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Abstract We have analyzed the dynamics of a spherical, uniaxial squirmer which is located inside a spher-
ical liquid drop at general position rs. The squirmer is subject to an external force and torque in addition
to the slip velocity on its surface. We have derived exact analytical expressions for the linear and rotational
velocity of the squirmer as well as the linear velocity of the drop for general, non-axisymmetric configura-
tions. The mobilities of both, squirmer and drop, are in general anisotropic, depending on the orientation
of rs, relative to squirmer axis, external force or torque. We discuss their dependence on the size of the
squirmer, its distance from the center of the drop and the viscosities. Our results provide a framework for
the discussion of the trajectories of the composite system of drop and enclosed squirmer.

1 Introduction

Controlled locomotion on micro- or nanometer scales is
of great interest for both, cell biology and microrobotics
[1–6]. In the former case, one aims to understand the
swimming motion of microorganisms and cell motility.
In the latter case, the goals are control and design of
microrobots optimized for a variety of biomedical appli-
cations. Our focus here is on a composite system, con-
sisting of an active device, encapsulated in a liquid drop.

Such composite systems have been studied experi-
mentally in several different setups, using liquid droplets
containing concentrated aqueous solution of bacteria
[7–10] in order to understand pattern formation and
swimming in a confined geometry. One example are
suspensions of Bacillus subtilis which form stable vor-
tex patterns inside a liquid drop [7]. In another setup
Escherichia coli in a water oil emulsion was shown to
be able to propel the droplet [8]. Similar propulsion has
been observed for bacteria in a liquid droplet, when put
into an ordered liquid crystalline state with defects [9].
Yet another example are magnetotactic bacteria which
were shown to self-assemble into a rotary motor [10].
In the context of microrobotics, synthetic microswim-
mers, such as artificial bacterial flagella [11] or photo-
catalytic particles [12] are able to propel liquid droplets,
which is of interest in many biomedical applications,
such as targeted drug delivery. The big advantage of
self-propulsion is that energy can be supplied by the
surroundings; the main disadvantage is lack of control.
Therefore, a combination of both, self-propulsion and
actuation by external fields, is a promising candidate
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to achieve optimal control of an otherwise self-propelled
composite device.

Theoretical studies of an active particle encapsulated
in a drop are based on analytical methods for pas-
sive systems, in particular exact solutions in bispher-
ical coordinates [13,14], the singularity method [15,16]
or multipole expansions [17]. A passive particle encap-
sulated in a droplet, experiencing external forcing or
shear flow has been studied in [18]. Analytical stud-
ies of active composite systems have focussed on sim-
ple internal active devices. The simplest ones are point
forces [19,20], which can be combined to model pullers
and pushers. Alternatively the active device has been
taken as a squirmer [21,22] whose slip velocity gen-
erates a flow inside the droplet and thereby can pro-
pel it [23,24]. Marangoni flow on the droplet’s surface
provides another driving mechanism, leading to stable
co-moving states [25]. The more complex system with
many squirmers inside a droplet was studied numer-
ically in [26]; propulsion of the droplet was observed
only, when the encapsulated squirmers induced bulk
flow in the interior of the droplet.

In a previous paper [27], henceforth denoted by ref.
I, we presented an analytical solution for a single-mode
squirmer, encapsulated in a drop and displaced from the
center of the drop by a. We only discussed the axisym-
metric case, such that both, the symmetry axis of the
squirmer and an applied external force, are parallel
to the displacement a. We identified stable, co-moving
states of squirmer and drop which can be achieved by
an appropriate adjustment of the external force such
that squirmer and drop move with the same velocity.
These states allow for a controlled manipulation of the
viscous drop by external forcing.
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Here we extend our analysis and calculate the mobili-
ties of both the squirmer and the drop for general orien-
tations of the displacement a with respect to the sym-
metry axis of the squirmer and/or the applied external
force. For the non-collinear arrangement, the squirmer
is subject to a torque with respect to the center of the
drop and hence rotates in addition to its linear veloc-
ity. We also include an applied external torque, which
might be generated by an external magnetic field, pro-
vided the active particle is magnetized. In fact propul-
sion of helical structures by rotating magnetic fields has
been discussed in detail [28–30], and biohybrid heli-
cal spermbots are interesting candidates for biomedi-
cal applications [31]. Electric fields could also provide
a torque, if the active particle has a permanent dipole
moment.

The linearity of Stokes equation allows us to decom-
pose the analytical calculations into subproblems. We
first solve (i) an autonomous swimmer, (ii) a passive
particle, which is driven by (iia) an external force or
(iib) an external torque. The case of an encapsulated
squirmer, subject to an external force and torque, is
obtained by superpositions of (i), (iia) and (iib). The
analytical solution is constructed in a special geometry,
for which the displacement of the squirmer is perpen-
dicular to the squirmer axis or the direction of external
force. Then, we superimpose this solution with that of
reference I and use frame independence to obtain our
results for general displacements and orientations .

The paper is organized as follows: The model is
defined in Sect. 2; the analytical method and the solu-
tion is presented in Sect. 3. The results of the analytical
calculation are the mobilities of the squirmer and the
drop as functions of the sizes of particle and drop, the
displacement vector and the viscosities. They are pre-
sented in Sect. 4 and discussed in Sect. 5.

2 Model

We study the propulsion of a viscous drop, which is
driven by an active device in its interior, as depicted
in Fig. 1. The active device is either a squirmer with
a tangential slip velocity on its surface (1) or a passive
particle, subject to an external force F ext and/or torque
Dext (2), or a combination of both. The active device
is modeled as a solid particle of radius ε, positioned
at rs = −a, measured from the center of the drop. We
consider perpendicular alignment of a and squirmer axis
n for problem (1) and similarly perpendicular alignment
of a and F ext and Dext for problem (2). We first choose
special coordinates with a = aex, n = ez and F ext =
Fextez and Dext = Dextey. In all of this and the next
section, we will stick to this assignment and postpone a
discussion of general relative orientations to Sect. 4. We
introduce two frames of reference: one with its origin in
the center of the particle (P) and one with its origin in
the center of the drop (D). A point has position vector
r in the first frame and position vector r′ = r − a in
the second (see Fig. 1).

Fig. 1 Geometry used in Sect. 2 and 3. Squirmer (yellow)
of radius ε, encapsulated in a viscous drop (blue) and dis-
placed from the center by a. The direction of the displace-
ment is chosen perpendicular to the symmetry axis of the
squirmer, n, shown as a red arrow and chosen to point along
ez. If external forces F ext are present, they also point in z-
direction and external torques Dext point in y-direction

The drop is assumed to be spherical and consists of
an incompressible Newtonian fluid with viscosity η−. It
is immersed in an ambient Newtonian fluid of viscos-
ity η+ which is at rest in the laboratory frame (LF).
The two fluids are assumed to be completely immisci-
ble, and the drop is neutrally buoyant. We choose units
of mass, length and time such that the density ρ0 = 1,
the drop radius R = 1 and the viscosity of the exterior
fluid η+ = 1. We do, however, keep the notation η+,
because some results, e.g., the mobility of the drop in
the exterior fluid, are more intuitive with the explicit
notation. The slip velocity is expanded in spherical har-
monics χlm(Ω) = Pm

l (cos θ)eimφ in the coordinate sys-
tem (P) of the squirmer, i.e., the angle Ω = (θ, φ) has
its vertex at the center of the squirmer. The associated
Legendre polynomials are denoted by Pm

l and l and m
are integers with 0 ≤ l and −l ≤ m ≤ l. For the pur-
poses of this work, we choose the simplest form of the
slip velocity on the surface of the squirmer:

vslip(Ω) = −h sin θeθ = h∇sχ10, (1)

where ∇s denotes the surface gradient. We only con-
sider the 	 = 1,m = 0 component and choose the axis
of the squirmer as the polar axis θ = 0. Generalization
to m = ±1 is straightforward as well as the inclusion
of chiral flow. In the classical literature [23,24], Eq. (1)
corresponds to a one-mode model. We do not include
a second mode (usually referred to as B2, correspond-
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ing to 	 = 2) which would be needed to discriminate
between pullers and pushers.

The squirmer generates a flow field inside (v−) and
outside (v+) of the drop. For small Reynolds number,
the flow fields can be calculated from Stokes equation

∇ · σ± = η±∇2v± − ∇p± = 0, (2)

and the incompressibility condition ∇ · v± = 0. The
viscous stress tensor σ± is given by its Cartesian com-
ponents σ±

ij = −p±δij +η±(∂iv
±
j +∂jv

±
i ), with the pres-

sure p determined from incompressibility.
Stokes equation has to be supplemented by boundary

conditions on the surface of the active particle and on
the surface of the drop. Given the displacement of the
active particle away from the center of the drop, we
expect linear as well as rotational motion of the particle
(squirmer or dragged passive particle). Hence, the flow
field on the surface of the particle in frame (P) takes
the general form:

v−(r) = vslip(r) + U + ω × r for r = ε, (3)

where U denotes the linear and ω the angular velocity
of the particle. Continuity of the flow field is assumed
for points on the surface of the drop in frame (D) with
position vector r′

v−(r′) = v+(r′) for r′ = 1. (4)

The tangential stress is continuous, whereas the normal
stress jumps due to a homogeneous surface tension γ0,
so that

er′ · (σ+ − σ−) = 2γ0er′ for r′ = 1, (5)

with er′ = r′/r′. Once the flow fields v± have been
determined, the linear velocity of the drop can be com-
puted as an integral over the drop’s surface from

vcm =
3
4π

∫
r′=1

d2x (er′ · v±)er′ . (6)

3 Analytical solution

Our strategy for the analytical solution is analogous
to the one previously used in I. We briefly recall it
for consistency. In a first step, the internal flow, v−,
is expanded in a complete set of solutions of the Stokes
equations in frame (P), and is matched to the slip veloc-
ity on the squirmer’s surface. This solution is similar
to the flow field of a squirmer in unbounded space,
but contains—in addition to fields which are regular at
infinity—also those which are regular at the squirmer’s
center and would be forbidden in unbounded space.

The boundary conditions on the drop’s surface are
easily formulated in the frame (D). Therefore, we seek
to expand the flow field v−(r)= v−(r′ +a) around the

drop’s center in the same set of solutions as used in (P).
In contrast to reference I, we consider displacements of
the squirmer, which are perpendicular to the squirmer
axis or the external force or torque.

3.1 Solutions of Stokes equation

The general solution of Stokes equations in spherical
coordinates has first been given in [32] in terms of scalar
spherical harmonics. Later [33,34] they have also been
solved using vector spherical harmonics (VSH); a func-
tion set, which exists in many variants [35–38]. For our
purposes, we use

Ψ1
lm = ∇sχlm + lχlmer (7)

Ψ3
lm = ∇sχlm − (l + 1)χlmer (8)

Ψ2
lm = er × ∇sχlm, (9)

because they diagonalize the surface Laplacian and
form a (L2) complete orthogonal set of functions on
the surface of a sphere. Solutions of the Stokes equa-
tions can be classified according to whether they are
regular at the origin (inner solutions) or regular at infin-
ity (outer solutions). From the VSH functions, we con-
struct a complete set of inner solutions of Stokes equa-
tions, which is given by

u1<
lm =

rl−1

(l + m)!
Ψ1

lm

u2<
lm =

rl

(l + m)!(l + 1)
Ψ2

lm

u3<
lm =

rl+1

(l + m)!(2l + 1)

(
Ψ1

lm +
2l

(l + 1)(2l + 3)
Ψ3

lm

)
,

and outer solutions, which take on the form:

u1>
lm =

(l − m)!
rl+2

Ψ3
lm

u2>
lm = − (l − m)!

lrl+1
Ψ2

lm

u3>
lm =

(l − m)!
rl(2l + 1)

(
−Ψ3

lm +
2(l + 1)
l(2l − 1)

Ψ1
lm

)
.

Prefactors have been chosen to simplify expressions in
subsequent calculations.

The slip velocity Eq. (1) takes on the form vslip =
h∇sχ10 = (h/3)(Ψ3

10 + 2Ψ1
10) in VSH. For displace-

ments a = aex, we expect to find a solution with
U = Uez and ω = ωey. These velocities are expanded
in VSH as follows:

U = UΨ1
10 (10)

ω × r = − i

2
ωr(Ψ2

11 + 2Ψ2
1−1) = rω�Ψ2

11, (11)

where � denotes the imaginary part. To construct a
solution of the boundary value problem, we start from
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an ansatz with three vector spherical harmonics: Ψ1 :=
Ψ1

10, Ψ3 := Ψ3
10 and Ψ2 := �Ψ2

11 = (Ψ2
11+2Ψ2

11−)/(2i).
The inner and outer solutions take on the form:

u1< := u1<
10 = Ψ1 (12)

u2< := (u2<
11 + 2u2<

1−1)/(2i) =
r

4
Ψ2 (13)

u3< := u3<
10 =

r2

3
(Ψ1 +

1
5
Ψ3) (14)

u1> := u1>
10 =

1
r3

Ψ3 (15)

u2> := (u2>
11 + 2u2>

1−1)/(2i) = − 1
r2

Ψ2 (16)

u3> := u3>
10 =

1
3r

(−Ψ3 + 4Ψ1). (17)

The only solutions, which are accompanied by pressure
are u3> and u3<, and the corresponding pressures are
explicitly given by

p< = 2η−r cos θ and p> = 2η− cos θ/r2,

(18)

apart from a constant reference pressure.
The general solution of Stokes equation in frame (P)

in the interior of the drop is given by a superposition
of both, the inner and outer solutions:

v− = a1u
1< + a2u

2< + a3u
3< + b1u

1>

+b2u
2> + b3u

3>. (19)

The flow field in frame (D) outside of the drop is given
by

v+ = c1u
1> + +c2u

2> + c3u
3>. (20)

This Ansatz involves nine parameters, which have to be
determined by the boundary conditions.

3.2 Drop velocity

To express the drop velocity vcm by the parameters
of the solution, we insert Eq. (20) into Eq. (6). With
er′ · Ψ1 = cos θ and er′ · Ψ3 = −2 cos θ, we find

vcm = vcmez = 2(c3 − c1)ez. (21)

3.3 Boundary condition on the surface of the
squirmer

Given the interior flow field in the form of an expansion
around the squirmer’s center (19) in frame (P), we can
easily fulfill the boundary condition on the squirmer’s
surface. Plugging our Ansatz into Eq. (3), we obtain
three equations:

a1 +
ε2

3
a3 +

4
3ε

b3 = U +
2
3
h (22)

ε2

15
a3 +

1
ε3

b1 − 1
3ε

b3 =
1
3
h. (23)

ε

4
a2 − b2

ε2
= εω, (24)

relating the coefficients of the interior flow field to the
activity of the squirmer. Further six equations are pro-
vided by the boundary conditions on the drop’s surface
Eqs. (4, 5). However, before we can use them, we have
to shift the internal flow v−, given in frame (P) to its
representation in frame (D).

3.4 Translations

To express the vector field v−, given in terms of the
solutions Eqs. (12–17) in frame (P), on the surface of
the drop in frame (D), we derive a generalization of
the corresponding transformations for the solid scalar
spherical harmonics, which can be found in in [39].
These translations are easily worked out by hand for
the 	 = 1 components of the flow, as is explained in
Appendix A, which also contains an example. Here we
just state the results:

u1<(r′ + aex) = u1<(r′)

u2<(r′ + aex) = u2<(r′) − a

4
u1<(r′)

u3<(r′ + aex) = u3<(r′) +
2a2

5
u1<(r′)

−2au2<(r′) + ...

u1>(r′ + aex) = u1>(r′) + ...

u2>(r′ + aex) = u2>(r′) − a

2
u1>(r′) + ...

u3>(r′ + aex) = u3>(r′) +
2a2

5
u1>(r′)

−au2>(r′) + ...

The ellipsis (...) denote non-vanishing terms with l ≥ 2.
These terms do not contribute to the velocities of
squirmer and drop, but will in general lead to defor-
mations of the drop’s spherical shape. In the present
work, we do not study this part of the flow.

3.5 Boundary conditions on the surface of the drop

Given the translated velocity fields, we can evaluate the
internal flow v−(er′ +aex) at the boundary of the drop
(r′ = 1), as needed for the second boundary condition
Eq. (4). Continuity of the velocity across the drop’s
surface implies

a1 +
a3

3

(
1 +

6
5
a2

)
+

4
3
(b3 − c3) − a

4
a2 = 0 (25)

b1 − b3
3

(
1 − 6

5
a2

)
+

a3

15
− a

2
b2 − c1 +

c3
3

= 0

(26)

− a

2
a3 +

a2

4
+ ab3 − b2 + c2 = 0. (27)
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To fulfill the balance of forces on the drop’s surface
Eq. (5), we need to compute the tractions t = −per +
tvis. The viscous part is obtained for any Stokes flow
u±, using the identity

t±
vis = η±

(
2

∂

∂r
+ er × ∇×

)
u±. (28)

Together with the pressure contribution, we find for the
tractions in the interior of the fluid

t1< = 0 (29)
t2< = 0 (30)

t3< =
3η−r

5
Ψ3 (31)

t1> = −6η−

r4
Ψ3 (32)

t2> =
3η−

r3
Ψ2 (33)

t3> =
2η−

r2
(Ψ3 − Ψ1), (34)

represented in the frame (P). Here, the superscript <
(>) refers to the flow fields u<(u>) and the pressure
p<(p>). Since the tractions are linear functions of the
velocities, the transformation to the frame (D) is easily
obtained from the transformation of the velocities:

t2> = =
3η−

r3
Ψ2 +

3aη−

r4
Ψ3 (35)

t3> =
2η−

r2
(Ψ3 − Ψ1) − 12a2η−

5r4
Ψ3 − 3aη−

r3
Ψ2

(36)

All other tractions turn out to be unaffected by the
translation.

The above tractions are plugged into the third
boundary condition Eq. (5), implying 3 more linear
equations for the yet unknown coefficients

b3 =
c3
λ

(37)

3
5
a3 − 6b1 + 3ab2 + 2b3(1 − 6

5
a2) =

2(c3 − 3c1)
λ

(38)

b2 − ab3 =
c2
λ

, (39)

where λ = η−/η+ denotes the viscosity contrast.

3.6 Force and torque balance

The boundary conditions on the surface of the squirmer
and the drop provide nine linear equations. Force and
torque balance yield two more equations, so that all
unknowns, the nine coefficients of the general solution
and U and ω, are uniquely determined.

An external force acting on the particle has to be
balanced by the total viscous force: F visc + F ext =
0. The total viscous force F visc can be expressed as
an integral of the tractions over the surface of a large
sphere of radius R � 1)

F visc = lim
R→∞

∫
R

d2x t+. (40)

The only flow term contributing to this expression is
c3u

3> which is ∼ 1/r, so that

F visc = −8πη+c3ez = −F ext. (41)

Hence, force balance determines the coefficient c3.
In the balance of torque Dvisc + D = 0, the viscous

part is determined from

Dvisc = lim
R→∞

∫
R

d2x r × t+. (42)

Note that this torque is calculated in frame (D). The
only flow term contributing to this expression is c2u

2>

which falls off as ∼ 1/r2, so that in our geometry
Dvisc = Dviscey with

Dvisc = 8πη+c2ey. (43)

The exerted torque in this frame is given by D = DF +
Dext. The first term DF = −a × F ext arises from any
moment-free force distribution with total force F ext. In
our special geometry, the torque balance becomes

8πη+c2 + aFext + Dext = 0, (44)

which fixes the parameter c2.

4 Mobilities of squirmer and drop

The analytical solution of the linear system of Eqs. (22–
24), (25–27) and (37–39) is discussed here for three dif-
ferent situations:

– an autonomous squirmer without applied external
force or torque

– a passive particle (no slip velocity) dragged by an
external force

– a passive particle (no slip velocity) subject to an
external torque.

We extract the analytical expressions for the mobili-
ties, relating F ext,Dext and the squirmer activity h
to the velocities U ,ω of the particle and vcm of the
drop. Combining these results with reference I and
using frame independence, we then obtain the mobil-
ity tensors of the particle and the drop for each of the
three cases. The complete analytical expressions for all
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the mobility tensors, including those from reference I
can be worked out by hand (and have been checked by
symbolic computing using SymPy [40]). They are sum-
marized in Appendix B. More general situations, repre-
senting a squirmer subject to both, external force and
torque, which drives its enclosing drop, can be obtained
by linear superposition.

4.1 Encapsulated squirmer

The activity of the squirmer is conveniently character-
ized by its velocity U0 = −2h/3 in an unbounded fluid.
For the autonomous swimmer, force and torque balance
imply b3 = c3 = b2 = c2 = 0. The remaining linear
equations are easily solved and yield

U = ζ⊥
h (a2, ε, λ)U0 (45)

ζ⊥
h (a2, ε, λ) = − 3

2N
(λ − 1)ε3a2 + ζ⊥

h (0, ε, λ). (46)

with

N = 2ε5(λ − 1) + 3λ + 2, (47)

Nζ⊥
h (0, ε, λ) = 3λ + 2 − (λ − 1)ε3(3ε2 − 5) (48)

The offset of the squirmer from the center of the drop
in a direction perpendicular to its symmetry axis (see
Fig. 1) gives rise to an angular velocity ω = ωey of the
particle with

ω = −κh(ε, λ)aU0 = −15ε3(λ − 1)
2N

aU0. (49)

The angular velocity vanishes linearly with a.
The drop moves in the direction of the symmetry axis

of the squirmer, vcm = vcmez, obtained from Eq. (21),
with

vcm = μ⊥
h U0 =

5ε3λ

N
U0. (50)

In I we considered an autonomous swimmer, which is
displaced from the center parallel to its symmetry axis
ez. We now combine these results with our new ones
for perpendicular alignment to obtain the mobilities for
general orientations of displacement a and symmetry
axis of the squirmer n = U0/U0, and we write the
linear superposition of both results in coordinate free
form as follows:

U = ζ̂hU0 (51)
vcm = μ̂hU0 (52)

ω = κha × U0. (53)

The resulting mobility tensor ζ̂h is symmetric and
uniaxial with respect to the a-direction e|| = a/a, i.e.,

ζ̂h = ζ
||
h (a2, ε, λ)e|| ⊗ e|| + ζ⊥

h (a2, ε, λ)(1̂ − e|| ⊗ e||).
(54)

The longitudinal component ζ
||
h follows from Eqs. (38,

39) of I and is listed in Appendix B. The anisotropy
vanishes trivially for a = 0, when the encapsulated par-
ticle is located at the center of the drop [21].

The mobility of the drop turns out to be isotropic,
i.e., μ⊥

h = μ
||
h = μh and μ̂h = μh1. Rotation of the drop

is only observed for a displacement a with a nonzero
component perpendicular to the symmetry axis n of the
squirmer. The corresponding mobility tensor is uniaxial
but anti-symmetric, so that it is determined by a single
coefficient κh, which can be read off from Eq. (49).

4.2 Passive particle dragged by an external force

Next, we consider a passive particle (h = 0), which is
dragged by an external force F ext = Fextez, perpen-
dicular to its displacement a = aex from the center of
the drop. The coefficients c2, c3 are determined by the
external force. Solving for the remaining coefficients, we
find

vcm = vcmez = μ⊥
F F ext (55)

U = Uez = ζ⊥
F F ext (56)

ω = ωey = κF a × F ext (57)

The coefficients μ⊥
F , ζ⊥

F , κF are given in Eqs. (80, 89, 93)
of Appendix B. A finite angular velocity of the particle
is due to the torque (in frame D) exerted by the external
force due to a finite displacement of the particle from
the center of the drop.

We proceed as in the previous subsection: we com-
bine the above results for perpendicular alignment of
a and F ext with those of ref. I for parallel alignment.
General orientations of a and F ext then give rise to
mobility tensor relations, which read in coordinate free
representation as follows:

U = ζ̂F F ext (58)
vcm = μ̂F F ext (59)

ω = κF a × F ext. (60)

The tensors ζ̂F and μ̂F are symmetric and uniaxial
with respect to the displacement a. The longitudinal
components follow from Eqs. (40, 41) of I and are
recalled in Appendix B.

4.3 Passive particle subject to an external torque

Finally, we consider a passive particle (h = 0) with no
applied force (F ext = 0), subject to an external torque
Dext in frame P. To construct the most general case,
we must discuss both perpendicular and parallel align-
ment of torque and displacement, but the latter case
has not yet been included in our discussion. It requires
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an extension of the calculations of reference I, which is
given in Appendix C.

For perpendicular alignment and in agreement with
the coordinates chosen in Sect. 3, we choose Dext =
Dextey, so that ω = ωey and U = Uez. In the absence
of an applied external force, we have b3 = c3 = 0.
Torque balance determines the coefficient c2 accord-
ing to Eq. (43) and hence also b2 = c2/λ according
to Eq. (39). The transverse mobilities in the equations

U = ζ⊥
D(a2, ε, λ)Dexta (61)

vcm = μ⊥
D(a2, ε, λ)Dexta (62)

ω = κ⊥
D(a2, ε, λ)Dext (63)

are explicitly given in Eqs. (85, 91, 96) of Appendix B.
The configuration with parallel alignment of torque

and displacement leads to a spinning motion of the par-
ticle around its direction of propulsion. Its calculation
requires an extension of the analysis given in reference
I, which is presented in Appendix C. The result is U = 0
and ω = κ

||
DDext with

κ
||
D =

1
8πε3η−

(
ε3(λ − 1) + 1

)
(64)

In coordinate free representation, the relations
between Dext and the velocities take on the form

U = ζDa × Dext (65)
vcm = μDa × Dext (66)

ω = κ̂DDext, (67)

with a symmetric uniaxial tensor κ̂D.

5 Discussion

The general mobility tensors are obtained by superpo-
sition of the 3 special cases worked out above and will
now be used to discuss the general motion of drop and
encapsulated particle.

5.1 Motion of the drop

A linear velocity of the drop is generated by all three
driving mechanisms: slip velocity of the squirmer, exter-
nal force and external torque

vcm = μhU0 + μ̂F F ext + μDa × Dext (68)

The response to active slip, as characterized by μh,
is completely isotropic and independent of a. In other
words, the linear velocity of the drop with an encap-
sulated squirmer only depends on the size ε of the
squirmer and the viscosity contrast λ. For small ε, it
vanishes proportional to the volume of the squirmer.

If the drop is driven by an external force, acting on
a passive encapsulated particle, then the response is
anisotropic and characterized by the uniaxial tensor:
μ̂F = μ

||
F (a2)e|| ⊗ e|| + μ⊥

F (a2)(1− e|| ⊗ e||). The ratio
of the two mobilities is given by

μ
||
F

μ⊥
F

=
G − 3a2

G − 6a2
with

G = 4ε4(λ − 1) − 5ε2 + 3(2λ + 3)

so that the velocity of the drop is always larger for par-
allel alignment of force and displacement. The mobility
of the drop remains finite as the size of the particle
goes to zero and in fact coincides with the mobilities
derived previously [19] for a point force inside a drop.
Finally, a torque exerted on the encapsulated particle,
also propels the drop, provided the particle is placed off
center.

5.2 Linear velocity of the particle

The general propulsion velocity of the encapsulated
particle is given by

U = ζ̂hU0 + ζ̂F F ext + ζDa × Dext. (69)

The response of the particle to either an applied force
or to a nonzero slip is in general anisotropic. If only an
active slip is present or only an external force is applied,
the velocity is not in the direction of the squirmer axis
or the external force. The reason for this anisotropy
is the response flow due to reflection at the inter-
face, which is not concentric around the particle. The
anisotropy therefore vanishes as ε → 0, or equivalently
as the radius of the drop goes to infinity. In that limit
we recover the result for the squirmer in free space,
U = U0, and the result for the mobility of a passive
particle dragged by an external force, U = 1

6πη−εF ext,
in leading order in ε.

If the squirmer fills the whole drop (ε → 1), we also
find U → U0, implying nonmonotonic behavior of ζ̂h
as a function of ε. In Fig. 2a, we show ζ⊥

h as a function
of ε for several values of λ = η−/η+ and rs = |rs| = 0.1.

One clearly observes nonmonotonic behavior for all λ.
Furthermore, if the interior of the drop has a higher vis-
cosity than the outside (λ > 1), the drop moves faster
than in free space, because the frictional forces in the
interior are larger than in the exterior region. The oppo-
site behavior is observed for λ < 1, i.e., a less viscous
interior. In Fig. 2b and c, we illustrate the anisotropy
of the response. The ratio ζ⊥

h /ζ
||
h is shown in Fig. 2b as

a function of ε for several values of λ and rs = 0.4 in
comparison with the isotropic case which is realized for
λ = 1. Both cases, ζ⊥

h ≶ ζ
||
h are possible, depending on

whether η+ ≶ η−.
If a passive particle dragged by F ext fills the whole

drop (ε → 1), one obtains U = 1
6πη+εF ext, as expected.

The dependence of the anisotropy on the viscosity con-
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Fig. 2 Mobility of a squirmer (a) and mobility anisotropy
of a squirmer (b), and a passive particle dragged by an exter-
nal force (c), vs. radius of the particle for different viscosity

contrasts λ, as shown in the legend of (a). In (a) the dis-
tance of the particle from the drop’s center is rs = 0.1, in
(b) and (c) it is rs = 0.4

trast λ is more subtle, as can be seen in Fig. 2c,
where we plot the ratio of perpendicular to parallel
mobility for an applied force, ζ⊥

F /ζ
||
F . For λ < 1, the

ratio becomes a non-monotonic function of ε, and it
may show both possibilities ζ⊥

h ≶ ζ
||
h , as illustrated by

λ = 0.5 in Fig. 2c.

5.3 Rotational velocity of the particle

All 3 driving mechanisms, slip, external force and exter-
nal torque, give rise to a rotation of the particle:

ω = κha × U0 + κF a × F ext + κ̂DDext, (70)

The rotational mobility due to slip vanishes as the vol-
ume of the squirmer, i.e., there is no rotational motion
of a squirmer in free space. Note that we have not
included a chiral component of the slip which has been
discussed for a squirmer in unbounded space [41].

An external torque causes a rotation of the particle
with in general anisotropic mobilities κ

||
D 
= κ⊥

D. In free
space, i.e., in the limit R → ∞, the response becomes
isotropic and reduces to the rotational mobility in free
space: κ

||
D = κ⊥

D = 1
8πη−ε3 .

6 Conclusions and outlook

We have analyzed the dynamics of a solid particle,
encapsulated in a drop and displaced from the drop’s
center by a general vector a (non-axisymmetric config-
uration). Several driving mechanisms have been consid-
ered. Either the solid particle is a (uniaxial) squirmer,
driven by an active slip or it is subject to an exter-
nal force or to an external torque, or any combina-
tion thereof. We have derived analytical expressions for
the translational and rotational mobilities, i.e., the lin-
ear and rotational velocity of the squirmer as well as
the linear velocity of the drop as functions of trans-
lation vector a, particle radius ε and viscosity contrast
λ = η−/η+. Our analytical method is adapted to mobil-
ity problems in spherical geometries, for which it is sim-

ple and straightforward. It can easily be generalized to
more complex squirmers, which possess chiral compo-
nents and/or higher l-components of active slip velocity.
The obtained results provide a first step towards con-
trolled locomotion of an (active) particle, encapsulated
in a spherical liquid drop. Based on the general results
for the linear (U) and rotational (ω) velocity of the
particle as well as the linear velocity of the drop (vcm),
one has to solve the equations of motion for the particle
in the rest frame of the drop:

ṙs = u = U − vcm (71)
ṅ = n × ω. (72)

Together with the equation for vcm, one thereby obtains
the trajectories of drop and squirmer. Adjusting the
external force and torque, should allow to steer the
composite system to designed places, as required by
drug delivery or more generally in the context of micro-
robotics.
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A Translations

The calculation of translations of flow fields given in
Sect. 3.4 proceeds in three steps. First we express the flow
fields in Cartesian coordinates, then we perform the trans-
lation (which is trivial in these coordinates), and finally, we
project the translated field onto the vector spherical har-
monic modes. In general, this requires Taylor expansions
and elementary integrations, but for l = 1 components,
some of the results can be read off directly.

We demonstrate this procedure with a simple example.
Starting from the expression for u2< = r

4
Ψ 2, given in

Eq. (13), we rewrite it in terms of Cartesian coordinates

u2<(r) =
1

4
(zex − xez). (73)

The flow field in the frame of reference with origin at r =
r′ + aex is thus given by

u2<(r′ + aex)< =
1

4
(z′ex − (x′ + a)ez) (74)

= u2<(r′) − a

4
u1<(r′),

where we used the Cartesian form u1< = ez to get the
second of the translation relations in Sect. 3.4.

B Mobility tensors

We now give the explicit form of all the mobility ten-
sors of the encapsulated particle and the drop as functions
of a, η± and ε. There are 5 symmetric uniaxial tensors,
ζ̂w, μ̂w, κ̂D (with w = h, F ), which possess a form analo-
gous to Eq. (54), and 4 anti-symmetric tensors characterized
by κw, ζD, μD (see Eqs. (53, 60, 65, 66)). All these functions
are polynomials of a2 of degrees up to 2. The parallel com-
ponents of ζ̂w and μ̂w have been obtained in I. They are
included here for completeness. All other components are
calculated by solving the linear system of equations set up in
Sects. 3.3 and 3.5 by symbolic computing using SymPy [40]

(except the mobility κ
||
D, which is obtained in Appendix C).

The SymPy script is added as supplementary material.

Velocity of the squirmer

(1.) U = ζ̂h U 0

Nζ
||
h = 3ε3(λ − 1)a2 + Ch0 (75)

Nζ⊥
h = −3

2
ε3(λ − 1)a2 + Ch0 (76)

N = 2ε5(λ − 1) + 3λ + 2, (77)

with

Ch0 = 3λ + 2 − ε3(λ − 1)(3ε2 − 5) (78)

(2.) U = ζ̂F F ext

Nζ
||
F =

1

6πεη−
(
C

||
4 a4 + CF0

)
(79)

Nζ⊥
F =

1

6πεη−
(
C⊥

4 a4 + C⊥
2 a2 + CF0

)
(80)

with

CF0 = ε(λ − 1)
(
2ε5(λ − 1) +

9

2
ε4 − 5ε2

+
3

2
(2λ + 3)

)
+ 3λ + 2 (81)

C
||
4 = − 9ε

10
(λ − 1) (82)

and

C⊥
4 = − C

||
4 (83)

C⊥
2 =

3(λ − 1)

4

(
2ε6(λ − 1) + 5ε3

+ 3ε(λ − 1)
)

(84)

(3.) U = ζDa × Dext

NζD =
λ − 1

8πη−

(
3

2
a2 + CD

)
(85)

with

CD = 2ε5(λ − 1) + 5ε2 + 3(λ − 1) (86)

Velocity of the droplet

1. vcm = μ̂hU 0

Nμ
||
h = Nμ⊥

h = 5λε3 (87)

2. vcm = μ̂F F ext

Nμ
||
F =

1

12πη+

(
− 3a2 + G

)
(88)

Nμ⊥
F =

1

12πη+

(
− 6a2 + G

)
(89)

G = 4ε5(λ − 1) − 5ε2 + 3(2λ + 3) (90)

3. vcm = μDa × Dext

NμD =
−5

8πη+
(91)

Angular velocity of the squirmer

1. ω = κha × U 0

Nκh =
15

2
ε3(λ − 1) (92)
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2. ω = κF a × F ext

NκF = −λ − 1

8πη− (6a2 + K) (93)

with

K = 2ε5(λ − 1) + 5ε2 + 3(λ − 1) (94)

3. ω = κ̂DDext

κ
||
D =

1

8πη− M (95)

κ⊥
D =

1

8πη−

(15a2

2N
(λ − 1) + M

)
(96)

with

M = (λ − 1) + ε−3 (97)

C Parallel alignment of displacement and
torque

In I, we analyzed two uniaxial configurations: a squirmer
displaced from the center of the drop such that its symmetry
axis coincides with the direction of the displacement and a
passive particle displaced from the center of the drop such
that the applied force is parallel to the displacement. Here
we discuss the extension to an applied torque, parallel to
the displacement. To make use of the formalism developed
in I, we choose Dext = Dextez and consider a displacement
a = aez. We expect a rotational velocity of the particle
ω = ωez and possibly a linear velocity U = Uez. The flow
field on the surface of the particle is given by

v−(r) = U + ω × r

= Uez + rω sin θeφ for r ∈ ∂Vs. (98)

The contribution, due to the rotation, can be expressed in
terms of vector spherical harmonics, rω sin θeφ = −rωΨ 2

10,
and gives rise to a corresponding component of the flow
field, u2

10. We thus have to extend Eqs. (10–13) of I

u1< := u1<
10 = Ψ 1 (99)

u2< := u2<
10 =

r

2
Ψ 2

10 (100)

u3< := u3<
10 =

r2

3
(Ψ 1 +

1

5
Ψ 3) (101)

u1> := u1>
10 =

1

r3
Ψ 3 (102)

u2> = u2>
10 = − 1

r2
Ψ 2

10 (103)

u3> := u3>
10 =

1

3r
(−Ψ 3 + 4Ψ 1). (104)

The general solution of Stokes equation inside the drop is
thus given by

v− = a1u
1< + a2u

2< + a3u
3< + b1u

1> + b2u
2> + b3u

3>,

(105)

and the flow field outside of the drop by

v+ = c1u
1> + +c2u

2> + c3u
3>. (106)

Translations in the z-direction have been worked out in I
for u1<, u3<, u1>, u3> and are easily extended to the 2 new
components:

u2<(r − aez) = u2<(r) (107)
u2>(r − aez) = u2>(r) + O(l ≥ 2) (108)

The complete solution is now substituted in the boundary
condition to determine the yet unknown coefficients. On the
surface of the squirmer, Eq. (98) implies

a1 +
ε2

3
a3 +

4

3ε
b3 = U (109)

ε2

15
a3 +

1

ε3
b1 − 1

3ε
b3 = 0. (110)

ε

2
a2 − b2

ε2
= − εω (111)

On the surface of the drop, we require continuity of the flow

a1 +
a3

3
(1 +

3

5
a2) +

4

3
(b3 − c3) = 0 (112)

b1 − b3
3

(1 − 3

5
a2) +

a3

15
− c1 +

c3
3

= 0 (113)
a2

2
− b2 + c2 = 0. (114)

and continuity of the tractions

a3

10
− b1 − a2

5
b3 +

c1
λ

= 0 (115)

c3 − λb3 = 0 (116)

3η−b2 = 3η+c2. (117)

These are 9 equations, which together with force and
torque balance determine the 9 coefficients in the general
ansatz for the flow and U and ω. The equations simplify
considerably in this case: c3 = b3 = 0 (force balance),
c2 = Dext/(8πη+) is determined by the external torque
and λb2 = c2 (Eq. 117). This leaves us with 5 equa-
tions (110), (112), (113), (114), (115) for the remaining 5
coefficients (a1, a2, a3, b1, c1), one equation for U (Eq. 109)
and one equation for ω (Eq. 111). The result is U = 0,
i.e., no translational velocity of the squirmer; furthermore,
a1 = a3 = b1 = c1 = 0 and

ω =
Dext

8πε3η−
(
ε3(λ − 1) + 1

)
= κ

||
DDext. (118)

This result is used in Eq. (64).
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