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Abstract The effect of confinement on the conformation of N dumbbells in D dimensions close to a non-
interacting and rigid flat wall is examined. Using statistical mechanics and numerical calculations, the
partition coefficient and the confinement-induced change in the configurational entropy are calculated as
a function of the conformation tensor c and of the distance of the dumbbells from the wall. Analytical
predictions and numerical results for D = 1 concerning the behavior close to the limiting cases (onset of
and saturation of confinement) agree favorably; in one case where an analytical prediction has not been
achieved, a thorough numerical study establishes the limiting behavior nevertheless. Beyond these limiting
cases, the overall behavior of the partition coefficient and the configurational entropy has been examined as
well in detail, for various choices of the parameters. Furthermore, it is shown that the effect of confinement
for D > 1 is captured entirely by the partition coefficient determined for D = 1. In general, the average
extension of the dumbbells in the direction perpendicular to the wall is decreased the closer the dumbbells
are to the wall. Also, the decay of the partition coefficient with increasing extension of the dumbbells
becomes steeper, i.e., more localized, the higher the number of dumbbells N . Finally, it is discussed under
what conditions these results can be used also for the case of slab- (i.e., slit-) confinement.

1 Introduction

The static and dynamic properties of polymers are
affected by the presence of nearby obstacles, since
the possible conformations of the polymer chains are
reduced substantially, see [1,2]. There are several fields
in which this is of practical relevance, e.g. in size exclu-
sion chromatography, interaction of biological macro-
molecules with membrane surfaces, polymer-assisted
flocculation and stabilization of colloids, and sur-
face modification and coatings [1]. Throughout this
paper, only obstacles will be considered that are non-
interacting and rigid (i.e., not flexible).

Theory and simulations have been used extensively
to examine how the conformations of polymer chains
are affected by obstacles. A very prominent technique
is based on the notion that the polymer chain is rep-
resented by a random walk, which in turn is studied
in terms of a diffusion equation, according to Chan-
drasekhar [3], where the obstacles (i.e., the confine-
ment by walls) are taken into account by appropriate
(absorption) boundary conditions [4]. There are many
examples where this approach has been followed, see
e.g. [1,5–10]. Another technique that has been used
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extensively is that of Monte Carlo simulations, both
on- [11–16] and off-lattice [17,18]; for a review on lat-
tice models for polymers close to interfaces, the reader
is referred to [19]. Furthermore, also scaling arguments
and the blob concept have been used to study confine-
ment effects [20]. While the techniques mentioned so far
address static properties, the effects of confinement on
the dynamics of polymer chains have been studied by
molecular dynamics simulations, e.g. [21,22].

Different types of confinement have been studied by
theory and simulations, e.g. polymers close to a single
flat wall [8,10,21], polymers between two parallel walls
(so-called slab- or slit-geometries) [11–17,20] and poly-
mers in thin-films [22], in spherical cavities [18], and in
capillaries/cylindrical cavities [13,20,22]. Experimental
studies on confinement effects typically are concerned
with planar constraints such as flat surfaces and (ultra-
)thin films, see e.g. [23].

A quantity frequently examined in relation to con-
finement is the so-called partition (or distribution) coef-
ficient, which is the ratio of the partition functions of
the polymer chains with and without the confinement,
respectively [1,2,5–7]; this coefficient grows (and even-
tually approaches unity) as the strength of the con-
finement effect on the polymer chains is weakened,
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e.g., by increasing the spacing between the confining
walls. For some specific cases, the partition coefficient—
which is closely related to the change in free energy due
to confinement—has been calculated, e.g., for polymer
chains in a sphere, cylinder, or slab [2,5,6,14–16,20].
Concerning the effect of confinement on the conforma-
tion of polymer chains, a prototypical case to look at
is that of flat surfaces: It is generally accepted that the
polymer coil is compressed in the direction perpendic-
ular to the surface; in contrast, it depends on system
specifics and the proximity to the wall whether and to
what extent the coil extension in the direction parallel
to the surface is increased the stronger the confinement
[10,12–14,16,17,22,23].

The dynamics of polymer liquids when exposed to
deformation can be conveniently described in terms of a
microstructural variable, e.g., in terms of the conforma-
tion tensor [24], and thermodynamic approaches have
been employed to derive two-scale models, see e.g. [25,
26]. Recently, a conformation tensor-based approach
has been used to formulate models for viscoelasticity
with thermal fluctuations [27–29], in which the configu-
rational entropy and free energy play a key role. It has
been shown how such models, incl. fluctuations, can
be derived from an underlying description of a finite
number N of dumbbells [30], particularly emphasizing
the finite-size (N) effects in the configurational entropy
and free energy. When applying a conformation-tensor
approach to a polymeric liquid flowing under narrow
confinement, e.g. in a capillary, some portions of the
liquid are close to the wall, and therefore the configura-
tional entropy should reflect these confinement effects.
This is what has been addressed also in the compre-
hensive work of Mavrantzas and Beris [8–10]. In their
approach, confinement effects on the polymer confor-
mations are taken into account by studying the dif-
fusion equation for the polymer random walk, with
appropriate boundary conditions (see above). However,
both in their work and in the rest of the literature,
to the best of our knowledge, neither the configura-
tional entropy nor the partition coefficient are studied
explicitly as functions of the conformation tensor. For
modeling polymer liquids at small scales under confine-
ment, these two quantities are of significant interest,
not only for static properties but also when building
dynamic models along a thermodynamics route [25,26].
Therefore, in this paper, we will depart from our ear-
lier finite-N calculation of the configurational entropy
[30], and extend it to include the effects of confinement
due to a nearby flat wall, by a statistical mechanics
calculation.

The paper is organized as follows: After introduc-
ing notation and defining the task properly in Sect. 2,
general arguments about the configurational partition
function of confined dumbbells (as a reduced descrip-
tion of polymer chains) are presented in Sect. 3. There-
after, the cases of the spatial dimension being equal
to unity (D = 1) or larger than unity (D > 1) are dis-
cussed in detail, in Sects. 4 and 5, respectively. Finally,
the results are discussed and conclusions are drawn in
Sect. 6.

2 Problem definition

2.1 Notation

Throughout this paper, the following notation will be
used: All summations are spelled out, i.e., no Einstein
summation-convention is used for repeated indices.
Latin indices are used to denote Cartesian components,
while Greek indices are used for enumerating the dumb-
bells. The symbol · denotes a contraction of one pair of
indices. The Kronecker delta is given as δij , and the
Dirac delta-function as δ(. . .). The dyadic product of
two vectors v1 and v2 is written as v1v2.

2.2 Characterization of dumbbells, confinement

Let us consider N dumbbells in D dimensions, where
the positions of the two ends of the dumbbells are
denoted by the D-vectors xμ and yμ (μ = 1, . . . , N).
For each dumbbell, one can define the center-of-mass
position Rμ and connector vector Qμ,

Rμ =
1
2

(
xμ + yμ

)
, (1)

Qμ = yμ − xμ . (2)

The dumbbells are fully head-tail symmetric. The
instantaneous conformation tensor for the assembly of
all dumbbells can be written as

ĉ =
1
N

N∑

μ=1

QμQμ . (3)

Consider that all beads are to the right of a flat and
hard impenetrable wall with surface-normal in the 1-
direction (see also Fig. 1):

xμ,1 ≥ 0 , (4)
yμ,1 ≥ 0 . (5)

Fig. 1 Illustration of a dumbbell in 2 dimensions. Symbols
are explained in the text
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Fig. 2 Illustration of the change of variables. The gray-
shaded area denotes the admissible part of the configuration
space

In the following, we are not only interested in all beads
being on one and the same side of the wall; in addi-
tion, we require that the center-of-mass position of each
dumbbell is in a certain slab parallel to the wall (see
Fig. 1):

0 ≤ d1 ≤ Rμ,1 ≤ d2 . (6)

This additional requirement is relevant when carry-
ing out finite-element calculations of the liquid flow
past the wall: Having in mind a spatial discretization
in the vicinity of the wall, a volume element posi-
tioned at a finite distance from the wall corresponds
to 0 < d1(< d2), while the volume element adjacent
to the wall is represented by 0 = d1(< d2). In order
to be able to carry out spatially inhomogeneous cal-
culations, with volume elements at various distances
from the wall, it is necessary to know the configura-
tional entropy in each of the volume elements (i.e., in
each slab). Due to Rμ,1 ≤ d2, no bead may be fur-
ther away from the wall than 2d2, since otherwise one
of the two conditions Eqs. (4) and (5) would be vio-
lated. The above three conditions (4)–(6) can thus be
written as the following parametrization of the domain
of accessible positions (all but the 1-direction have no
restrictions),

0 ≤ xμ,1 ≤ 2d2 , (7)
max (2d1 − xμ,1, 0) ≤ yμ,1 ≤ 2d2 − xμ,1 . (8)

For practical purposes, it is convenient to parametrize
the domain of accessible states as (see Fig. 2)

0 ≤ d1 ≤ Rμ,1 ≤ d2 , (9)
−2Rμ,1 ≤ Qμ,1 ≤ 2Rμ,1 . (10)

It is noted that the determinant for the transforma-
tion of variables from {xμ,yμ} to {Rμ,Qμ} is equal to
unity. The space of admissible {Rμ} and {Qμ} will be
called configuration space.

2.3 Helmholtz free energy from statistical
mechanics

Given the conformation tensor c, the Helmholtz free
energy Ψ is given by Ψ = −kBT ln Z, with the canonical
partition-function for a finite number N of dumbbells
[30]

Z(c) =
∫

ΩR

∫

ΩQ

e−Φ/(kBT ) δ(K) (ĉ − c) dDNQdDNR ,

(11)

where Φ denotes the energy for a certain conformation
of the dumbbells. The K-dimensional Dirac δ-function
makes sure that only those states in configuration space
are accounted for that are compatible with the confor-
mation tensor c. Since ĉ is symmetric by definition,
see Eq. (3), only K = D(D + 1)/2 independent con-
ditions are needed (instead of D2); no more conditions
are required for properly restricting the integration in
{Qμ}-space [30]. The integration domains in Eq. (11)
are given by

ΩR = ⊗N
(
[d1, d2] ⊗

(
⊗(D−1)[l1, l2]

))
, (12)

ΩQ = ⊗N
(
[−2Rμ,1, 2Rμ,1] ⊗ R

(D−1)
)

, (13)

i.e., for each bead we must have d1 ≤ Rμ,1 ≤ d2
and l1 ≤ Rμ,i ≤ l2 for 1 < i ≤ D, while −2Rμ,1 ≤
Qμ,1 ≤ 2Rμ,1 and all other components of Qμ are not
restricted. It is pointed out that δ(K) is actually a δ-
function in c-space, which means

∫
δ(K)(ĉ− c)dKc = 1

[30].
If we restrict our attention to cases where Φ depends

on the dumbbell conformations only by way of the
instantaneous conformation tensor ĉ (see [30] for exam-
ples), one can write

Z(c) = e−Φ(c)/(kBT )Γ (c) , (14)

with

Γ (c) =
∫

ΩR

∫

ΩQ

δ(K) (ĉ − c) dDNQdDNR . (15)

Considering the integrand of the R-integral, the only R-
dependence is in the integration domain ΩQ, and there-
fore all integrations other than Rμ,1 can be performed,
leading to Γ = (l2 − l1)

N(D−1) G, with

G =
∫

Ωd
R̄

∫

Ω
{Rμ,1}
Q

δ(K) (ĉ − c) dDNQdNR , (16)

where

Ωd
R̄ = ⊗N [d1, d2] . (17)
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With all this, the free energy becomes

Ψ = Φ − kBTN(D − 1) ln(l2 − l1) − kBT ln G , (18)

where only the first and the third contributions on the
right-hand side depend on the conformation tensor c.

The effect of the confinement on the conformations of
the dumbbells is encoded in G, which is related to the
configurational entropy (omitting the c-independent
additive contribution for simplicity),

Sc = kB ln G . (19)

In order to emphasize the effect of confinement, it is
convenient to split off the solution G0 in the absence
of confinement, which is given as G0 = (d2 − d1)N

(det c)(N−D−1)/2, according to [30]. Using G0, one can
define the quantity

W =
G
G0

, (20)

where the symbol W is used to emphasize that the con-
finement is caused by a wall. The definition in Eq. (20)
is analogous to the partition coefficient referred to in
Sect. 1, however in our case now this is a function of
the conformation tensor c; despite this difference, we
shall call also W the “partition coefficient”. Notably,
the change in configurational entropy (Eq. 19) due to
confinement can be expressed as

ΔSc ≡ Sc − Sc,0 = kB ln W , (21)

where we have made use of the definition in Eq. (20).
It is noted that the indistinguishability of the identical
particles per dumbbell and of the identical dumbbells
is not taken into account explicitly, since that would
amount to the same multiplicative factor to both G and
G0, which leaves the partition coefficient W invariant
(see Eq. (20)).

While there is no physical interaction between the
dumbbells, they become coupled when calculating the
partition function (i.e., the number of microstates)
for given conformation tensor c, because the latter
depends on the extension of all dumbbells simultane-
ously. Therefore, one can anticipate a non-trivial depen-
dence of the partition function on the number of dumb-
bells N despite the absence of physical interaction.

3 Scaling behavior of the partition function

In our earlier work, basically two distinct procedures
have been presented for calculating the partition func-
tion G, in the absence of confinement: one based on
scaling arguments and another one based on a differen-
tial equation [30]. In order to account for confinement,
one could choose either of the two procedures in princi-
ple, and it can be shown by explicit (although lengthy

in the case of the differential equation) calculations that
the results are identical. Since the approach using the
scaling argument is more compact and straightforward,
we follow only this route here.

To proceed, it is chosen to describe the {Qμ}-space
in terms of the N -dimensional vectors Xi, 1 ≤ i ≤ D,
where the μ-th component of Xi equals the i-th compo-
nent of Qμ [30]. Similarly, the set {Rμ,1} is described in
terms of the N -dimensional vector Y, where the μ-th
component of Y equals the 1st component of Rμ:

{Qμ}μ=1,...,N → {Xi}i=1,...,D , (22)

{Rμ,1}μ=1,...,N → Y . (23)

With this, the instantaneous conformation tensor can
be written as (see also [30])

ĉij =
1
N

Xi · Xj , (24)

and the partition function G becomes

G =
∫

Ωd
Y

∫

ΩY
X

δ(K) (ĉ(X) − c)
D,N∏

i=1
μ=1

dXi,μ

N∏

μ=1

dYμ ,

(25)

with

Ωd
Y = ⊗N [d1, d2] , (26)

ΩY
X = ⊗N

(
[−2Yμ, 2Yμ] ⊗ R

(D−1)
)

. (27)

We now introduce scaling factors si (i = 1, . . . , D) in
the different spatial directions:

Xi = siX̃i , i = 1, . . . , D , (28)

Y = s1Ỹ . (29)

Using S ≡ ∏D
i=1 si, and also with δ(ax) = (1/a)δ(x) for

a > 0, the partition function G can be written as (see
[30] for the case without confinement)

G = G1 G2 G3 , (30)

with

G1 = SN sN
1 , (31)

G2 =
∏

1≤i≤j≤D

1
sisj

=

√√
√
√
√

⎛

⎝
∏

1≤i,j≤D

1
sisj

⎞

⎠

⎛

⎝
∏

1≤i≤D

1
s2i

⎞

⎠

=
√

(S2)−D(S2)−1
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= S(−D−1) , (32)

G3 =
∫

Ω
d /s1
Ỹ

∫

ΩỸ
X̃

δ(K)
(
ĉ(X̃) − c̃

) D,N∏

i=1
μ=1

dX̃i,μ

N∏

μ=1

dỸμ ,

(33)

where G1 comes from the substitution of variables in
the volume element, G2 originates from the substitution
of variables in δ(K), and where we have defined c̃ij ≡
cij/(sisj). This results in a scaling relation for G,

G(c, d1, d2) = S(N−D−1) sN
1 G(c̃, d1/s1, d2/s1) .

(34)

Based on Eq. (34), one obtains the scaling relation for
the partition coefficient W,

W(c, d1, d2) = W(c̃, d1/s1, d2/s1) , (35)

where we have used the scaling behavior of the uncon-
fined solution G0.

In the absence of confinement, the scaling argument
is sufficient to determine G [30]. However, if confinement
effects are included, the above scaling argument leads
to a necessary rather than sufficient condition. It will
be used in the numerical calculations presented further
below, since it will allow us to eliminate one parameter
from the simulations.

4 The case of one dimension, D = 1

In this section, we examine the behavior of the parti-
tion function G given in Eqs. (25)–(27) for D = 1, and
the consequences for the partition coefficient W. In this
case, we use the notation c → c and s1 → s. For D = 1,

ĉ =
1
N

X · X , (36)

and the partition function is given by

G =
∫

ΩY

∫

ΩX

δ (ĉ(X) − c)
N∏

μ=1

dXμ

N∏

μ=1

dYμ , (37)

with the integration domains given by the hyperrectan-
gles

ΩY = ⊗N [d1, d2] , (38)

ΩX = ⊗N [−2Yμ, 2Yμ] . (39)

4.1 Limiting cases

In qualitative terms, the dependence of the partition
coefficient W on c can be rationalized as follows: For c
smaller than a critical value c1, one must have W = 1

(i.e., G = G0), since the extent of the dumbbells is
too small to be able to feel the confinement yet. As
c increases above c1, W becomes smaller than unity;
the more c increases, the more the value of W decreases,
because the configurations of the dumbbells get increas-
ingly susceptible to the confinement. This trend con-
tinues until c gets larger than a second critical value
c2, beyond which no configurations are permitted by
the confinement, and thus W = 0. These qualitative
thoughts are formalized in the following.

For given value of the conformation “tensor” ĉ, the
maximum extent of a dumbbell is in the situation
that the value of ĉ originates exclusively from a single
dumbbell, say μ = 1, while all other dumbbells have
zero extension; in this case, we have ĉ = X2

1/N , i.e.,
|X1| =

√
Nĉ. Therefore, the dumbbells cannot see the

wall if d1 >
√

Nĉ/2; one may thus write

W = 1 , for c < c1 ≡ 4d21/N . (40)

The onset of wall-effects can be quantified for cases
where c is only slightly larger than c1, i.e., when δc ≡
c−c1 is small (see Fig. 3). As derived in Appendix A, the
leading-order contribution in δc > 0 can be expressed
as

W � 1 − γN
1

dN
1 (d2 − d1)

(δc)(N+1)/2
, (41)

where γN is a function of N only, see Eq. (A.18). The
expression for W in Eq. (41) satisfies the scaling relation
(35). It is noted that Eq. (41) applies only if d1 > 0; for
d1 → 0, the derivation presented in Appendix A does
not hold. Instead, for d1 → 0, we will closely examine
the results of the numerical calculations for extract-
ing the limiting behavior from there. In view of the
exponent to δc in Eq. (41), one can conclude that the
sensitivity of the partition coefficient to confinement
increases the larger the number of dumbbells.

For given d1 and d2, the largest dumbbell extension
possible is 2d2, which gives the contribution 4d22 to ĉ.
Therefore, no state in phase space exists with ĉ > 4d22,
and the partition function must thus vanish,

W = 0 , for c > c2 ≡ 4d22 . (42)

In order to study the behavior of W as c approaches c2
from below (see Fig. 4), we introduce δc = c− c2 (note:
δc is negative in the region of interest). According to
Appendix B, the leading-order contribution in δc < 0
is given by

W � Nγ̌N

2N

1

d
(3N−2)
2 (d2 − d1)N

(−δc)2N−1 , (43)

where γ̌N is a function of N only, given by Eq. (B.22).
It is noted that this expression fulfills the scaling rela-
tion Eq. (35). The sensitivity of the partition coeffi-
cient to confinement in the limit c ↗ c2 increases rather
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Fig. 3 Limit 1: c ↘ c1. Illustration of the situation for
N = 3; the spherical surface is defined by c = ĉ. The domain
ΩX (box) is indicated by the gray edges

Fig. 4 Limit 2: c ↗ c2. Illustration of the situation for
N = 3; the colored surfaces represent those parts of the
(hyper-)sphere c = ĉ which are contained in the domain ΩX

(box indicated by the gray edges)

strongly the larger the number of dumbbells, since the
exponent to δc in Eq. (43) is approximately four times
as large as that in Eq. (41) for the case c ↘ c1.

4.2 Approximation of the partition coefficient W
It is desirable to have a closed form expression for the
partition coefficient W that represents the two analyt-
ically derived limits given in Eqs. (41) and (43), and
offers a relatively simple interpolation in between. To
that end, it is useful to introduce the normalized value
u of the conformation “tensor”,

u =
c − c1
c2 − c1

, (44)

where 0 ≤ u ≤ 1 is the region in which the partition
coefficient transitions from W = 1 to W = 0. The lim-

iting behavior described by Eqs. (41) and (43) of W
at the boundaries of the interval [0, 1] can be expressed
as

W(u) � 1 − a uα , (u ↘ 0) , (45)

W(u) � b (1 − u)β
, (u ↗ 1) , (46)

for given values of the constants a, b, α, and β,

a ≡ 2(N+1)γN

(
1 − λ2

N

)(N+1)/2

λN (1 − λ)
> 0 , (47)

b ≡ 2(3N−2)Nγ̌N

(
1 − λ2

N

)(2N−1)

(1 − λ)N
> 0 , (48)

α = (N + 1)/2 ≥ 3/2 , (49)
β = 2N − 1 = 4α − 3 ≥ 3 , (50)

where

λ ≡ d1
d2

, (51)

with 0 ≤ λ < 1.
In order to find a function that interpolates between

these two limiting cases, we make two propositions:

– Proposition 1:

Wip,1(u) =
(

(1 − u)γ1

(1 − u)γ1 + g0 (1 − (1 − u)γ2)γ3

)γ4

.

(52)

If all parameters are positive, the limiting behavior
of this function is given by

Wip,1(u) � 1 − g0γ
γ3
2 γ4u

γ3 , (u ↘ 0)
(53)

Wip,1(u) � g−γ4
0 (1 − u)γ1γ4 , (u ↗ 1)

(54)

which can be used to find relations between the
parameters (a, b, α, β) and (g0, γ1, γ2, γ3, γ4).

– Proposition 2:

Wip,2(u) =
(

(1 − uγ2)γ1

(1 − uγ2)γ1 + g0uγ3

)γ4

. (55)

If all parameters are positive, the limiting behavior
of this function is given by

Wip,2(u) � 1 − g0γ4u
γ3 , (u ↘ 0)

(56)

Wip,2(u) � g−γ4
0 γγ1γ4

2 (1 − u)γ1γ4 , (u ↗ 1)
(57)
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which can be used to find relations between the
parameters (a, b, α, β) and (g0, γ1, γ2, γ3, γ4).

It is noted that both propositions contain more
parameters than needed for representing the two limits
in Eqs. (45) and (46), i.e., 5 instead of 4. However, this
is done on purpose to have more flexibility in represent-
ing the numerical data also in intermediate regimes of
u appropriately.

4.3 Numerical calculations

For calculating the partition function G, eqs. (37)–(39),
which in turn determines the partition coefficient W, we
resort to numerical calculations. The idea is to sample
the domain ΩY ⊗ΩX by placing points randomly (cho-
sen from a homogeneous distribution in that domain),
and making a histogram over the ĉ-values obtained.

Achieving high-fidelity results by sampling with ran-
domly placed points is cumbersome in high dimensions,
as demonstrated by the following two examples:

– Imagine a hypersphere with an inscribed (touch-
ing) hypercube. The fraction ϕ of points in the
hypersphere that are also inside of the hypercube
decreases strongly with increasing space dimension
N . For example, ϕ(N = 10) � 4.0 × 10−3 and
ϕ(N = 100) � 5.4 × 10−31.

– Imagine a hypercube with an inscribed (touch-
ing) hypersphere. The fraction ϕ of points in the
hypercube that are also inside of the hypersphere
decreases strongly with increasing space dimension
N . For example, ϕ(N = 10) � 2.5 × 10−3 and
ϕ(N = 100) � 1.9 × 10−70.

These examples emphasize that differences close
to the domain boundary (e.g. corners) dominate the
behavior at high dimensions. This will be relevant for
the efficiency of the simulations discussed in the follow-
ing.

In our simulations, MATLAB R©has been employed
to calculate a histogram of c values, with bins that are
equally spaced on the c-axis; apart from an overall (con-
stant, i.e. c-independent) normalization, this histogram
is equal to G. In order to calculate W, the histogram
is normalized as follows: (i) Simulations for c ↘ c1 and
full range c1 ≤ c ≤ c2: Simultaneously to the acquisition
of the actual histogram, also a histogram is acquired as
if the wall was absent, and so the ratio of these two
histograms results in W (this procedure also ensures
that W = 1 for c < c1); (ii) Simulations for c ↗ c2:
The histogram is divided by the (bin-average of the)
analytically calculated G0 (note: there is an overall con-
stant factor that cannot be calculated, and therefore the
absolute magnitude of W cannot be determined in this
case). The details of how the numerical calculations are
performed can be found in Appendix D.

The scaling function W defined in Eq. (20) has four
independent quantities in principle, namely c, d1, d2,
and N . However, due to the scaling relation Eq. (35), it

is sufficient to consider the case s1 = d2 and si = 1 for
i > 1, which leaves us with three independent quantities
only, namely c̃ = c/d22, λ, and N . When presenting the
numerical results further below, c will be used in place
of c̃, for simplicity.

The results of the numerical calculations for the lim-
iting case c ↘ c1 (i.e., u ↘ 0) are presented in Table 1,
for the parameters a and α in Eq. (45). The simulations
are set-up as to cover a range of c-values determined as
follows, keeping in mind that W decreases from unity as
c increases above c1: The upper-bound for the c-range
is chosen to ensure the W-values sampled are in the
interval [0.99, 1.00]; the lower bound for the c-range is
chosen such that 90% of the sampled c-interval is above
c1, however, if that lower bound turns out to be neg-
ative it is reset to zero. In all simulations, the number
of sampled N -dumbbell configurations is ncfg = 109,
which are equally distributed among the bins of the
histogram. The errors listed with the simulated data
stand for the 95%-confidence interval. In order to judge
the trustworthiness of the fits for extracting the param-
eters, the value of R2 is tabulated, and also the ratio of
the upper and lower bounds of the fitting range of u is
specified, u+/u−. About the numerical results for the
case λ = 0.8, the data in Table 1 show that the theoret-
ical prediction and numerical results for the exponent
α are in good agreement. The agreement for the pref-
actor a is less, and both for a and α it is noted that the
agreement between prediction and simulation becomes
less the higher the number of dumbbells N , which is
due to limitations in the sampling efficiency the higher
the dimension of the configuration space becomes. This
decrease in accuracy is also reflected in the values for
R2 and u+/u−. For the case λ = 0, there is no theo-
retical prediction, however, the values R2 and u+/u−
suggest that these results are a reasonable first attempt
at discussing the behavior for λ = 0. Due to the lack of a
theoretical prediction, simulations have been performed
over a wide range of N . What stands out particularly
from these results is that the exponent is quite close to
α � 0.50.

The results for the limiting case c ↗ c2 (i.e., u ↗ 1)
are presented in Table 2, for the exponent β in Eq. (46);
the numerical procedure described in Appendix D for
this limit does not allow to determine the prefac-
tor b numerically. The simulations are set-up as to
cover a range of c-values given by [c2(1 + ε), c2] with
ε = −10−3/N . In all simulations, the number of sam-
pled N -dumbbell configurations is ncfg = 109. The
errors listed with the simulated data stand for the 95%-
confidence interval. The trustworthiness of the results
is again, as in Fig. 1, judged on the basis of R2 and
u+/u−. About the numerical results (which in this
limit do not depend on λ), the data in Table 2 show
that the theoretical prediction and numerical results
for the exponent β agree remarkably well for the val-
ues of N examined, and the values for R2 and u+/u−
give confidence in these results. It should be mentioned
that sampling at larger N becomes cumbersome due to
increasing inefficiency of the sampling routine at higher
dimensions.
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Table 1 Results of the numerical calculations for the behavior of the partition coefficient W in the limit described by
Eq. (45), i.e., u ↘ 0 (c ↘ c1)

N ln a α R2 u+/u−
theor. sim. theor. sim.

λ = 0.8 2 1.6599 1.6399 ± 0.0151 1.5 1.4985 ± 0.0029 0.9996 69.4079
3 3.0154 2.9036 ± 0.0302 2 1.9860 ± 0.0064 0.9987 58.5570
4 4.4517 4.2729 ± 0.0860 2.5 2.4804 ± 0.0179 0.9960 16.4446
6 7.5903 7.0606 ± 0.2351 3.5 3.4297 ± 0.0491 0.9915 5.4739
8 11.0247 9.4886 ± 0.5080 4.5 4.2550 ± 0.1089 0.9789 3.4212
10 14.6939 12.8510 ± 0.8798 5.5 5.2420 ± 0.1923 0.9702 2.2255

λ = 0 2 – 0.5854 ± 0.0101 – 0.4998 ± 0.0009 0.9996 198.3434
3 – 0.9472 ± 0.0103 – 0.4995 ± 0.0009 0.9996 336.9721
4 – 1.1964 ± 0.0112 – 0.4982 ± 0.0009 0.9996 200.3368
6 – 1.5820 ± 0.0121 – 0.4983 ± 0.0009 0.9996 112.1683
8 – 1.8749 ± 0.0131 – 0.4995 ± 0.0009 0.9995 111.0522
10 – 2.0737 ± 0.0138 – 0.4983 ± 0.0010 0.9995 90.9218
20 – 2.7705 ± 0.0137 – 0.4995 ± 0.0009 0.9996 144.0269
30 – 3.1600 ± 0.0155 – 0.4988 ± 0.0009 0.9995 91.8356
40 – 3.4281 ± 0.0155 – 0.4977 ± 0.0009 0.9996 91.8356
50 – 3.6517 ± 0.0164 – 0.4979 ± 0.0009 0.9995 91.8356
60 – 3.8387 ± 0.0173 – 0.4983 ± 0.0010 0.9995 66.6863
70 – 3.9697 ± 0.0167 – 0.4970 ± 0.0009 0.9996 78.2571
80 – 4.1167 ± 0.0183 – 0.4978 ± 0.0010 0.9995 52.9845
90 – 4.2189 ± 0.0173 – 0.4970 ± 0.0009 0.9996 47.9424
100 – 4.3030 ± 0.0206 – 0.4960 ± 0.0011 0.9994 18.9158

For the parameters a and α in Eq. (45), simulation results (“sim.”) are compared with the theoretical predictions (“theor.”).
Upper and lower bounds of the fitting range of u are denoted by u+ and u−

With the results presented in Tables 1 and 2 being in
favorable agreement with the analytical predictions for
the limiting cases, the next step consists in attempting
to represent the partition coefficient W over the entire
range with the proposed functions given by Eqs. (52)
and (55). Figures 5 and 6 show the results for the
behavior of W versus u for λ = 0.8 and λ = 0, respec-
tively, for various values of N ; subfigures (b) are shown
as they directly illustrate the change in the configura-
tional entropy ΔSc, see Eq. (21). The data shown in
Figs. 5 and 6 is available via a repository [31]. With
respect to fitting the behavior of W with the func-
tions given by Eqs. (52) and (55), the following con-
clusions can be drawn from several of such attempts:
When constraining the parameter set in the fit func-
tions by the behavior in the two limiting cases, both of
the fit functions give a poor representation of the overall
behavior. By “poor” we mean that the error defined by
εW = ‖W − Wfit‖/‖W‖ with ‖ . . . ‖ the L2-norm over
the u-interval [0, 1] is as large as 5% until 50%. This
holds not only when setting γ4 = 1, but even when γ4
is included as an additional degree of freedom in the fit-
ting procedure. This being said, one can also try to fit
the numerical data for W(u) with the functions given
by Eqs. (52) and (55) without enforcing the two limit-
ing cases; therefore, in this case, the free parameters are
g0, γ1, γ2, and γ3, while we skip γ4 by setting γ4 = 1.
The results of these fits are represented in Table 3. The
optimization of the parameters is done with the Global
Optimization Toolbox in Matlab R©, particularly using

GlobalSearch. Beyond the value of R2, the quality of the
fit is judged also in terms of the following two quanti-
ties: For each combination of λ, N and Wip,#, the Glob-
alSearch is run five times, where each GlobalSeach run
performs a large number of solver runs (see Matlab R©
manual for details). If not 100% of all solver runs con-
verged successfully, the criterion “conv.” in the table is
specified as “n” (for “no”), and by “y” (for “yes”) other-
wise. Furthermore, for the cases where not all five Glob-
alSearch runs resulted in the same solution, another
five runs have been performed; the number of different
(but converged) solutions from these ten runs is listed
in the column “# sol.” (for “number of solutions”). If
both all solver searches converged and only one solu-
tion was found, the corresponding entry in the column
“conv./# sol.” is left empty. Looking at the values for
R2 in Table 3, it appears that the fits are rather suc-
cessful. However, this should be taken with caution, for
two reasons: First, the columns for “conv./# sol.” indi-
cate problems in the convergence. And second, there is
non-monotonous behavior in the N -dependence of the
parameters, except for Wip,1 at λ = 0.8. In several of
these cases, it seems that there are different branches
for solutions, which are almost equally good. However,
since it is not clear a priori which branch is the good
one, one should refrain from directing the numerical-
solution finding in a particular direction. Furthermore,
it may also be the case that the functional forms of
the fit-functions are not suitable. Since we cannot rep-
resent the limiting cases (Eqs. (45) and (46)) anyway,
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Table 2 Results of the numerical calculations for the
behavior of the partition coefficient W in the limit described
by Eq. (46), i.e., u ↗ 1 (c ↗ c2)

N β R2 u+/u−
theor. sim.

2 3 2.9993 ± 0.0002 1.0000 198.3434
3 5 4.9974 ± 0.0030 1.0000 37.3376
4 7 6.9994 ± 0.0058 1.0000 17.8143
6 11 10.9991 ± 0.0068 1.0000 7.0993
8 15 15.0056 ± 0.0116 0.9999 5.9895
10 19 19.0069 ± 0.0155 0.9999 3.8190

For the parameter β in Eq. (46), simulation results (“sim.”)
are compared with the theoretical prediction (“theor.”).
Upper and lower bounds of the fitting range of u are denoted
by u+ and u−
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Fig. 5 Partition coefficient W a and its logarithm b for
λ = 0.8, and N = 2, 3, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100 (from blue to red, i.e., from right to left)

one should view the results presented in Table 3 just
as a way of representing the data (e.g., the reader can
take the parameters, and “reconstruct” the data).

5 The case of higher dimensions, D > 1

The effect of confinement on the configuration of N
dumbbells in higher dimensions, D > 1, is closely
related to the case D = 1 discussed above, as shown in
the following. Consider the expression ĉij = Xi ·Xj/N ,
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Fig. 6 Partition coefficient W a and its logarithm b for
λ = 0, and N = 2, 3, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100 (from blue to red, i.e., from right to left)

introduced in Eq. (24). The effect of Y does not need to
be considered in the following, except for the fact that
it restricts the domain of X1. In the high-dimensional
space with vectors (X1, . . . ,XD), the quantities ĉij

measure the lengths of and angles between the X-
vectors for i = j and i = j, respectively. The con-
ditions ĉij = cij are therefore rotationally invariant in
this high-dimensional space. In contrast, the presence of
the confining wall restricts the vector X1, as discussed
in detail in the previous Sect. 4: While all vectors X1

with ĉ11 ≤ c1 are admissible, all X1 with ĉ11 > c2 are
impossible; in between, it depends on the orientation
of X1, i.e., on the components of X1 for given length
of the vector, whether it is admissible–the remainder
of this argument will thus focus on this intermediate
range, c1 < ĉ11 ≤ c2. Since the wall does not put any
constraints on Xi for i > 1, the number of states sat-
isfying ĉij = cij is reduced by the wall only because
of its restrictions on the orientation of X1. Therefore,
once the reduction of states due to the restrictions on
the orientation of X1 are taken into account, there is
no further wall effect on the partition function G. In
other words: For any arbitrary set (X1, . . . ,XD) which
is compatible with all conditions ĉij = cij , one can
impose an overall rotation (which will not affect the
ĉij = cij) in such a way as to ensure that X1 is admis-
sible, i.e., that also the wall condition is respected;
the fact that for some X1 this “corrective” rotation is
needed is indicative of the reduction of states due to
the wall, i.e., representative of W being smaller than
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Table 3 Results for the fit parameters in the functions Eqs. (52) and (55), for γ4 = 1, representing the partition coefficient
W over the entire range

N Wip,1 Wip,2

g0 γ1 γ2 γ3 R2 conv./ g0 γ1 γ2 γ3 R2 conv./
# sol. # sol.

λ = 0.8 2 1.1928 2.6233 3.0801 1.7401 0.9997 11.474 2.4738 2.1898 1.8424 0.9996
3 0.29940 5.7119 9.0985 2.3215 1.0000 18.731 9.0034 2.9765 2.0277 1.0000
4 0.19580 7.6702 11.709 2.6886 1.0000 25.498 12.821 2.8020 2.1761 1.0000
6 0.12040 10.657 15.222 3.4780 1.0000 56.798 24.930 3.0069 2.5400 1.0000
8 0.085000 13.128 18.629 4.4765 1.0000 117.98 46.735 3.3285 2.8518 1.0000
10 0.064600 15.283 21.738 5.5539 1.0000 213.82 79.445 3.5845 3.0948 1.0000
20 0.027563 23.387 33.946 11.692 1.0000 n/1 1539.6 564.05 4.4486 3.8405 1.0000
30 0.016810 29.217 42.706 18.390 1.0000 5202.5 2069.0 4.9449 4.2612 1.0000
40 0.011761 33.934 50.118 26.088 1.0000 n/1 6373.8 859.02 4.0251 4.2792 1.0000 y/3
50 0.0089302 37.912 56.624 34.988 1.0000 9997.9 976.31 3.9146 4.4084 1.0000
60 0.0071426 41.378 61.928 43.429 1.0000 9999.9 569.41 3.4151 4.3795 0.9999
70 0.0058933 44.481 67.436 54.448 1.0000 72435 38122 5.8897 5.0895 1.0000
80 0.0049848 47.307 72.445 66.697 1.0000 16520 665.98 3.3110 4.5132 0.9999
90 0.0043054 49.888 76.870 78.996 1.0000 21793 774.93 3.3276 4.5917 0.9999
100 0.0037888 52.245 81.034 92.281 1.0000 n/1 30666 1023.2 3.4289 4.6919 0.9999 n/1

λ = 0 2 0.79305 4.5358 11.462 0.63303 0.9998 n/1 4.4637 5.6696 1.8048 0.67676 0.9998
3 0.98629 6.9145 15.313 0.61643 0.9998 6.4233 8.5624 1.5821 0.65565 0.9998
4 1.2496 8.9914 16.461 0.60102 0.9999 8.0619 10.124 1.3873 0.63421 0.9998
6 2.1212 12.407 13.097 0.57660 0.9998 9.2815 10.741 1.0551 0.57359 0.9998
8 10.590 13.756 1.3409 0.57019 0.9997 n/1 8.4841 10.627 0.83214 0.50899 0.9997
10 20.505 17.931 0.69208 0.57350 0.9995 n/1 6.6469 10.630 0.68290 0.44177 0.9998
20 31.500 53.280 0.82174 0.51876 0.9987 n/1 0.82575 13.524 0.40339 0.12526 0.9999
30 11.092 108.42 13.901 0.50955 0.9986 y/5 0.74724 18.893 0.40177 0.093411 1.0000
40 12.073 178.57 21.810 0.50979 0.9985 y/5 0.96736 24.689 0.41607 0.10642 1.0000
50 12.649 264.31 32.082 0.50688 0.9986 1.4234 31.908 0.44050 0.12839 1.0000
60 13.113 369.53 43.418 0.50550 0.9985 1.0929 35.855 0.42533 0.10012 1.0000
70 13.338 489.44 58.914 0.50544 0.9986 1.2813 42.051 0.43375 0.10754 1.0000
80 13.368 628.26 78.658 0.50853 0.9986 155.41 1075.1 1.1037 0.53137 0.9981
90 13.650 788.19 96.276 0.51065 0.9985 174.93 1327.0 1.0964 0.53147 0.9980
100 13.834 962.67 117.25 0.51156 0.9985 195.73 1610.5 1.0920 0.53141 0.9980 y/3

Symbols are explained in the text

unity. Therefore, the prediction is that

G(c) = W(c11)G0(c) , for D ≥ 1, (58)

where W denotes the partition coefficient discussed
for D = 1 in Sect. 4. For verifying this prediction in
the numerical calculations, one can select any value for
c11 with a corresponding value W(c11) in the interval
]c1, c2], and plot the quantity G(c)/G0(c) as a function
of the other components of c; the result should be con-
stant and give the value W(c11).

The numerical calculations for the example case D =
2 have been performed as follows: (i) Select the value
for c11 such that, according to the 1D calculations, one
obtains W = 0.1, W = 0.5, and W = 0.9, respectively
(these values are just taken as typical examples, for the
purpose of illustration); these values are called Wtarget

and are listed, together with the corresponding value
for c11, in Table 4. (ii) For each of the ncfg = 109
configurations generated, proceed as follows: Choose

X1 from a homogeneous distribution on the surface of
the hypersphere with radius

√
Nc11; choose X2 from

a homogeneous distribution in the hypersphere with
radius

√
Nc22,max – here, we use c22,max = c2 = 4d22;

given these X1 and X2, calculate the corresponding val-
ues of c12 and c22, and correspondingly update the his-
togram for G0 in which the wall effect is neglected; for Y
drawn from a homogeneous distribution on ΩY , check if
|Xμ| ≤ 2Yμ and, if this condition is fulfilled, also update
the histogram for G in which the wall effect is included.

Figures 7 and 8 show the results of the numerical
calculations for D = 2 and N = 10. Based on the rela-
tion between the components of ĉ and the vectors X1

and X2, it is obvious that det c ≥ 0, i.e., c11c22 ≥ c212.
Particularly, since c11 is fixed, the boundary of this
domain can be expressed in the form (c22/c22,max) =
(c12/c12,max)

2 with c22,max defined above and c12,max =√
c11c22,max–these are the solid lines in Figs. 7 and 8.

As this boundary is approached from within the admis-
sible c-range, the number of admissible states decreases
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Table 4 Quantities in relation to the numerical verification
of Eq. (58) for D = 2 and N = 10, and shown in Figs. (7)
and (8)

c11 Wtarget 〈G/G0〉 σG/G0

λ = 0.8 0.5800 0.9000 0.8998 0.0017
0.8895 0.5000 0.5002 0.0024
1.2920 0.1000 0.1000 0.0011

λ = 0 0.000652 0.9000 0.9001 0.0012
0.025956 0.5000 0.5000 0.0026
0.223790 0.1000 0.1001 0.0017

The average 〈G/G0〉 and standard deviation σG/G0 are cal-
culated over the bins shown in Figs. 7 and 8, respectively
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Fig. 7 Numerical results for the ratio G/G0 for D = 2,
N = 10, and λ = 0.8, for three values of c11 listed in Table 4
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Fig. 8 Numerical results for the ratio G/G0 for D = 2,
N = 10, and λ = 0, for three values of c11 listed in Table 4

drastically, and therefore the region close to the bound-
ary has decreased accuracy due to limited sampling; in
the figures, we therefore include only those bins which
are contained entirely in the admissible domain.

The results in Fig. 7 for λ = 0.8 and in Fig. 8 for
λ = 0 show that for given c11 the ratio G/G0 indeed
is independent of the other components, c12 and c22,
as expected. Furthermore, the (constant) value of the
ratio G/G0 agrees with the value of W (from 1D) for
the corresponding value of c11, again as expected: As
the quantitative results in Table 4 show, the expected
W-values are met within the standard deviation σG/G0 ,
and the smallness of the standard deviation justifies
calling the ratio G/G0 being independent of c12 and c22.
The finding that the ratio G/G0 depends only on the

component of c in the direction normal to the wall is in
agreement with earlier results by Mavrantzas and Beris
[8,10].

6 Discussion and outlook

In this paper, the effect of confinement on the confor-
mation of N non-interacting dumbbells in D dimen-
sions close to a non-interacting and rigid wall has been
examined. To that end, the partition function G, parti-
tion coefficient W, and the confinement-induced change
in the configurational entropy ΔSc have been studied
as a function of the conformation tensor c of the dumb-
bells. In the case D = 1 (Sect. 4), analytical predictions
have been derived for W in two limiting cases (c ↘ c1
and c ↗ c2), and the numerical calculations have been
found to be in favorable agreement with the predictions,
particularly as far as the exponents in the scaling rela-
tions are concerned. For the case where an analytical
prediction has not been achieved (λ = 0, c ↘ c1), exten-
sive numerical calculations give trustworthy results for
this limiting case for a wide range of N . Beyond these
limiting cases, the overall behavior of the partition coef-
ficient W has been examined as well. In this case, it
has been found that the fit-functions proposed with a
minimal set of parameters give an unsatisfactory repre-
sentation of the results from the numerical calculations.
Concretely, a compact analytic expression with a small
number of parameters that represents both the limiting
cases as well as the overall behavior is still not found,
but this is definitely worth pursuing in future studies.
Furthermore, it has been shown in Sect. 5 that the effect
of confinement for D > 1 is captured completely by the
partition coefficient W determined for D = 1; this has
been proven analytically, as well as demonstrated on
the basis of numerical calculations for D = 2.

Inspection of Figs. 5 and 6 shows clearly that
the simulation strategy proposed in the main part
of this paper—while following closely the philoso-
phy of the analytical calculations—has its limitations:
Only limited ranges of (rescaled) conformation u and
ln W (which relates to the wall-induced change of the
entropy, see Eq. (21)) can be captured adequately, the
situation becoming more severe the higher the num-
ber N of dumbbells. In order to extend the simula-
tions to a wider range of conformations, one can use
techniques that counteract systematically the sampling
inefficiency in remote and deserted parts of phase space.
In order to point out a possible route towards improve-
ment, it is chosen here to use the algorithm of Wang
and Landau [32,33], with the improved t−1 algorithm
to avoid saturation [34,35], as an illustrative example.
While we refer the reader to these original publications
for details about the technique in general, here only
the specifics for its application in this outlook are men-
tioned: 100 equally spaced bins are considered in the
c-range [0, c2]; proposing a new state consists of choos-
ing one of the 2N beads at random and perturbing its
position with an increment from a homogeneous distri-
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bution on [−0.2, 0.2]; the histogram H is checked every
1000 Monte-Carlo steps for flatness, the latter being
taken as min(H) ≥ 0.8max(H); and the final accuracy
of the results is set by lnffinal = 10−7. The simulations
are used to calculate the quantity G, which in turn is
divided by the analytically calculated G0 to obtain the
partition coefficient W; however, so doing W is known
only up to a multiplicative factor, an issue that is inher-
ent to the Wang-Landau procedure; in turn, lnW is
known only up to an additive constant. As a remedy, it
is noticed that the procedure presented earlier in this
paper does not suffer from this shortcoming, and there-
fore the overlap-region in lnW(u) of these two proce-
dures can be used to shift the Wang-Landau results
appropriately. In this illustrative example, only in a few
cases (λ = 0: N = 70, N = 80, N = 90, N = 100),
there is no overlap but rather a gap between the two
sets of data (the lower end of the range covered in the
Wang-Landau simulations being u = 0.04 for N = 70,
and u = 0.05 for N = 80, N = 90, N = 100); there-
fore a quadratic function is used to interpolate between
the two datasets, matching the slopes on both sides
of the gap, as well as the (known) absolute value of
ln W adjacent to the left end of the gap, for the sake
of illustration. The behavior of lnW obtained by shift-
ing the Wang-Landau results and merging them with
our previously obtained results are shown in Fig. 9; the
corresponding data is available via a repository [31].
The substantial increase in range covered is apparent
when comparing these results with the ones presented
in Figs. 5b and 6b, respectively. In summary, it is a
promising route forward to combine the simulations
presented in the main part of this paper with, e.g.,
Wang-Landau sampling in order to obtain the function
ln W(u) at high fidelity over a wide range of the dumb-
bell conformation, particularly for larger numbers N of
dumbbells.

The configurational entropy and free energy play a
key role in the modeling of the dynamics of complex
fluids, as explained in the Introduction Sect. 1; e.g.,
the derivative of these quantities with respect to the
conformation tensor act as driving forces for structural
relaxation. In general, the partition coefficient W is con-
stant (unity) for small dumbbell extensions, and there-
after decreases the larger the dumbbell extension per-
pendicular to the wall (e.g., see Figs. 5 and 6). This
means that, in this second range, the configurational
entropy (see also Eq. (21)) is lowered by the confine-
ment, and it is lowered more the larger the dumbbell
extension; in turn, the free energy is increased by the
confinement, the increase being stronger the larger the
dumbbell extension. This implies that the extension
of the dumbbells in the direction perpendicular to the
wall is compressed as a result of the confinement. The
closer the center-of-mass of the dumbbell to the wall,
the stronger the confinement–in full agreement with
Mavrantzas and Beris [8,10]–, and in the limit of the
dumbbells being basically at the wall one finds that the
dumbbell extension in the perpendicular direction van-
ishes, in agreement with the results presented in figure 2
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Fig. 9 Logarithm of the partition coefficient, ln W, as
obtained by combining the data in Figs. 5 and 6, respec-
tively, with the results from the Wang-Landau simulations,
a for λ = 0.8 and b for λ = 0, and N = 2, 3, 4, 6, 8, 10, 20,
30, 40, 50, 60, 70, 80, 90, 100 (from blue to red, i.e., from
upper-right to lower-left)

in [10]. For a more quantitative comparison with their
results, slabs of equal thickness at different distances
from the wall would have to be studied, followed by the
calculation of the average conformation tensor in each
slab; in contrast, in our study, we have restricted our
attention to results for a fixed ratio λ = d1/d2, for the
purpose of illustration (λ = 0 and λ = 0.8). The effect
of confinement on the dumbbell conformations can also
be illustrated by calculating the confinement contribu-
tion to the driving forces for structural relaxation, here
written for D = 1,

∂(ΔSc)

∂c
∝

⎧
⎨

⎩

−(c − c1)(N−1)/2 , for c ↘ c1, 0 < d1 < d2 ,

−c(αsim−1) , for c ↘ 0, 0 = d1 < d2 ,
−1/(c2 − c) , for c ↗ c2, 0 ≤ d1 < d2 ,

(59)

based on Eqs. (41), (43), and the numerical results
presented in Table 1 from which one infers the expo-
nent αsim = 0.50. About these expressions, it is to be
noted that only in the first of the three cases, the driv-
ing force does not diverge in the limit, the strongest
divergence being as c approaches the upper limit
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c2, beyond which no configurations are possible any-
more. Furthermore, only in the first case, the expo-
nent of the limiting behavior depends on the number of
dumbbells N .

The analysis in this paper has been performed for
a finite number N of dumbbells. The following predic-
tion can be formulated for the thermodynamic limit,
N → ∞: As shown in Figs. 5 and 6, the transition from
no confinement (W = 1) to full confinement (W = 0)
occurs in a narrower region the higher the value of N .
This conclusion is also supported by the predictions in
Eqs. (41), (43) for the limiting behavior. It is pointed
out that the non-trivial N -dependence of the parti-
tion coefficient W originates from the mutual coupling
of the dumbbells due to the constraint ĉ = c when
counting the microstates in the statistical-mechanics
calculation, because the instantaneous conformation
tensor ĉ depends on all dumbbells simultaneously
(see Eq. (3)).

All of the above is valid if the confinement is given
by a single flat wall. However, let us imagine that
there is a second flat wall, parallel to the first one
and located at d3, i.e., the dumbbells are confined to
a slab of width d3. Our calculations have shown that
conformations with c > c2 are not admissible, which
amounts to W = 0. The extreme case c = c2 corre-
sponds to the situation where all dumbbells have their
center-of-mass at d2 from the wall and each dumbbell
has the maximum extension 2d2. However, this implies
that the beads (i.e., ends) of the dumbbells can reach
the second wall only if d3 < 2d2. A ramification of
this finding is that, when performing conformation-
tensor based viscoelastic flow calculations in a nar-
row slab, one must be careful that no volume ele-
ment crosses the center-plane between the two confin-
ing walls; if this condition is respected, the results of
this paper can be used readily for slab-confinements
as well.

Not only are the dumbbells compressed in the direc-
tion normal to the wall the closer they are located to the
wall, see above discussion; in addition, dumbbell deple-
tion occurs as well. Given the Helmholtz free energy
in terms of the conformation tensor c and the number
(density) of dumbbells, the simultaneous occurrence of
dumbbell compression and depletion can be addressed,
e.g. at equilibrium, by minimizing the free energy with
respect to c and at the same time keeping the chemi-
cal potential of the dumbbells constant, see [8,10] for
details. While in this paper it has been chosen to per-
form the statistical-mechanics calculation for a constant
number of dumbbells, an alternative direction for future
work is to consider the case of a fixed chemical potential
instead.
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A Partition function: Limit 1

In this appendix, the partition function G is examined for
D = 1 in the limit c ↘ c1 with c1 = 4d2

1/N . We start by

Fig. 10 Illustration of the situation examined in
Appendix A, for N = 2; the spherical surface is defined by
ĉ = c
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writing

G =

∫
ΩY

GY

N∏
μ=1

dYμ , (A.1)

with

GY =

∫
ΩX

δ (ĉ(X) − c)

N∏
μ=1

dXμ . (A.2)

and

ΩY = ⊗N [d1, d2] ,

ΩX = ⊗N [−2Yμ, 2Yμ] .

As explained in detail in [30], the expression for the par-
tition function consists of a surface area in configuration
space, multiplied by an infinitesimal volume element. In the
following, we do not consider the volume element since that
is not affected by the confinement, and therefore it will not
affect the partition coefficient W eventually. For clarity, we
will use the notation G̃ to denote the partition function in
which the volume element has been neglected.

From c ≤ c1 it follows ĉ ≤ c1, and therefore the dumbbells
cannot see the wall (see Sect. 4.1): For any Y, the entire
hypersphere defined by ĉ = c is contained in ΩX . Let SN

denote the surface area of an N -dimensional hypersphere of
unit radius,

SN =
2πN/2

Γ (N/2)
, (A.3)

where, here, Γ denotes the gamma function used regularly
in Mathematics. The volume VN and amount of surface area
AN of a hypersphere of radius R in N dimensions are then
given by

VN (R) =

∫ R

0

SNrN−1dr = (SN/N)RN , (A.4)

AN (R) = SNRN−1 . (A.5)

Therefore, the surface area of the hypersphere defined by
the condition ĉ = c (with c ≤ c1, i.e. the hypersphere is

entirely contained in ΩX) is given by AN (R =
√

Nc); since
this is independent of Y, subsequent integration over ΩY

results in

G̃0 ∝ (d2 − d1)
N AN (R =

√
Nc) . (A.6)

In the following, we consider the case where ĉ (and thus
c) is slightly larger than c1, ĉ � c1 (“slightly” means that
the parts of the hypersphere not contained in ΩX should be
in the form of “caps”); we write ĉ = c1(1 + ε). The amount
of surface area of the hypersphere defined by ĉ = c which is
contained in ΩX is given by

ÃN = AN − 2

N∑
μ=1

aN,μ , (A.7)

where aN,μ is the surface area of a single cap outside of ΩX

due to 2Yμ <
√

Nc, and the factor of 2 accounts for the fact
that there are two such caps for each spatial direction (in a
completely symmetric way, because the integration domain
ΩX is completely symmetric w.r.t. Y → −Y). The following

should be noted: (i) The condition d1 ≤ Yμ ≤ d2 together

with 2Yμ <
√

Nc amounts to the range d1 ≤ Yμ < d1,ε with
d1,ε ≡ d1

√
1 + ε, i.e. the cap-contribution aN,μ is present

only for values of Yμ in this narrow range. (ii) The cap
surface area (in this limit) does not depend on the values
of the other Yν (ν �= μ). (iii) Depending on the values of
the components of Y, not all caps are “active” at the same
time.

For a single cap of a hypersphere in N dimensions with
radius R and intersecting plane at position Z from the ori-
gin, with Z ≤ R, the volume vN of this cap is given by

vN =

∫ R

Z

VN−1(ρ(Z′))dZ′ , (A.8)

with ρ(Z) =
√

R2 − Z2. The surface area of the cap is then
given by

aN =
dvN

dR
= SN−1R

(N−1)

∫ 1

z

(
1 − z′2)(N−3)/2

dz′ , (A.9)

where we have used Z = Rz. For the concrete case in ques-
tion above, we have R =

√
Nc = 2d1,ε and Z = 2Y with

2d1 ≤ 2Y < 2d1,ε; this implies z = Z/R = 2Y/R with
1/

√
1 + ε ≤ z < 1. This means that the integral in Eq. (A.9)

is to be evaluated only for values of z that are very close to
unity, i.e., we can concentrate on the integrand in the vicin-
ity of z′ = 1. Using this approximation, one finds eventually
for the dominant contribution

aN =
2(N−1)/2

N − 1
SN−1R

(N−1)/2 (R − 2Y )(N−1)/2 ,

(A.10)

where R =
√

Nc = 2d1,ε.
For the integration of ÃN Eq. (A.7) over the domain ΩY ,

we note the following: For every one of the N dumbbells,
the range [d1, d2] should be split into two intervals, [d1, d1,ε]
and [d1,ε, d2], where the former of these two is very short,
Δ = d1

(√
1 + ε − 1

)  d1ε/2 . This subdivision for every
dumbbell results in a subdivision of the entire domain ΩY :
the largest part is ⊗N [d1,ε, d2], there are N contributions

that are linear in Δ, namely of the form (⊗(N−1)[d1,ε, d2])⊗
[d1, d1,ε], and there are higher order contributions (O(Δβ)
with β ≥ 2). It is noted that in all parts of ΩY the AN

needs to be counted fully, however for some parts of ΩY

this needs correction, in terms of subtracting contributions
related to aN,μ. Integrating ÃN Eq. (A.7) (integrating AN

over the entire ΩY , and subtracting the cap-contributions by
integration over those parts of ΩY that are linear in Δ, i.e.,
over the dominant non-trivial Δ-parts of ΩY which contain
only one pair of caps), one obtains

G̃ = (d2 − d1)
NAN

−2N(d2 − d1,ε)
N−1

∫ d1,ε

d1

aNdY . (A.11)

With∫ d1,ε

d1

(R − 2Y )(N−1)/2 dY  1

N + 1
(d1ε)

(N+1)/2 ,

(A.12)

one obtains

G̃  (d2 − d1)
NAN
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− 2(N+1)/2

N2 − 1
NSN−1(d2 − d1,ε)

N−1R(N−1)/2 (d1ε)
(N+1)/2 .

(A.13)

This relation can be simplified by using the definition (A.3),
which leads to

SN−1 =
1√
π

Γ (N
2

)

Γ (N−1
2

)
SN , (A.14)

and therefore, together with (A.5),

G̃  (d2 − d1)
NAN

−2(N+1)/2

N2 − 1
N

1√
π

Γ (N
2

)

Γ (N−1
2

)
AN

×(d2 − d1,ε)
N−1R−(N−1)/2 (d1ε)

(N+1)/2 .

(A.15)

Since we are only interested in leading order terms in ε, one
may replace in the last line d1,ε by d1, and R by 2d1, which
results in

G̃  (d2 − d1)
NAN

− 2−N

N2 − 1
N (N+3)/2 1√

π

Γ (N
2

)

Γ (N−1
2

)
AN

×(d2 − d1)
N−1d−N

1 (δc)(N+1)/2 , (A.16)

where we have made use of

δc ≡ c − c1 = c1ε =
4d2

1

N
ε . (A.17)

If we define

γN ≡ 2−N

N2 − 1
N (N+3)/2 1√

π

Γ (N
2

)

Γ (N−1
2

)
, (A.18)

one obtains (tildes can be omitted, since the missing volume
elements cancel out)

W − 1 =
G − G0

G0

 −γN
1

dN
1 (d2 − d1)

(δc)(N+1)/2 . (A.19)

In the above treatment it has been assumed that d1 > 0.
Setting d1 = 0, the above treatment does not work, because
the cap-scenario no longer holds; for a finite (though small)
value of c, all cases of intersection of the hypersphere with
the hyperrectangle ΩX can occur (no part of the sphere
contained in ΩX for sufficiently small Y; entire sphere
contained in ΩX for sufficiently large Y; and all cases in
between); therefore, the case d1 = 0 cannot be treated ana-
lytically, and thus there is no analytic prediction for the
behavior of W in this limit.

For the numerical simulations, it is relevant to emphasize
the range of validity of the approximation derived in this
appendix. Obviously, according to the discussion above, ε
must be that small that the parts of the hypersphere out-
side of the domain ΩX are indeed in the form of caps. How-
ever, the most stringent condition is implicit in one of the
steps behind Eq. (A.12): εN � 1, which is respected for the
simulation results discussed in Sect. 4.3 for this Limit 1.

Fig. 11 Illustration of the situation examined in
Appendix B, for N = 2; the spherical surface is defined by
ĉ = c

B Partition function: Limit 2

In this appendix, the partition function G is examined
for D = 1 in the limit c ↗ c2 with c2 = 4d2

2. Again, as in
Appendix A, we will depart from the expressions defined in
Eqs. (A.1) and (A.2). In analogy to Appendix A, we focus
on the surface area in configuration space and neglect the
volume element, i.e., we examine G̃ rather than G.

We know that G = 0 for c > c2, see Sect. 4.1. In this
appendix, we calculate how this limiting value is approached
by c-values that are slightly smaller than c2, i.e., we look
at the behavior when the (absolute value of) δc = c − c2
is small (note: δc is negative). It has been shown in the
previous appendix that

G̃0 = (d2 − d1)
N AN (R =

√
Nc) , (B.1)

if wall effects are not taken into account.
In the following, we consider the case where ĉ (and thus c)

is slightly smaller than c2, ĉ � c2 (“slightly” means that the
parts of the hypersphere contained in ΩX should be in the
form of “cornes of a hyperrectangle”); we write ĉ = c2(1+ε),
with negative ε. It can be shown that ĉ = c2(1 + ε) implies
that each dumbbell μ must obey

X2
μ ≥ (1 + Nε) c2 , (B.2)

where it is to be noted again that ε < 0; obviously, Eq. (B.2)
makes sense only if (1 + Nε) ≥ 0. In the following, it is
assumed that |ε| � 1/N (also to ensure that the “corners of
a hyperrectangle”-assumption still holds). The component
Xμ can therefore take (positive and negative) values that
obey the conditions

2d2,ε ≤ |Xμ| ≤ 2Yμ , (B.3)

with d2,ε =
√

1 + Nεd2. According to Eq. (B.3) the range of
(relevant) Xμ-values is chopped into two parts, [−2Yμ, 2Yμ]
→ ΩX,μ,−∪ΩX,μ,+ which, according to the definition of ΩX ,
allows to write ΩX as the union of 2N sets,–representative
of the 2N “corner-parts” (called “CP” in the following)–,

ΩX =
⋃

{iμ∈{−,+}}

(
⊗NΩX,μ,iμ

)
. (B.4)
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Since ΩX is invariant w.r.t. Y → −Y, the integral over ΩX

can be replaced by the integral over the hyperrectangle

Ω′′
X = ⊗NΩX,μ,+ = ⊗N [2d2,ε, 2Yμ] , (B.5)

followed by a multiplication with 2N , in order to account
for the number of CP.

Looking at the one corner Ω′′
X : In this part, the sphere-

surface can be represented by a hyperplane with surface
normal n, in other words, the points X in the hyperplane
must satisfy the condition

∑
μ

Xμnμ = ζ . (B.6)

The choice n = (1, 1, 1, . . .) serves as a good approximation
for the limiting case examined here, i.e., for the CP defined
by Ω′′

X . To determine ζ, one can proceed as follows: Inserting
the ansatz X =

√
ξn in ĉ = c leads to ξ = c = c2(1 + ε).

With this, it follows from the condition for the hyperplane,
Eq. (B.6), that

ζ = N
√

ξ = N
√

c = N
√

c2(1 + ε) = 2d2N
√

1 + ε .

(B.7)

For given Y, we now need to determine the distance
from the actual corner point (for that given Y) to where
the hyperplane intersects the hyperrectangle edges that run
parallel to the Cartesian axes and run through that corner
point. For direction ν, we can do this by using the condi-
tion (B.6) with Xμ = 2Yμ for all μ �= ν, and determine the
corresponding Xν ,

Xν = ζ − 2
∑
μ�=ν

Yμ , (B.8)

and so the distance δ of that point to the actual corner is
given by

δ ≡ 2Yν − Xν = 2

(∑
μ

Yμ

)
− ζ , (B.9)

which does not depend on the direction ν. It is obvious from
the definition δ ≡ 2Yν − Xν and the integration bounds for
Xν that δ ≥ 0. According to [36], the surface area of the
part of the hyperplane contained in the hyperrectangle is
given by (see also Appendix C)

Acp,1 =

√
N

(N − 1)!
δN−1 , (B.10)

where the subscript “cp,1” states that this is for a single
CP. Therefore,

Acp =
2N

√
N

(N − 1)!
δN−1 (B.11)

is the sum over all 2N CPs. In order to make the following
steps more convenient, we define

φ ≡ δ/2 =

(∑
μ

Yμ

)
− ζ/2 , (B.12)

which turns Acp into

Acp =
γ̂N

(N − 1)!
φN−1 , (B.13)

with

γ̂N ≡ 2(2N−1)
√

N . (B.14)

We now proceed with the integration over ΩY . When con-
sidering the hypersphere-condition, the lower bound on Yμ is
given by Eq. (B.3), i.e. d2,ε < Yμ, for which it is to be noted
that d2,ε is the extreme value of only one of the dumbbells
while all others must have d2. As we replace the hypersphere
(in the CP) by the hyperplane, this condition changes; in
particular, for constant c (i.e. constant ζ) one finds that
d2,ε needs to be replaced by

d̃2,ε =
ζ

2
− (N − 1)d2 = d2

[
1 + N

(√
1 + ε − 1

)]
, (B.15)

It is straightforward to show that this expression agrees with
d2,ε up to and including terms linear in ε.

The integration over ΩY is restricted by the condition
φ ≥ 0, i.e., the integration is to be performed over

Ω′
Y =

(
⊗N [d̃2,ε, d2]

)
∩ {Y ∈ R

N : φ(Y) ≥ 0} .

(B.16)

Therefore, integration over Y1 results in

∫ d2

d̃2,ε

AcpdY1 =
γ̂N

N !
φN

∣∣∣
Y1=d2

. (B.17)

Performing all other Y -integrations, one thus obtains (note:
the boundary term from the lower integration-bound van-
ishes, since φ = 0)

G̃ =
γ̂N

2(2N−1)(2N − 1)!
δ2N−1
max , (B.18)

with

δmax ≡ 2Nd2 − ζ = N
(√

c2 − √
c
)

, (B.19)

which leads to

G̃ =
N2N− 1

2

(2N − 1)!

(√
c2 − √

c
)2N−1

. (B.20)

The dominant-order approximation of this expression can be
obtained for the limit when |δc/c2| � 1; using

√
c2 − √

c 
−δc/(4d2), Eq. (B.20) becomes

G̃  γ̌N
(−δc)2N−1

d2N−1
2

, (B.21)

with

γ̌N =
N (2N− 1

2 )

22(2N−1)(2N − 1)!
. (B.22)

For comparing the prediction in Eqs. (B.21) and (B.22)
with the results of the numerical simulations, one can do
this without normalizing w.r.t. G0. However, in this case,
one must be careful about the increments, i.e. bins, in the
histogram. The bins in the histogram (representative of G)

are equally spaced w.r.t. c. Therefore, G̃ above must be mul-
tiplied by the increment of the coordinate that is perpen-
dicular to the hyperplane, ζ; this implies the relation

G = G̃ dζ

dc
, (B.23)
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with, according to Eq. (B.7),

dζ

dc
=

N

2

1√
c

. (B.24)

Since we are interested only in the dominant limiting behav-
ior of G for c ↗ c2, c in the expression on the right-hand
side of Eq. (B.24) could also be replaced by c2.

For the numerical simulations, it is mentioned that the
prediction in Eq. (B.21) is valid as long as it is reasonable
to approximate the intersecting part of the hypersphere by a
hyperplane; the range of c-values is restricted by the condi-
tion |ε|N � 1, which is respected for the simulation results
discussed in Sect. 4.3 for this Limit 2.

C Surface area of hyperplane intersecting a
hypercube

Think of the n-dimensional hypercube in R
n, described by

0 ≤ xi ≤ L for i = 1, . . . , n: In := ⊗n[0, L]. Furthermore, a
hyperplane with normal vector n parallel to (1, 1, 1, . . .) is
defined by Hn−1

y :=
{
x ∈ R

n :
∑n

i=1 xi = y
}
. In the follow-

ing, 0 < y ≤ L will be assumed. Note that Hn−1
y intersects

the i-axis at position xi = y, which is part of the hypercube.
In the following, we want to calculate the volume Vn of

the corner that is chopped-off from the hypercube by the
hyperplane. It is straightforward to see that

Vn(y) =

∫ y

0

Vn−1(y − z)dz . (C.1)

This recursive formula can be solved by using the starting
value for n = 2: Vn(y) = y2/2. With this, it can be shown
that

Vn(y) =
yn

n!
, (C.2)

which indeed fulfills Eq. (C.1).
We now proceed with calculating the amount of surface

area A of the hyperplane Hn−1
y that is contained in the

hypercube In. It can be shown that

A =
dVn

ds
, (C.3)

where s denotes the coordinate that runs along the normal
vector n of the hyperplane. Departing from the origin, the
normal vector hits the hypersurface at x̃i = y/n for all i.
The distance of this point from the origin is

s =

√√√√ n∑
i=1

x̃2
i =

y√
n

. (C.4)

For the area A, we thus find

A =
dVn

ds
=

√
n

dVn

dy
=

√
n

(n − 1)!
y(n−1) , (C.5)

which agrees with what can be obtained as a special case of
the general expression in [36].

D Numerical calculations

This appendix describes the numerical procedure for calcu-
lating the partition function G and the partition coefficient
W, in terms of histograms.

The procedure for the cases c ↘ c1 (limit) and c1 ≤ c ≤
c2 (full range) is as follows:

– Subdivide the c-range in equally spaced bins; the num-
ber of bins is denoted by nc, the number of states by
ncfg. Make a loop over each bin; for each bin, do the
following nb ≡ ncfg/nc times:

– Choose a vector with components drawn (statistically
independently) from a normal distribution, normalize
this vector to unit length: this results in a vector from a
random (isotopic) distribution on the unit hypersphere
(in N dimensions) (see also [37,38]).

– For a homogeneous distribution of random points in a
hyperspherical shell with radii Rmin and Rmax (corre-
sponding to the minimum and maximum value of c of the
respective bin), the probability distribution of the length
R of the homogeneously distributed vectors can be writ-
ten in the form p(R)dR = NNRN−1dR, where the nor-
malization constant N is determined by the normal-

ization condition
∫ Rmax

Rmin
p(R)dR = 1. We aim at sam-

pling this distribution by a quantity z that is distributed
homogeneously on the interval [0, 1], i.e., p(R)dR = dz;
integration with lower bound R = Rmin and z = 0,
respectively, leads to the solution

R = N

√
RN

min + (RN
max − RN

min) z , (D.1)

where z is drawn from a homogeneous probability dis-
tribution on the interval [0, 1].

– For the random vector X generated in the just-mentioned
manner, one (i) includes it in the histogram for G0 and
(ii) includes it also in the histogram for G if it fulfills
|Xμ| ≤ 2Yμ for all μ, where Yμ is drawn from a homo-
geneous distribution on the interval [d1, d2].

– The following error-analysis can be done in each bin:
Basically, one makes nb attempts (which all count
towards histogram for G0) to check whether they are
compatible with the wall; the fraction of successful plac-
ings (counts towards histogram for G) is given by Wb =
nb,success/nb. This can be seen as a binary random pro-
cess of a variable q that can take values 0 (failed placing)
and 1 (successful placing). With Wb = 〈q〉 the average
over all placing attempts, the corresponding variance is
given by var(q) = 〈(q − Wb)

2〉. A straightforward calcu-
lation leads to var(q) = Wb (1 − Wb). Therefore, the

standard deviation is given by σq =
√Wb (1 − Wb),

from which one can derive the standard error of the
mean,

σWb =

√
Wb (1 − Wb)

nb
. (D.2)

In particular, let us consider the case that Wb is close
to zero: Requiring that the standard error of the mean
is comparable to the mean, σWb  ϕWW with ϕW �
1, one obtains the condition Wb  (ϕ2

Wnb)
−1; when

fitting the full c-range data further below, we make use
of ϕW = 1/

√
10, which implies Wb  5 × 10−6 because

nb = 2 × 106 number of samples per bin; i.e., bins with
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Wb smaller than this value are not used in the fitting,
because of too large fluctuations; fitting is done only
over the the range that satisfies this condition, and the
error is also determined on the basis of this range.

The procedure for the case c ↗ c2 (limit) is as follows:

– For sampling X efficiently, we do not want to sample first
X ∈ ⊗N [2d2,ε, 2d2] and then reject a large majority of
points because they do not satisfy c2(1+ε) ≤ ĉ. Instead,
we want to sample points homogeneously in the intersec-
tion of the domains ΩX,ε =

{
X ∈ ⊗N [2d2,ε, 2d2]

}
and

Ωζ =
{
X ∈ R

N :
∑

μ Xμ ≥ ζ
}

. We choose the value of

ζ such that the plane defined by
∑

μ Xμ = ζ intersects
the edges of Ωζ at the same points as if Ωζ is intersected
by the hypersphere defined by c2(1 + ε) = ĉ. In analogy
to the procedure described in Appendix B, this leads to

ζ = 2(N − 1)d2 + 2d2,ε = 2d2

(
N − 1 +

√
1 + Nε

)
.

(D.3)

In order to select a point from a homogeneous distribu-
tion in the intersection of ΩX,ε and Ωζ , we proceed in an
iterative way: (i) We determine the minimum possible
value for X1: Xmin = ζ−2(N −1)d2 = 2d2,ε (note: for all
components, the maximum value is Xmax = 2d2), and
(ii) perform the following iterative loop for determining
all components Xμ for μ = 1, . . . , N :

– choose Xμ according to the distribution pμ(X);
– update Xmin: Xmin = Xmin + Xmax − Xμ.

The distribution pμ(X) is given as follows: It must be
proportional to the volume VN−μ(X − Xmin) of the
hyperrectangle corner (for notation, see Appendix C).
Enforcing normalization on the interval [Xmin, Xmax],
one obtains

pμ(X) =
N − μ + 1

(Xmax − Xmin)
N−μ+1

(X − Xmin)
N−μ .

(D.4)

Sampling this distribution with a variable z distributed
homogeneously on the interval [0, 1], i.e., requiring
pμ(X)dX = dz, one finds after integration the relation

X = Xmin + (Xmax − Xmin) z1/(N−μ+1) . (D.5)

After this sampling (which is 100% efficient, i.e., every
attempt is successful), one selects only those X which
satisfy c2(1 + ε) ≤ ĉ (in this latter step, the efficiency
is lower than 100% but still rather high, e.g., 89% for
N = 50).

– The last step consists in taking the condition Xμ ≤ 2Yμ

(for all μ) into account, where it is noted that we need to
examine only one of the corners of the hyperrectangle.
A brute-force way to implement this would be to pick
homogeneously Y ∈ ⊗N [d2,ε, d2], and then delete all
states X that do not satisfy the condition; this would
result in a drastic decrease of efficiency. A much bet-
ter way is the following: For given X, we just imagine
that an Y was chosen, and we ask for the probabil-
ity pY |X that the condition Xμ ≤ 2Yμ (for all μ) was
fulfilled after having chosen Y; since the Y is drawn
from a homogeneous distribution, pY |X must be pro-
portional to the volume

∏
μ (Xmax − Xμ); we may thus

count the generated state X with a weight proportional
to this volume; in this way, there is no additional wast-
ing of generated states (all states that fulfill the condi-
tion c2(1 + ε) ≤ ĉ contribute to the histogram with this
corresponding weight). In the simulations, the weight is
normalized in a specific way, to avoid numerical under-
flow; particularly, the weight is chosen to be the ratio
of the above mentioned volume divided by the volume
of the chopped-off-corner (intersection of ΩX,ε and Ωζ),
and then multiplied by 2N , which leads to the weight

weight = 2N N !
∏
μ

(
Xmax − Xμ

Xmax − Xmin

)
. (D.6)

– Note: For increasing N , the exponent β in the limit
Eq. (46) can become rather large. Therefore, however
wide the range [c2(1 + ε), c2] of sampling, the region of
highest interest (c ↗ c2) is sampled quite poorly (the
corresponding bins may get just a few hits) in compari-
son to the region further away from c2. Therefore, if the
sampling is insufficient, the exponent β is potentially
overestimated; in other words: the region c ↗ c2 is a
small corner in the hyperrectangle, and in order to sam-
ple that well one needs a substantial increase in sampling
points (in the entire domain).
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26. H.C. Öttinger, Beyond Equilibrium Thermodynamics
(Wiley, Hoboken, 2005)

27. M. Hütter, M.A. Hulsen, P.D. Anderson, Fluctuating
viscoelasticity. J. Non-Newtonian Fluid Mech. 256, 42–
56 (2018)
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