows:

ω.γ0

ω.γj
0

= exp
(

− G′′
1

G
′′0
1

)
γ0 ≤ γj

0 j = γonset
0 , γoffset

0

(19)

From the fittings, we obtained the following for the
wet powder in the pre-yielding range: γonset

0 = (0.11 ±
0.02) and G

′′0
1 = (8.0 ± 0.4) J/m3 and for the dry pow-

der in the range γ0 � 2, we got: γoffset
0 = (1.5 ± 0.5)

and G
′′0
1 = (3.2 ± 0.3) J/m3. Similar to the evaluations

made for the elastic first harmonic, we thus rewrite
these results considering the number of fluidized beads

and changing units following our assumption that the
characteristic loss modulus is also proportional to a
characteristic viscous energy G

′′0
1 · ν ∝ E

′′0
1 , for the

wet granulate: E
′′0
1 ∼ 3 nJ for the pre-yielding range

and for the dry beads: E
′′0
1 ∼ 1 nJ for γ0 � 2. Fur-

thermore, in the pre-yielding range, the viscous first
harmonic for the wet granulate revealed a major role
compared to the elastic one γ0 � γonset

0 (Fig. 7b); in
this range the shear strain oscillations are not provoking
displacements enough to break up liquid bridges; thus,
this viscous dissipation should be related to the oscil-
lations in the liquid bridge network. From the onset of
breaking and regeneration dynamics, this viscous dissi-
pation mode is interrupted almost to zero. In the case of
the dry granulate, we observed a range for γ0 < γoffset

0 ,
where the viscous dissipation should be driven by fric-
tion between grains either in the pre-yielding range but
also from the onset of particle rearrangements, where
the offset of this viscous friction range could corre-
spond to the offset for the force chains branching out.
It should be also valid to extend the concept of noise
temperature since we are describing a different ensem-
ble of inherent states [26]; thus, we could write for
the noise temperature governing the viscous oscillations
of the liquid bridge network in the pre-yielding range
E

′′0
1,lbn ≡ kB · Θlbn ∼ 3 nJ or Θlbn ∼ 0.2 PK; and for

the noise temperature governing the viscous friction
of the grain contacts (f) E

′′0
1,f ≡ kB · Θf ∼ 1 nJ or

Θf ∼ 0.07 PK.

3.2 Higher-order viscoelastic moduli
contributions to nonlinearities

Taking into account Eqs. 11 to 14 makes easier to iden-
tify what is shown in Fig. 7c, d, using the corresponding
fits of (a) and (b) with Eqs. 18 and 19 in (c) and (d) as
a reference, we observed the agreement in the slope and
the small deviations from it, which correspond to the
contribution of higher harmonics. We should note that
the intensities of the higher harmonics decreases con-
siderably being the third, fifth and seventh harmonic of
the order of 1%, 0.1% and 0.01% of the first harmonic.
We also explore the oscillation frequencies in the range
from 0.01 Hz to 10 Hz noticing a dependence on fre-
quency only for higher harmonics. Rewriting Eqs. 11 to
14 helps us rule out the first harmonic and collapse the
modulus to reveal pure nonlinear response, as shown in
Eq. 20 for the third harmonic:

e3 ∼ (G
′
M − G

′
L)

3
v3 ∼ (ηL − ηM)

3
(20)

Analogous to the Fourier transform-derived Q-parameter
(ratio of the relative intensities) for quantifying non-
linearity present in complex materials [39], we scaled
Chebyshev polynomial of third, fifth, and seventh to
the first kind to estimate the possible amount of non-
linearity present in the system. Equations 21 were used
to evaluate the elastic ξe and viscous ξv nonlinearities
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Fig. 8 Semi-logarithmic representation of the amount of
nonlinearities as a percentage of the first Chebyshev coeffi-
cients, evaluated with Eq. 21, from the experimental data
for polystyrene beads of 500 μm with and without the small
addition of silicon oil. For the wet granulate: a elastic non-
linearity ξe as a function of the strain amplitude γ0 and
b viscous nonlinearity ξv as a function of the strain rate
quantified as ωγ0, the measurements were done at differ-
ent oscillation frequencies, starting from the bottom for the
curves are ordered as follows: 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 1,

1.25, 1.5, 2, 3, 5 and 10 Hz. The corresponding fittings for ξe
and ξv with Eq. 23 of the peak curve and adjusted together
with Eq. 22 (for detailed explanation, see text). The curve
depicted in blue corresponds to the frequency selected for
our study at 1.5 Hz to investigate the nonlinearities for the
wet and dry granular assembly; data represented as open
and close symbols, with the corresponding fittings in blue
and red, respectively; as is shown in c and d their semi-
logarithmic and in e and f their linear representations. The
grey box indicates the fittings range
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expressed as percentage of the first Chebyshev coeffi-
cients.

ξe = 100 ·
√

e2
3 + e2

5 + e2
7

e2
1

ξv = 100 ·
√

v2
3 + v2

5 + v2
7

v2
1

(21)

These nonlinearities are shown in Fig. 8; in the pre-
yielding regime, ξe ∼ ξv ≈ 0, the behaviour is showing
only a small amount of nonlinearity for the strain ampli-
tude increasing in the vicinity to the yielding onset,
and it is consistent with nonlinear viscoelastic moduli
as shown in Fig. 7. Positive values of ξe indicate strain
stiffening among dry and wet granules. ξdry

e > ξwet
e for a

given strain amplitude. This implies that dry grains are
stiffer than wet grains, which agrees with previous stud-
ies on the rheology of dense granular pastes [27,51,60].
In the yielding regime, as it happens from γonset

0 ≈ 0.1
as observed in Fig. 8a, ξe gradually increased until sat-
uration while ξv gave a peak behaviour, indicating a
possible relation between elastic and viscous nonlinear-
ities ξe and ξv. Under small deformation γ0 < 0.05, the
granular assembly is governed by linear elasticity and
remains largely unaffected, instigating the networks of
liquid bridges and force chain branches. Under large
deformation, in the yielding regime, rearrangement pro-
cesses lead to a finite number of nonlinear events. In
order to investigate this nonlinear elastic response of
the granulates, we propose to fit the elastic nonlinear-
ity with the stretched exponential Eq. 22:

y =
ξe

ξ∞
e

= 1 − exp−xδ, x =
γ0

γ∞
0

(22)

To analyse the viscous nonlinearity, we consider the
relation between steady-state rheology and compaction
experiments. In both studies, the origin of the devi-
ation from linearity is related to the rearrangements
in the granular assembly, which is identified as non-
linear events. Experimental studies on granular com-
paction by Lumay and Vandewalle [16] examined the
dynamics at three different spatial and temporal scales:
(1) evolution of the packing fraction to its satura-
tion value fitted by the Kohlrausch–Williams–Watts
law ρ̃ = 1 − exp−(t/τ)β , where τ is the relaxation
time and β is the stretched exponent; (2) evolution
of mesoscopic domains by correlating the mesoscopic
packing fraction φ̃ with the macroscopic packing frac-
tion ρ̃ through a power function, stated as φ̃ = ρ̃2,
which, in the mentioned study [16] is the determining
the diffusion-controlled growth of mesoscopic domains
for granulates in two dimensions; and (3) that at the
microscopic scale, the mobility of grains is proportional
to the variation of the packing fraction induced by an
external force, μ ∼ dρ̃/dt.

The evolution of the elastic nonlinearity ξe until sat-
uration, as shown in Fig. 8, is governed by the growth
and coalescence of mesoscopic domains and, therefore,

should be scalable with the macroscopic packing frac-
tion ρ̃. Being granular matter rheology under the same
dynamics as in a compaction experiment, the source
of viscous nonlinearity ξv can be corroborated with the
rearrangement of mesoscopic domains induced by exter-
nal shear forces. Following Lumay and Vandewalle [16]
and assuming the proportionality ξv ∼ dφ̃/dt, we pro-
pose Eq. 23 to investigate the relation between elastic
and viscous nonlinearity.

ξν

ξ∞
v

∼
[dy2

dx

]

k.x
, k.x =

ωγ0

(ω/k)γ∞
0

(23)

where k is a parameter to adjust the position of data
curves on the axis with ωγ0 so the extended exponent δ
and γ∞

0 are kept the same for both Eqs. 22 and 23. We
tested the consistency of the proposed relation between
the elastic and viscous nonlinearities by fitting the eval-
uated nonlinearities, processing the data from oscilla-
tory strain experiments for different frequencies in the
range from 0.01 Hz to 10 Hz on polystyrene beads with
a small quantity of silicon oil, enough to reach the pen-
dular state for the liquid bridge network as shown in
Fig. 8a, b. By fitting the data shown in Fig. 8a, b, we
obtain for all the curves in the applied range of fre-
quencies: k = (1.581 ± 0.003), δ = (0.949 ± 0.001) and
γ∞
0 = (5.62 ± 0.01). As already stated above in Sect.

2.3 we chose the frequency 1.5 Hz for our experiments
to study dry and wet granulates, as the corresponding
fits are shown in blue colour in Fig. 8a, b. Figure 8c, d
depicts the semi-logarithmic representation of the elas-
tic and viscous nonlinearities for the dry and wet gran-
ulate, and similarly, the respective linear representation
is shown in Fig. 8e, f, to support the agreement with the
fittings. For the dry powder, as shown in red, fitting the
data revealed: k = (1.55±0.02), δ = (0.870±0.005), and
γ∞
0 = (6.69 ± 0.05). We identified γ∞

0 as a measure of
the elastic range of the granulate where the elastic range
for dry granulate is found larger than the granulate with
small additions of silicon oil. In contrast to the elastic
nonlinearities ξdry

e > ξwet
e , the peak functions for the

viscous nonlinearities ξdry
v < ξwet

v allude to the inherent
states or the noise dynamics at the mesoscopic scale,
wherein the viscous nonlinearity is associated with an
enhanced flowability in the mesoscopic scale due to a
larger variation in the mesoscopic packing fraction, as
it was also indicated in the yielding range by their noise
temperatures Θbr < Θgr.

4 Conclusions and outlook

We investigated dry and wet granular matter flow by
running low-frequency oscillatory strain sweeps exper-
iments with a rotational rheometer using a cup-and-
plate geometry, applying large deformation under con-
stant normal pressure, enough to maintain the contact
of the plate with the granular assembly. To evaluate the
results of these experiments on cohesive powders, we
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developed a methodology based on the concept of noise
temperature as introduced by Sollich [22] within the
soft glassy materials model (SGM) but also validated
as a genuine thermodynamic configurational tempera-
ture as it is in the frame of the shear transformation
zone theory (STZ) [25,26]. The orthogonal decomposi-
tion of stress developed by Cho et.al [35] and extended
by Ewoldt et al. [36] permitted us to quantify our rhe-
ological data into elastic and viscous stress Lissajous–
Bowditch (LB) loops. From these loops, it was possi-
ble to approximate their symmetry lines with Cheby-
shev polynomials of the first kind. The strain sweeps
experiments permitted us to observe by increasing the
strain amplitude, the pre-yielding and yielding regimes
followed by a slip-stick regime. The onset of yielding
γonset
0 = 0.1 was identified by the abrupt increase in

the storage and loss moduli with respect to the applied
strain amplitude, which agreed with our previous inves-
tigation [27]. In the yielding range γonset

0 � γ0 � γoffset
0 ,

nonlinear events are driven by rearrangements of the
dry and wet granular assembly, which was confirmed
from the analysis of elastic and viscous nonlinearities,
evaluated from the high-order Chebyshev coefficients.
The offset of the yielding regime γoffset

0 is indeed the
onset of the slip-stick regime, which in the case of the
wet granulate corresponded to the end of the liquid
bridge’s pendular state provoking the coalescence of the
liquid bridges and creating shear banding [58], while in
the case of the dry granulate, it got jammed due to very
large deformation spinning as a single body of agglom-
erated polystyrene beads. Elastic and viscous Cheby-
shev coefficients related to the Fourier decomposition
are the nonlinear storage and loss moduli of the granu-
lar assembly; we attempted to understand them in the
pre-yielding and yielding regime in relation to the noise-
driven dynamics of the ensemble of mesoscopic elements
that determined the flow behaviour in each regime.

The SGM model [23,24] describes the energy land-
scape of soft glassy materials as an ensemble of meso-
scopic elements, each storing elastic energy, in which the
jumping of these elastic elements over strain-modulated
energy barriers is activated by a non-thermal temper-
ature. On this premise and a model based on gran-
ular compressibility, by retaining the Coulomb yield
conditions and dilatancy behaviour, Lu et.al [21] have
shown experimentally that the steady-state rheology
and the compaction behaviour of powders are related
as a part of the theory of jamming [20]. Contributing
to this research line, in previous work, we carried out
compaction experiments [28,29] in which we tested an
energetic approach developed by Ludewig et.al [61]; a
kinetic equation in terms of an energy parameter as the
sum of the kinetic and potential energy for each tap
described compaction dynamics having an Arrhenius-
like exponential factor with the dimensionless ratio
between a characteristic energy of the barrier and the
injected energy in each tap as its argument. Thus, a
clear dynamics of injection of energy in each tap fol-
lowed by the jumping of energy barriers between local
energy states has been experimentally validated [28,29].
Moreover, evaluating stress–strain LB-loops revealed a

scaling relation between the strain amplitude γ0 and
the storage elastic energy, which was made possible by
a ‘tube rheometer’ applying oscillatory strain in a sin-
gle shear band granular assembly [27]. In the yielding
range γonset

0 � γ0 � γoffset
0 , the amplitude γ0 of the

strain oscillation was shown to be proportional to a
Boltzmann factor with its argument containing what
was identified as the noise temperature, also named the
configurational or disorder temperature. This observa-
tion is also consistent with the basic idea of the STZ
theory in which the population density of shear trans-
formation zones n should be proportional to a Boltz-
mann factor in which the disorder temperature is in
its argument [26]. In our case, the density of the acti-
vated mesoscopic elements should be proportional to
the strain amplitude n ∝ γ0.

The expansion with Chebyshev polynomials of the
symmetry lines of the experimental strain–stress LB-
loops permitted us to investigate the dependence of
the viscoelastic Chebyshev coefficients on the strain
amplitude. It was found for the first harmonics, elas-
tic and viscous, the proportionality of the amplitude of
the strain oscillation with a Boltzmann factor, where
its argument resulted to be the dimensionless ratio
between the energy density of the viscoelastic elements
and the noise temperature governing the dynamics of
these mesoscopic elements. Note that this scaling is uni-
versal and is also valid for a wide variety of glasses as the
experimental evidence was recently reported by Song
et al. [62]. In their stress relaxation experiments with
metallic glasses, the STZ as dynamic variable describes
the flow of local atomic configurations induced by shear
strain; our experiments on the evolution of mesoscopic
grain configurations induced by deformation [27] agree
with the reported behaviour.

Then we would have to emphasize the central role
of configurational entropy in the dynamics of granular
matter [25,26,63,64]. Commonly used in powder engi-
neering to numerically simulate manufacturing facili-
ties, the granular temperature is understood as a con-
ventional kinetic temperature, while the configurational
or noise temperature is a genuine thermodynamic tem-
perature that satisfies the statistical meaning of tem-
perature as 1/Θ ≡ ∂S/∂U , in which U is the inter-
nal energy as pointed out first by Hong and Hayakawa
[63]. The development of this non-equilibrium thermo-
dynamic view has the potential to contribute not only
to a better understanding of granular matter dynamics
but also to be applied to breakthrough innovations in
powder technologies [65,66]. In our previous work by
considering the potential gravitational energy, for the
evaporation transition of granular matter, a configu-
rational temperature of Θ ∼ 9PK (peta Kelvin) was
experimentally found [64]. This order of magnitude in
temperature is difficult to grasp, being peta Kelvins
only theoretically estimated for the quark epoch of the
big-bang theory timeline [67]; however, it made sense
corresponding to inherent states described as slow con-
figurational degrees of freedom that maximize the con-
figurational entropy. For the pre-yielding and yielding
regime, from the expansion of the experimental LB-
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loops with Chebyshev polynomials, it was possible to
evaluate the corresponding noise temperature. In the
pre-yielding regime, the network of grain contacts of
the dry granulate were the source of the viscous dissi-
pation. Its dynamics were set by a noise temperature
Θf ∼ 0.07 PK, while for the granulate with a silicon
oil bridge network, in a pendular state, the tempera-
ture setting their oscillation dynamics was found to be
Θlbn ∼ 0.2 PK. In the yielding range, a noise temper-
ature of Θgr ∼ 1.4 PK set the noise-driven dynamics
of grain rearrangements, while a noise temperature of
Θbr = 0.4 PK set the dynamics of breaking and regen-
eration of liquid bridges, being also consistent with our
estimation for the liquid bridge rupture energy. This
noise temperature scale agrees with our experiments
with the ‘tube rheometer’, in which we measured for
dry sand with increasing packing fraction, a range of
1.5 PK � Θgr � 6.4 PK, while for the sand with small
additions of water, it was found to be Θbr ∼ 1.5 PK [27].

The higher-order Chebyshev coefficients were evalu-
ated to quantify the degree of elastic and viscous non-
linearity ξe and ξv, respectively. For dry grains, the elas-
tic nonlinearity ξe was found to be higher than for wet
grains. We found the elastic nonlinearity in the yielding
range related to a jamming density, also related with
the macroscopic compaction of the granular assembly.
This finding is consistent with our observation that
ξdry
e > ξwet

e ; while in contrast, we observed for the peak
function of the viscous nonlinearity that ξwet

v > ξdry
v .

What we found is related with flowability and consis-
tent with the configurational entropy of the granular
media as their states are characterized by noise tem-
peratures governing different dynamics of grain rear-
rangements (gr) and breaking and regeneration of liquid
bridges (br), Θbr < Θgr. We also identified the elastic
range of the granular material as γ∞

0 , a measure of the
strain amplitude necessary for the elastic nonlinearity
to saturate and also a measure of the jamming point,
which from what we found is shorter for the wet gran-
ulate than for the dry, in which as it is known, friction
extends the elastic range of granular matter [68].

We found a relationship between the elastic and
viscous nonlinearity by assuming a relation between
the elastic nonlinearity and the macroscopic packing
fraction and between the viscous nonlinearity and the
derivative of the mesoscopic packing fraction. With
respect to the strain amplitude, from the evaluated non-
linearities, the proportionality of the viscous nonlinear-
ity and the variation of the square of the elastic nonlin-
earity induced by deformation were fitted. This relation
further signifies a correspondence between the dynam-
ics of structures such as rattlers in the mesoscopic scale
with the macroscopic response of the granular media,
in agreement with the discussion by Kumar and Lud-
ing [69] associating the origin of nonlinearity to den-
sity fluctuations moving the jamming point. As shown
by Shi et al. [70], although it is possible to simulate
granular matter dynamics with a linear force model,
the result showed a nonlinear response originating from
the combination of local characteristic time scales asso-
ciated with the different interactions between grains

and a common global time scale related to the grain
rearrangement phenomena induced by the confinement
pressure. This also points out that the existence of the
proportionality between viscous nonlinearity and the
variation in elastic nonlinearity means an entropic ori-
gin of the nonlinear dynamics of granular matter.
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