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Abstract The ongoing coronavirus disease 2019 (COVID-19) pandemic poses a major threat to the
worldwide health care. In this context, epidemic modelling is an integral part of containment strate-
gies. Compartmental models are typically used for this purpose. Analytical solutions of the two distinct
but connected Susceptible-Infectious-Recovered-Deceased (SIRD) and Susceptible-Infectious-Quarantine-
Recovered (SIQR) models are presented in this study. Furthermore, the behaviour at the start of a disease
outbreak is derived. This analysis shows that a combination of transmission, recovery and isolation rates
dominates the behaviour at the start of an epidemic. In addition, the loss occurring due to quarantine and
lockdown measures is investigated, where it can be observed that quarantine procedures lead to a smaller
loss in comparison with lockdown regulations. Within this framework, optimized strategies that lead to a
constant epidemic peak or a minimized loss are presented.

1 Introduction

Since December 2019, a total of 499748065 many infec-
tions and 6181560 many deaths due to the ongoing
COVID-19 pandemic were confirmed until April 12,
2022 [1]. Therefore, biological modelling of such disease
outbreaks plays an essential role in containing these and
possible other epidemics or pandemics. Such models
allow the study of infection dynamics and offer the pos-
sibility of assessing the potential consequences of vari-
ous options for population or government reactions and
thus developing a strategy that is optimized as well as
feasible.

Studying epidemics by use of compartmental models,
which are deterministic mean-field models, is a well-
established academic discipline [2–5]. The Susceptible-
Infectious-Removed (SIR) model is a basic model [6]
that assumes that the total population can be divided
into three classes: susceptible, infected and removed
population parts. Note that within this approach demo-
graphic effects are neglected since infection dynam-
ics are often much faster than demographic dynamics.
Infections occur due to contact between infected and
susceptible individuals. The number of infected individ-
uals decreases due to treatment, quarantine measures
and death cases.

In addition, variations of the SIR model like SIRD
and SIQR models and also their modified versions exist
[7–20]. On the one hand, the SIRD model considers the
number of susceptible, infected, recovered, and dead
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people. Correspondingly, a susceptible individual in
contact with an infected person is likely to get infected.
This individual can either recover from the disease or
die. Hence, the sum of susceptible, infected, recovered,
and dead remains constant. Furthermore, it is conjec-
tured that all individuals who are exposed to the dis-
ease get infected instantly. Thus, no latent time between
exposure and infection exists within this model. In addi-
tion, confinement or quarantine measures are neglected.
On the other hand, the SIQR model is a compartmental
model which describes a population by four compart-
ments, assuming the existence of an additional com-
partment of quarantined individuals in contrast to the
SIR model. In common epidemics, only symptomatic
patients are considered as infectious and the quarantine
measure is launched to remove symptomatic individu-
als from the population. Nonetheless, infectious diseases
like COVID-19 also yield pre-symptomatic and asymp-
tomatic patients who are infectious and thus are also
considered as part of the additional compartment.

Remarkably, due to the COVID-19 pandemic mod-
elling and simulation is of great prominence. Many
important results were summarized in [6,21]. The SIR
model, introduced in [5], was used for the purpose of
studying the COVID-19 outbreak [22,23], while the
SIRD model was also studied for the analysis of the
pandemic [24,25].

Therefore, analytical results are derived for the SIRD
and SIQR cases in Sects. 2.1–2.4. These formulae
(describing the epidemic peak, analytical solutions for
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all times t and the small time limit) are obtained triv-
ially by considering well-known expressions for the SIR
model. In addition, a novel analysis of the daily new
cases is presented in Sect. 2.5.

Moreover, the loss due to reactions of government and
population is investigated by use of novel measure and
loss functions. Two different strategies are presented.
On the one hand, the epidemic peak is kept constant.
On the other hand, the loss is minimized with regard
to a given measure. This analysis is crucial since dras-
tic measures were taken for the purpose of containing
the spread of COVID-19. However, a major burden of
the COVID-19 outbreak and a worldwide recession is
observable [26,27].

2 Results obtained by use of the
connection between compartmental models

2.1 SIR, SIRD and SIQR models

Within the framework of compartmental models, SIR
[28–33], SIRD [34–36] and SIQR [37–40] approaches are
well-known methods for the purpose of studying epi-
demic disease outbreaks. These models are given by
sets of ordinary differential equations that describe the
dynamics of the outbreak by rate equations. The SIR
model is given by

d
dt

s1 (t) = −βs1 (t) i1 (t) , (1a)

d
dt

i1 (t) = βs1 (t) i1 (t) − γi1 (t) , (1b)

d
dt

r1 (t) = γi1 (t) , (1c)

while the SIRD model is characterized by

d
dt

s2 (t) = −βs2 (t) i2 (t) , (2a)

d
dt

i2 (t) = βs2 (t) i2 (t) − (γ + σ) i2 (t) , (2b)

d
dt

r2 (t) = γi2 (t) , (2c)

d
dt

d2 (t) = σi2 (t) (2d)

and the SIQR model is described by

d
dt

s3 (t) = −βs3 (t) i3 (t) , (3a)

d
dt

i3 (t) = βs3 (t) i3 (t) − (γ + δ) i3 (t) , (3b)

d
dt

q3 (t) = δi3 (t) − μq3 (t) , (3c)

d
dt

r3 (t) = γi3 (t) + μq3 (t) , (3d)

Fig. 1 Fraction of infected individuals i3 depending on
the fraction of susceptible individuals s3 for γ+δ

β
=

0.1, 0.2, 0.3, 0.4

where t is the time, β the transmission rate, γ the
recovery rate of infectious individuals, δ the isolation
rate, σ the mortality rate, and μ the recovery rate
of isolated individuals. Remarkably, these parameters
are measurable quantities during an outbreak. Isola-
tion rate δ and transmission rate β depend on govern-
ment reactions to an outbreak, while β also depends
on population reactions. The functions sj (t), ij (t),
qj (t), rj (t) and dj (t), j = 1, 2, 3 with accordingly cho-
sen j, describe the fractions of susceptible, infectious,
isolated, removed (deceased or recovered for SIR and
SIQR while only recovered for SIRD) and deceased indi-
viduals within the total population N at time t. Thus,
s1 (t)+i1 (t)+r1 (t) = 1, s2 (t)+i2 (t)+r2 (t)+d2 (t) = 1
and s3 (t) + i3 (t) + q3 (t) + r3 (t) = 1 hold. Note that
the initial data of the functions sj (t) is represented by
sj (0) for j = 1, 2, 3. Typically, sj (0) = 1 − 1

N is used
since it can be assumed that one infected individual
exists in a community at the start of an epidemic out-
break.

2.2 Epidemic peak

Dividing Eq. (3b) with Eq. (3a) in the SIQR model and
integrating over s3 leads to

i3 (s3 (t)) = 1 − s3 (t) +
γ + δ

β
ln s3 (t) , (4)

which describes the fraction of infected individuals in
the (s3, i3) plane for the SIQR model. In analogy, set-
ting the isolation rate δ = 0 (δ = σ) and changing the
index 3 → 1 (3 → 2) yields the equation describing the
fraction of infected individuals in the (s1, i1) ((s2, i2))
plane for the SIR (SIRD) model. The (s3, i3) plane is
depicted in Fig. 1 for varying γ+δ

β .
The peak of this plane increases for increasing trans-

mission rate β or decreasing γ + δ and lies at position
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Fig. 2 Epidemic peak i∗3 depending on γ+δ
β

(s∗
3, i

∗
3),

s∗
3 =

γ + δ

β
, i∗3 = 1 +

γ + δ

β

(
ln

γ + δ

β
− 1

)
. (5)

The epidemic peak i∗3 is depicted in Fig. 2. It shows a
minimum at β = γ + δ while increasing transmission
rate β or decreasing γ + δ yield increasing i∗3 for β >
γ + δ. Contrarily, for β < γ + δ decreasing transmission
rate β or increasing γ+δ increases i∗3. For γ+δ

β > e (with
Euler’s number e) the peak i∗3 is larger than 1, which is
prohibited in the framework of the SIQR model.

2.3 Exact results

Exact results for the SIR model are well-known [41–43]
and given by

s1 (t) = s1 (0) u1 (t) , (6a)

i1 (t) = 1 +
γ

β
ln u1 (t) − s1 (0) u1 (t) , (6b)

r1 (t) = −γ

β
ln u1 (t) , (6c)

where the function u1 (t) is defined by

t =

u1(t)∫
1

dξ

ξ (βξs1 (0) − β − γ ln ξ)
. (6d)

These solutions are depicted in Fig. 3.
The SIRD model reduces to the SIR model by use of

d
dt (r2 (t) + d2 (t)) = d

dtr1 (t), changing the index 2 →
1 and setting the mortality rate σ = 0. Hence, Eqs.
(6a), (6b) and (6d) also hold for the SIRD case if the
replacements in the indices 1 → 2 are performed while
Eq. (6c) is a solution for r1 (t) = r2 (t) + d2 (t). Hence,
exact solutions are given by

s2 (t) = s2 (0) u2 (t) , (7a)

Fig. 3 Time t dependence of functions s1 (t), i1 (t) and
r1 (t) for β = 0.56 and γ = 0.2. The parameters are cho-
sen for the COVID-19 outbreak before any population or
government reactions came into effect [13]. Thus, they rep-
resent the natural COVID-19 outbreak without any control
measures within the SIR approach

i2 (t) = 1 +
γ + σ

β
ln u2 (t) − s2 (0) u2 (t) , (7b)

r2 (t) = −γ + σ

β
ln u2 (t)

− σ

t∫
0

dt′
(
1 +

γ + σ

β
lnu2 (t′) − s2 (0) u2 (t′)

)
,

(7c)

d2 (t) = σ

t∫
0

dt′
(

1 +
γ + σ

β
ln u2 (t′) − s2 (0) u2 (t′)

)
,

(7d)

t =

u2(t)∫
1

dξ

ξ (βξs2 (0) − β − (γ + σ) ln ξ)
. (7e)

Solutions for r2 (t) and d2 (t) are obtained by use of
Eqs. (2d) and (6c), respectively. Figure 4 depicts exact
SIRD solutions for s2 (t), i2 (t), r2 (t) and d2 (t).

In addition, the SIQR model reduces to the SIR
model by use of

d
dt

(q3 (t) + r3 (t)) =
d
dt

r1 (t) , (8)

changing the index 3 → 1 and setting the isolation rate
δ = 0. Hence, Eqs. (6a), (6b) and (6d) also hold for
the SIQR case if the replacements γ → γ + δ, 1 → 3
are performed, while Eq. (6c) is a solution for r1 (t) =
q3 (t) + r3 (t). Hence, exact solutions are given by

s3 (t) = s3 (0) u3 (t) , (9a)
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Fig. 4 Time t dependence of functions s2 (t), i2 (t), r2 (t)
and d2 (t) for β = 0.56, γ = 0.2 and σ = 0.01. The parame-
ters are chosen for the COVID-19 outbreak before any pop-
ulation or government reactions came into effect [13]. Thus,
they represent the natural COVID-19 outbreak without any
control measures within the SIRD approach

i3 (t) = 1 +
γ + δ

β
ln u3 (t) − s3 (0) u3 (t) , (9b)

q3 (t) = δ

t∫
0

dt′ eμ(t′−t)

×
(

1 +
γ + δ

β
ln u3 (t′) − s3 (0) u3 (t′)

)
,

(9c)

r3 (t) = −γ + δ

β
ln u3 (t) − δ

t∫
0

dt′ eμ(t′−t)

×
(

1 +
γ + δ

β
ln u3 (t′) − s3 (0) u3 (t′)

)
,

(9d)

t =

u3(t)∫
1

dξ

ξ (βξs3 (0) − β − (γ + δ) ln ξ)
. (9e)

Solutions for q3 (t) and r3 (t) are obtained by use of Eqs.
(3c) and (6c), respectively. Figure 5 depicts exact SIQR
solutions for s3 (t), i3 (t), q3 (t) and r3 (t).

Note that the fraction of isolated individuals reaches
its maximum later than the fraction of infected indi-
viduals. The difference is typically in the order of 10
days.

2.4 Small time limit

Equation (9e) simplifies for small times t since 1−u3 (t)
is small in this case. Hence, this evaluation describes the
beginning of an outbreak and yields exact short-term

Fig. 5 Time t dependence of functions s3 (t), i3 (t), q3 (t)
and r3 (t) for β = 0.56, γ = 0.2, δ = 0.1 and μ = 0.02. The
parameters are chosen for the COVID-19 outbreak before
any population or government reactions came into effect
[13]. Thus, they represent the natural COVID-19 outbreak
without any control measures within the SIQR approach.
The number of isolated individuals reaches its maximum 14
days later in comparison to the peak of infected people

solutions for the SIQR model given by

s3 (t) = s3 (0) +
β (1 − s3 (0))

γ + δ − β

(
e(β−γ−δ)t − 1

)
,

(10a)

i3 (t) = (1 − s3 (0)) e(β−γ−δ)t, (10b)

q3 (t) =
(1 − s3 (0)) δ

β − γ − δ + μ

(
e(β−γ−δ)t − e−μt

)
, (10c)

r3 (t) =
(1 − s3 (0)) (γ + δ)

β − γ − δ

(
e(β−γ−δ)t − 1

)

− (1 − s3 (0)) δ

β − γ − δ + μ

(
e(β−γ−δ)t − e−μt

)
,

(10d)

which also represent short-term solutions for SIR or
SIRD models if r1 (t) = q3 (t)+r3 (t) or q3 (t) = d2 (t) is
used, indices are changed, i.e. 3 → 1 or 3 → 2, and van-
ishing isolation rate δ = 0 or δ = σ is assumed, respec-
tively. By considering Eqs. (10a)–(10d), it is obvious
that the short-term behaviour of the epidemic outbreak
and its growth rate is controlled by β − γ − δ for the
three models. Hence, at the start of an epidemic out-
break population and government reactions that lead
to negative or at least small but positive β − γ − δ are
preferable [44].

Remarkably, this fact can also be derived quite triv-
ially by using the fact that at the early stage of an out-
break the number of infected, quarantined and removed
individuals is quite small in comparison with the total
population number N , i.e. s3 (t) = 1 − i3 (t) − q3 (t) −
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r3 (t) = 1+O (i3 (t) + q3 (t) + r3 (t)) and i3 (t)+q3 (t)+
r3 (t) � 1 hold. Thus, Eq. (3b) simplifies to

d
dt

i3 (t) = (β − γ − δ) i3 (t) , (11)

which also leads to the solution given by Eq. (10b). Note
that this approach also holds for time-dependent trans-
mission rate β (t) and isolation rate δ (t), respectively.
Hence, Eq. (11) yields

i3 (t) = i3 (0) e
∫ t
0 dt′ (β(t′)−γ−δ(t′)) (12)

in this case, which is a generalization of the small time
limit given in Eq. (10b).

As an example of the observation that β − γ − δ is
dominating the early stage of an outbreak, we consider
real COVID-19 data from Germany until 28 March
2020 [45]. The first COVID-19 case in Germany was
reported on 27 January 2020. However, the number of
daily cases was published from 04 March 2020 onwards,
i.e. 36 days later. Furthermore, note that data analyses
with confirmed cases need to be done carefully due to
the delay of 1 to 2 weeks between the calculated and
officially recorded number of confirmed cases. More-
over, official reports do not distinguish between infected
and isolated individuals. For these reasons, we assume
that the number of cases has been recorded from the
45th day of the outbreak and the short-term function
i (t) + q (t) given by Eqs. (10b) and (10c) is fitted to
real data, where β and δ are determined by the fitting
process. The result is depicted in Fig. 6. β = 0.5109
and δ = 0.2007 are obtained which shows that isola-
tion measures were taken and the transmission rate
was reduced in comparison with β = 0.56 [13]. How-
ever, β − γ − δ > 0 still held which explains the occur-
rence of the first COVID-19 wave in Germany. Thus,
it is clear that a further decreasing transmission rate
in combination with a higher isolation rate was needed
for stamping out the outbreak. Note that within such
an approach the continuous determination [13,46–49]
of this rates is a requirement since they show dynamic
behaviour while β − γ − δ < 0 is aimed for.

Remarkably, within this approach, it is not possible
to propose a specific intervention during an epidemic
outbreak based on this model. However, there are two
possible advantages. First, as demonstrated in Fig. 6,
the fitting procedure for the early phase of an outbreak
yields the transmission and isolation rates β and δ,
respectively. Thus, quantitative effects of any interven-
tions on the rates can also be determined. Naturally,
interventions only have to take effect individually so
that the respective influence can be determined directly.
However, since ultimately only the sign of β−γ−δ plays
a role, this method can be used for measuring the total
effect of a number of interventions. Second, in addition
to the weighting of the interventions β − γ − δ < 0 can
obviously be aimed for.

Fig. 6 Short-time behaviour of i (t) + q (t) in comparison
with the real data from Germany

2.5 Analysis of daily new cases

The assumption that infected individuals are quaran-
tined leads to a relationship between the number of
daily new cases C (t) and infected individuals since
considering the incubation period distribution function
ρ (t) for quarantining infected people and using the
fact that a convolution of this function ρ (t) with i3 (t)
describes individuals with starting symptoms leads to

c (t) :=
C (t)
N

=

t∫
−∞

dt′ ρ (t − t′) i3 (t′) . (13)

Since the incubation period distribution function ρ (t)
should be a well-behaved function with just a single
peak [50,51], the method of steepest descent [52,53]
yields

c (t) � i3 (t − τ) ρ
3
2 (τ)

√
2π

|ρ′′ (τ)| , ρ′ (τ) = 0, (14)

where τ characterizes the position of the peak of the
incubation period distribution function ρ (t) and ρ′′ (t)
is a shorthand notation, i.e. ρ′′ (t) = d2ρ(t)

dt2 . Thus, we
find

c (t)
c (0)

=
i3 (t − τ)
i3 (−τ)

, (15)

which yields

c (t) =
c (0) i3 (t − τ)

i3 (−τ)
(16)

for the daily new cases c (t), where c (0) is the initial
number of daily cases. Hence, c (t) can be evaluated
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by use of the SIQR approach presented in Eq. (9b) for
constant transmission rate β and isolation rate δ. In
addition, for small times t and time-dependent rates
β (t) and δ (t) Eq. (12) yields

c (t) = c (0) e
∫ t
0 dt′ (β(t′−τ)−γ−δ(t′−τ)). (17)

Corresponding to this result, daily new cases c (t) were
approximated by piecewise exponential functions for
the analysis of the first wave of the COVID-19 outbreak
[1,54]. In analogy, Eq. (17) can be used for studying the
effects of time-dependent transmission (isolation) rate
β (t) (δ (t)) with regard to the waves of the outbreak.

3 Measure

Lockdowns are widely used as mitigation or suppres-
sion strategies during epidemic disease outbreaks. In
the analysis presented in the previous Sect. 2.4 it was
observed that β − γ − δ is the dominant factor at the
beginning of an epidemic outbreak. Hence, for the pur-
pose of controlling the spread of an infectious disease
decreasing transmission rate β [13] or increasing iso-
lation rate δ is essential since the recovery rate γ is
fixed for any given disease. However, the cost of such
methodologies has to be taken into account. Replacing
β with (1 − α) β allows the definition of a measure func-
tion m (α, δ) that is used for measuring the lockdown
strength. α = 0 describes the natural outbreak without
any control reactions, while α = 1 leads to a vanishing
transmission rate and thus describes a total lockdown.

The epidemic peak i∗3 in Eq. (5) is taken as measure
function, i.e.

m (α, δ) = 1 +
γ + δ

(1 − α) β

×
(

ln
γ + δ

(1 − α) β
− 1

)
, m (α, δ) ≥ 0. (18)

Within this framework, Fig. 7 illustrates trajectories for
which the measure function m (α, δ) is constant.

Furthermore, a loss function

l (α, δ) = k1α + k2α
2 + k3

δ2

β2
(19)

of quadratic form is used for the purpose of measuring
the cost of any action the government or the popula-
tion implements. This specification involves α which
describes the strength of measures and the isolation
rate δ. Within this approach, the fraction δ

β is con-
sidered since it leads to a loss function with arbitrary
unit. Remarkably, the total loss includes not only the
isolation for every individual but also the cost of orga-
nization, management, treatment, cooperation, loss of
productivity, etc. Hence, the loss function should be
nonlinear. Thus, in this study, a quadratic function Eq.

Fig. 7 α in dependence of δ for constant measure
m (α, δ) = m = 0.1, 0.2, 0.3, 0.4, 0.5, β = 0.56 and γ = 0.2
[13]. The trajectories are described by the linear relation-
ship α = 1 − γ+δ

βc
between α and δ, where the constant

c is connected to the constant value of m (α, δ) = m by
em−1 =

(
c
e

)c

(19) is implemented for estimating quarantine measures
as suggested by previous studies about epidemic control
[55–57]. Another quite obvious argument for assuming a
nonlinear loss function is that there exists no linear rela-
tionship between the effects of medical treatment and
disease. Note that the loss function l (α, δ) increases
with increasing α or isolation rate δ and l (α, δ) ≥ 0
holds as expected. The coefficients k1, k2 and k3 are
balancing cost factors due to scales and importance
of the three parts in the loss function l (α, δ). For
instance, k3 > k1, k2 (k1, k2 > k3) suggests that the
loss caused by medical treatment (social distancing) is
higher than the loss arising from social distancing (med-
ical treatment). Moreover, the relationship between k1
and k2 determines whether social distancing contributes
more linearly or nonlinearly. If any coefficient is equal
to another, this leads to a balanced weighting of the
related terms in the loss function in Eq. (19). Within
this context, constant values for the loss l (α, δ) = l are
obtained for

α = − k1
2k2

+

√
β2 (k2

1 + 4k2l) − 4k2k3δ2

2k2β

= − k1
2k2

+

√
k2
1 + 4k2l

2k2
− k3δ

2

β2
√

k2
1 + 4k2l

+ O (
δ4

)
.

(20)

The minimum of the loss function l (α, δ) is determined
by considering

L (α, δ, λ) = l (α, δ) − λ (m (α, δ) − m) , (21)

where λ is a Lagrange multiplier and m (α, δ) = m a
constraint at some level. Thus, considering ∂αL (α, δ, λ)
= ∂δL (α, δ, λ) = ∂λL (α, δ, λ) = 0 yields the optimum
trajectory (α∗, δ∗) minimizing the loss function l (α, δ)

123



Eur. Phys. J. E (2022) 45 :68 Page 7 of 10 68

Fig. 8 α∗ in dependence of δ∗ for β = 0.56, γ = 0.2 [13]
and varying ratios of k1, k2 and k3

for a given measure function m (α, δ), i.e.

β2 (k1 + 2α∗k2) (1 − α∗) = 2k3δ
∗ (γ + δ∗) . (22)

The trajectory is depicted in Fig. 8 for varying ratios
of k1, k2 and k3 and described by

α∗ =
1
2

− k1
4k2

+

√
β2 (k1 + 2k2)

2 − 16k2k3δ∗ (γ + δ∗)

4k2β

= 1 − 2k3γδ∗

β2 (k1 + 2k2)
+ O (

δ∗2) . (23)

Note that within this framework, only solutions α∗ ∈
[0, 1] have to be taken into account.

Due to this analysis, it is observable that lockdown
strategies depend on the intent. The epidemic peak is
constant for certain values of α and isolation rate δ, as
observable in Fig. 7 while other values for the parame-
ters depicted in Fig. 8 have to be chosen if the aim is
governed by fears of loss. Remarkably, a total lockdown
with α = 1 is obviously not the best strategy. A con-
stant epidemic peak is not achievable with this ansatz
while the loss is only minimized with this approach if
no quarantine measures are taken at all, i.e. isolation
rate δ∗ = 0. In contrast, increasing δ∗ leads to decreas-
ing α∗. The minimum loss on the trajectory (23) lies at
position

α∗ =
1
2

− k1
4k2

, δ∗ = −γ

2
+

√
γ2

4
+

β2 (k1 + 2k2)
2

16k2k3
(24)

and is described by

l (α∗, δ∗) =
k1
2

− k2
1

8k2
+

k2
2

+
k3γ

β2

×
⎛
⎝γ

2
−

√
γ2

4
+

β2 (k1 + 2k2)
2

16k2k3

⎞
⎠ . (25)

This analysis shows that a lockdown, which is described
by α∗ ≤ 1

2 , is quite sufficient for an optimized epidemic
containment strategy that minimizes social costs if a
corresponding isolation rate δ∗ depending on β, γ, k1,
k2 and k3 is provided.

This procedure can be combined with the stamping
out strategy presented in Sect. 2.4. It was shown that
an optimized strategy can be obtained by lowering the
transmission rate β to β

2 at maximum. The transmission
rate should not be lowered further (with regard to the
assumptions and models presented in this study). In
contrast the isolation rate δ needs to be increased in
such a case such that the sign of β − γ − δ is negative.

4 Conclusions

Exact solutions of SIRD and SIQR models were pre-
sented. In particular, short-term solutions were derived.
Results show that an epidemic outbreak is dominated
by β − γ − δ at its early stage. This is of major interest
since β and δ can be modified by government or pop-
ulation reactions. Thus, a stamp out strategy for the
epidemic can be used by generating negative β − γ − δ.
The comparison of the analytical approach with real
data from Germany indicates that this strategy was not
pursued in Germany at the early stage of the COVID-19
pandemic.

In addition, optimizing strategies for choosing α and
isolation rate δ were developed. One strategy leads to a
constant epidemic peak i∗3, while another methodology
minimizes the social loss function l (α, δ) for particular
values of α and isolation rate δ. Accordingly, choosing
the correct strategy depends on the intended purpose.
One can try to stamp out the epidemic, reduce the epi-
demic peak or mitigate the social consequences of mea-
sures. In any case, it turns out that a complete lockdown
with α = 1 is not a reasonable alternative. Contrarily,
regardless of the parameters α ≤ 1

2 is obtained if the
loss is minimized which indicates that well-chosen con-
tainment strategies far away from a complete lockdown
are achievable.

Furthermore, the methodology with regard to mini-
mizing the loss function presented in this study should
be considered as a first step. The implementation of
time t dependent transmission rate β (t) and isola-
tion rate δ (t) is an important possible extension which
might lead to additional further insights for epidemic
containment strategies.

Note that future research might thematise the incor-
poration of an input variable describing the propor-
tion of vaccinated residents in a population which may
improve the models further. Moreover, such an exten-
sion might be of interest for autoregressive models
which might also use machine learning techniques [58].
Another open question is the uncertainty in the pre-
dictions. Markov chain Monte Carlo (MCMC) methods
can be utilized for describing the stochastic behaviour
of transitions between the compartmental populations.
Moreover, compartmental models can be combined
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with deep learning models to predict several epidemic
peaks based on the date of previous peaks and uncover
hidden interconnections [59,60]. The incorporation of
spatial and temporal aspects to the dynamics of epi-
demic outbreaks is also of great interest. Self-organizing
neural networks and fuzzy fractal approaches were pro-
posed as a possible methodology for this purpose [61].
Furthermore, construction of models that can describe
both government actions and individual reactions in
combination with the influence of weather is of major
relevance.
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