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Abstract Many types of motile cells perform durotaxis, namely directed migration following gradients
of substrate stiffness. Recent experiments have revealed that cell monolayers can migrate toward stiffer
regions even when individual cells do not—a phenomenon known as collective durotaxis. Here, we address
the spontaneous motion of finite cohesive cell monolayers on a stiffness gradient. We theoretically analyze
a continuum active polar fluid model that has been tested in recent wetting assays of epithelial tissues
and includes two types of active forces (cell-substrate traction and cell-cell contractility). The competition
between the two active forces determines whether a cell monolayer spreads or contracts. Here, we show
that this model generically predicts collective durotaxis, and that it features a variety of dynamical regimes
as a result of the interplay between the spreading state and the global propagation, including sequential
contraction and spreading of the monolayer as it moves toward higher stiffness. We solve the model exactly
in some relevant cases, which provides both physical insights into the mechanisms of tissue durotaxis and

spreading as well as a variety of predictions that could guide the design of future experiments.

1 Introduction

The organized motion of cohesive groups of cells, usu-
ally referred to as collective cell migration, plays a key
role in many instances of morphogenesis, tissue regen-
eration, and cancer invasion [1-6]. The mechanisms by
which cells coordinate their motion are diverse and
often not fully understood. Recent work has shown that
groups of cells may respond to external stimuli as a
whole, that is, in the form of collectively organized
directed motion, in ways similar to what single cells
do. Such collective migration can arise in response to
a variety of external stimuli such as gradients in either
chemical concentrations or in the stiffness of the envi-
ronment, which, respectively, lead to collective chemo-
taxis [7] and durotaxis.

We are interested in the phenomenon of durotaxis,
which refers to the directed motion of cells along stiff-
ness gradients of the extracellular matrix, typically
toward stiffer regions. This is a well-known phenomenon
for single-cell migration [8], which is rather common
in many types of cells and has important implica-
tions for cancer invasion. More recently, durotaxis has
been reported also for collective cell migration [9,10].
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Remarkably, large cell monolayers can perform duro-
taxis collectively even when their constituent cells do
not [9], and in some cases, there is an optimal inter-
mediate stiffness for tissue spreading [11,12]. Collec-
tive durotaxis has been theoretically described both via
hybrid computational models [13-16] and via a contin-
uum active polar fluid model [17] that generalized previ-
ous work on tissue wetting [18]. This continuum model
was solved numerically to reveal two possible mecha-
nisms of collective durotaxis [17].

Here, we extend the work in Ref. [17] to provide
a more comprehensive classification of the dynamical
regimes of the model in terms of physical parameters.
Remarkably, we solve the model analytically in some
simple but relevant situations, allowing for a better
grasp of the physical mechanisms at play. As shown in
Ref. [18], the model predictions can be fitted to experi-
mental data to infer physical parameters that are often
elusive to direct measurement.

The model describes cell monolayers moving on
a substrate as a quasi-two-dimensional viscous fluid
with two types of active forces: cell-substrate traction
and cell-cell contractility. The competition between
both active forces was shown to give rise to the so-
called active wetting transition, whereby a tissue either
spreads or retracts depending on its size [18]. The same
model also predicted a fingering instability of the lead-
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ing edge of the tissue [19]. In addition to the active
forces, the model also features two passive forces: an
effective viscosity, which arises from cell-cell adhesion,
and a friction force due to cell-substrate interactions.
All these forces are treated in a coarse-grained way at
the supracellular scale. The rationale of the approach is
to identify the dynamical behaviors of cell monolayers
that are of mechanical origin, explicitly excluding any
signaling effects that cannot be encoded in the mechani-
cal parameters of the model. To what extent such purely
mechanical approach may succeed as a first step to
account for the observed phenomenology is an inter-
esting open question that might be settled by future
experiments.

2 Hydrodynamic model

Our model stems from a hydrodynamic approach to cell
tissues, a strategy that has proven useful when tissues
are organized at a supracellular scale, such that infor-
mation at the cellular scale is not relevant [20-24]. This
is the case in many examples of collective cell migra-
tion, where coarse-grained fields such as velocity, cell
density, and polarization are treated as smooth fields
varying on scales larger than the cell size. Continuum
field theories based on linear irreversible thermodynam-
ics, often called active gels theories, were first devised to
account for active matter at the cellular scale, such as
the cytoskeleton [25-28], but have more recently been
extended to multicellular scales [29].

The basic idea is that tissues can be modeled to some
extent as continuous active materials, in such a way
that the biological properties are encoded in a series
of physical parameters, including passive ones such as
viscosity or friction, and active ones such as contrac-
tility or traction. These parameters will in general be
time and space dependent to account for the biological
regulation of the cell properties and interactions. For
instance, in a simple model for the spreading of epithe-
lial monolayers [30], it was shown that their effective
viscosity increases with time as they become thinner
due to the spreading. This type of approach is useful to
identify activity-driven hydrodynamic instabilities that
can either be avoided or exploited by the biological reg-
ulation of parameters [19,31].

2.1 Assumptions and model equations

In this paper, we take the simplest possible model
of an active fluid that combines active cell-substrate
traction and cell-cell contractile forces. This model
was introduced in Ref. [18] and was extended in Ref.
[17] to account for substrates with non-uniform stiff-
ness. The model is for a two-dimensional active fluid,
which describes the quasi-two-dimensional cell mono-
layer with two continuous fields: the velocity v, and
the polarity p,. The polarity is the orientational degree
of freedom of the cells which arises from the polariza-
tion of its internal cytoskeletal structure and defines
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the direction along which traction forces are exerted.
The tendency of cells to align with their neighbors is
accounted for by an effective free energy of the form

F= [ pepn+ G @000 | r, )

where K is an effective Frank constant that quantifies
the energetic cost of polarity gradients [32]. The con-
stant a is a restoring coefficient that is taken positive
such that the unpolarized state (p = 0) is energetically
favored in the bulk. We assume that the polarity follows
a purely relaxational dynamics 9;p, x —0F/dp, which
is much faster than the temporal variations of the rest
fields [18], such that we can take a quasistatic evolution
(Orpo, = 0) and hence 0F/dp,, = 0. Then, we have

Lgvzpa = Pa, (2)

where L. = /K /a is the nematic length that character-
izes spatial variations of the polarity field [17-19]. Since
epithelial cells migrate toward free space, we enforce
a boundary condition of maximum polarity |p| = 1
directed normally to the tissue edge. Then, L. defines
the thickness of a polarization boundary layer near the
tissue edge, such that polarity decays from p = 1 at the
edge to p = 0 deep into the tissue.
Neglecting inertia, the force balance equation is

030as + fa =0, (3)

where 0,3 is the stress tensor of the monolayer and f,
is the external force density due to the contact with
the substrate. These quantities are directly related to
the experimentally measured monolayer tension, o,gh,
and traction stress, T, = —foh, with h the height of
the monolayer [18].

We now take the constitutive equations for a com-
pressible active polar fluid of the form [18,33]

Oap = 77(8@7]/3 + 85'005) - Cpapﬁv (4)
fa _fva + (iDas (5)

where 7 is the viscosity, & is the cell-substrate fric-
tion, ¢ < 0 is the contractility, and {; > 0 is the con-
tact active force (hereinafter referred to as the traction
parameter), which accounts for the maximal traction
stress Ty = h(; exerted by polarized cells on the sub-
strate. A summary of the symbols for the variables and
parameters, together with their units and estimates can
be found in Table 1.

We assume that, in our 2d description, the cell mono-
layer is compressible, with d,v, # 0, because the in-
plane compression and expansion of the cell monolayer
can be accommodated by changes in the monolayer
height h. We assume that in-plane deformations do not
amount to significant changes in pressure as the layer
can deform in 3d and, hence, pressure gradients are
neglected in front of the rest of the contributions in the
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Table 1 Symbols and typical values of model parameters. Here, ¢{ and ¢] correspond to the linear traction profile param-
eters, which are adapted from the saturated profile with the stiffness and maximal traction from [9,17,41]

Description [Units]

Typical value

Stress tensor [ML ™72

Tap

fa Force density [ML™2T~?]

h Monolayer height [L] 5 pm [18,34]

L. Nematic length [L] 25 pm [18,30]

L Tissue half-width [L] 200 pm

n Viscosity [ML™'T™1] 80 MPa-s [18,30]
¢ Contractility [ML™'T2 —20 kPa [18]

¢? Traction offset [M LT 2] 0.05 kPa/pum

¢ Traction gradient [M L3772 8-107° kPa/pm?
5y Surface tension [MT ™2 1-10 mN/m [35-40]
L, Active polar length [L] 200 pm, [C|/(2¢:)
A Hydrodynamic length [L] 300 pm, /2n/&

force balance Eq. (3). This approximation has been used
and discussed for instance in [17-19,21,22,30,31]. Tis-
sue growth driven by cell proliferation is also neglected.

In the explicit form of the stress tensor Eq. (4), we
have also assumed, following Ref. [18], and in order to
reduce the number of parameters and define the sim-
plest possible equations, that the bulk viscosity is 7 = 7,
and that the isotropic contractility is given by ¢’ = (/2.
Similarly, active stresses not associated with polariza-
tion are also neglected, that is, { < ¢ as defined in Eq.
(S12) in Ref. [18]).

Furthermore, the profile of polarity p, is dictated
directly by the boundary shape, so flow alignment and
other elastic effects, which have been addressed in more
general models such as in Ref. [31], are here neglected.
In the simplest formulation, we assume stress-free
boundary conditions, but we also generalize the model
to other cases.

2.2 Reduction to a 1d solvable model

The problem at hand is formally a free-boundary prob-
lem, since the boundary of the cell cluster is free to
deform and move, as its normal velocity coincides with
that of the adjacent fluid. The evolution of the shape
and position of the boundary is thus part of the solu-
tion of the problem. An example of how a spontaneous
symmetry-breaking of the morphology of the bound-
ary can couple to the overall motility of the domain
was discussed in the context of cell fragments [42]. In
the present study, we are interested in cases where the
symmetry is broken by the existence of an external gra-
dient. Since this is the dominant effect causing motion
of the domain, here we ignore boundary deformations.
We may also assume that the effective surface tension
of the tissue is strong enough, and the monolayers small
enough, to suppress the active fingering instability that
is inherent to this model, as reported in Ref. [18,19].
Our interest is thus to describe the motion of circular
monolayers of radius R on a substrate with a stiffness

gradient by tracking the position of the center of mass
and the monolayer size.

For simplicity, and in order to obtain exact solutions
and physical insights, we formulate the problem in a 1d
setup, in which the monolayers are strips that are finite
in the spreading direction, and infinite in the transverse
direction (Fig. 1, bottom). This setup corresponds to
the experiments on collective durotaxis of Ref. [9] and
was used also in the numerical study of the present
model in Ref. [17]. The present work extends that previ-
ous study with a more comprehensive discussion of the
wealth of dynamical behaviors allowed by this model
and their physical interpretation, in particular taking
advantage of explicit analytical solutions.

The basic physics of this 1d formulation (rectangu-
lar geometry with translational invariance in the trans-
verse direction) is the same as that in the 2d case with
circular monolayers (circular geometry with rotational
invariance). The results are equivalent up to geometri-
cal factors, but much simpler in the rectangular geom-
etry, as already illustrated in the preceding studies in
both geometries [17-19]. Furthermore, the availability
of an exactly solvable model with sufficiently simple
analytical results is of great theoretical value to gain
insights into the physical mechanisms at play, in par-
ticular when a relatively large number of parameters
are present. Moreover, we will show that some of the
limitations of the 1d formulation, such as the lack of
the Young—Laplace pressure drop due to tissue surface
tension, can be effectively introduced in a simple way
into the 1d reduction of the problem.

In the 1d setup, Egs. (3-5) reduce to

20020 = 2(pdep + Ev — (ip. (6)

The polarity profile is given by the solution of Eq. (2)
satisfying p = +1 at the two edges x = x4 and = =
r_ < x4, respectively. In terms of the center-of-mass
position X = (z4+x_)/2 and the monolayer half-width
L= (zxy —2x_)/2, it reads
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Fig. 1 Scheme of the active polar fluid model for mono-
layer spreading, adapted from Ref. [18]. We model circu-
lar monolayers of radius R but reduce the description to
an effective 1d setup corresponding to strips of half-width
L = R and infinite in the y direction (see Sect. 2.2). X is
the position of the center of mass of the monolayer, x4 that
of the right edge (stiffer when on a stiffness gradient), and
x_ that of the left (softer) edge. Both the traction parame-
ter ¢; and the friction & (represented here being exerted on
the substrate) depend on substrate stiffness, characterized
by the substrate’s Young modulus F (see Sect. 3)
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_sinh ((z — X)/L.)
) = G T/

(7)

There are several length scales whose ratios deter-
mine different physical scenarios in the model. The scale
L. is typically the smallest one, as the polarized bound-
ary layer of the tissue is often thin compared to the sys-
tem size L and the other length scales [9,18,30]. The

so-called screening length A = /2n/€ is a measure of
the range of hydrodynamic interactions [17,19,27,31],
and it defines two important limits: In the so-called wet
limit, when A > L, long-ranged hydrodynamic interac-
tions produce non-local effects and the system behaves
globally as a whole; in the so-called dry limit, when
A < L, the spreading dynamics is governed by local
forces, i.e., the two edges behave independently from
each other. Another relevant length scale, that we call
the active polar length L, [18], arises as the ratio of
contractility to traction forces: L, = [(|/(2(;). In the
wet case, this length defines the critical tissue size for
the wetting—dewetting transition, as reported in Ref.
[18].

Equation (6) will be solved typically with stress-
free boundary conditions. If a normal stress compo-
nent is required to mimic the effect of an effective sur-
face tension, as if L would be the monolayer radius,
we will impose o+ = —v/L, which implies 0,v|,, =
(¢ —~/L)/(2n). The solution of Eq. (6) provides the
spatial velocity profile v(z), from which we obtain vy
as well as the velocity of the center of mass U = X and
the spreading velocity V = L.

For tissues on a substrate with variable stiffness, the
parameters of the passive and active forces on the sur-
face, that is friction and active traction, will be space
dependent, £(z) and (;(x). The relationship between
these spatial variations and that of the substrate stiff-
ness must be determined independently of the hydrody-
namic model. An explicit derivation requires a detailed
knowledge of the molecular mechanisms at play, and
a discussion based on empirical data was made for
instance in Ref. [17]. Both friction and traction parame-
ters increase with and eventually saturate with increas-
ing substrate stiffness [43-48]. However, to avoid intro-
ducing more parameters and to make the interpreta-
tion of the results more transparent, we mostly consider
cases where those parameters are either space indepen-
dent or have a uniform gradient, hence introducing only
two new parameters associated with the stiffness varia-
tion, namely ¢’ = 0,&(z) and ¢! = 9,.¢;(z). This restric-
tion is relaxed in Sect. 3.2. In most cases we take & =0
(uniform friction) and focus on the effect of a uniform
traction gradient ¢/ > 0 on the net displacement of
the monolayer. We then find the velocity profile at any
given time by solving Eq. (6) with the initial conditions
Ly = L(0) and Xy = X(0) for the set of parameters
Loy, &,¢,¢0, ¢, where ¢ = (;(Xp) is the initial trac-
tion offset.
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~0.024 A
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200 400 600
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Fig. 2 Spreading velocity as a function of the monolayer
half-width on a uniform substrate, for L, = 200 pm and A =
100, 200 and 300 pm. Solid lines show the full expressions in
Eq. (A.3), and the dotted and the dashed lines are the dry
and the wet limits, respectively, which converge to the full
expressions at large sizes. Parameter values are in Table 1,
except for L. = 5 pm (smaller to see better convergence).
Only for the largest A, the critical size L™ ~ 200 pm = L,
approaches the wet limit prediction; for the other two values
of A, the dry approximation is better for smaller sizes

2.3 Solutions for a uniform substrate

We first consider as a reference the case with no stiffness
gradient, so that ¢/ =0, ¢’ = 0, and consequently there
is no net monolayer displacement: U = 0. This case
was studied in the wet limit, & — 0 in Ref. [18] in
circular geometry, and in the wet—dry crossover and in
rectangular geometry in Ref. [19]. The exact solution
of this case is given in Appendix A. Taking v = 0 and
assuming L. < L, the expression in the wet limit A > L
for the spreading velocity takes the simple form

(L_ Lp)v

(8)
which recovers Egs. (5) and (7) from Ref. [19]. In the
dry limit L, < A < L, we obtain

we we LC |§| LCCZ
\%4 t_ivit%%{LCi— :|_

2 2n

chi
2n

L
VY = 40 & o {)\Q - |<q = 22NN = L,). (9)

2

In the wet limit, there is a critical tissue size L* ~ L,
that defines the so-called active wetting transition of
Ref. [18]. This transition distinguishes whether the clus-
ter is expanding (positive spreading velocity V' > 0 for
L > L*) or contracting (negative spreading velocity
V <0 for L < L*). The wet limit is represented by the
dashed line in Fig. 2. In this limit, the spreading veloc-
ity V does not depend on A, and the transition from
contraction to expansion takes place at L = L,. The
condition V' = 0 thus defines the wetting—dewetting
transition reported in Ref. [18]. However, here we refer
to spreading and avoid the term ‘wetting,” which usu-
ally refers to the local motion of a fluid front on a sub-
strate. This precision is meant to avoid confusion in
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Fig. 3 Velocity (a) and stress (b) profiles for the case
of a uniform-stiffness substrate. Parameter values are
given in Table 1 except for A, which takes values A =
40, 100, 200, 300, 450 pm

cases where the center of mass of the tissue is moving. In
those cases, the soft tissue edge may recede with respect
to the substrate while the tissue globally expands. We
discuss such examples in Sect. 3.1.

In the dry limit, the spreading transition is controlled
by the screening length A. Equation (9) shows that there
is a critical A* ~ L, such that for A < A* the cluster
contracts (V' < 0), regardless of its size L, and for A >
A* the cluster always expands (V' > 0). This result in
the dry limit is represented by the dotted lines in Fig. 2,
which do not depend on the tissue size L and exhibit
the spreading transition at V' =0 for A = L,,.

The full velocity and stress profiles (Fig. 3) are not
used here, but they allow the model predictions to be
tested against experimental data. These profiles pro-
vide a simple visualization of where the system stands
in the wet—dry axis, and of the forces and flows in the
cell monolayer. For example, the stress plateau in the
bulk (darkest curves in Fig. 3b) is a signature of the wet
limit (large \). Respectively, two peaks of width L. near
the edges (lighter curves in Fig. 3b) are indicative of the
dry limit (small \). In this case, the velocity profiles fea-
ture a plateau of null velocity in the bulk (lightest curve
in Fig. 3a). In this situation with a uniform substrate
stiffness, the profiles of stress and velocity are, respec-
tively, even and odd with respect to the center of the
monolayer.

3 Collective durotaxis

3.1 Linear traction profile

The presence of a stiffness gradient should in general
affect the interactions between the cells and the sub-
strate, thus altering both traction and friction forces.
The dependence of the traction and friction parame-
ters on substrate stiffness must be determined inde-
pendently of the model, either empirically or from a
microscopic model of cell-substrate interactions. In this
section, to obtain analytical solutions, we take the sim-
plest possible spatial dependence of these parameters:
a linear profile of traction (;(z) = ¢ + ¢/(z — X), and
a uniform friction coefficient, with & = 0. The corre-
sponding results will be applicable locally to more gen-
eral traction profiles as long as ¢/'L/¢] < 1. The exact
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results for a linear traction profile, together with some
approximate expressions, are given in Appendix B.

An important exact result for this case of uniform
traction gradient ¢/ is that the spreading velocity V
is that on a uniform substrate V" with the traction
evaluated at the monolayer center, that is V(¢?,¢!) =
V(¢Y). Therefore, the spreading behavior is indepen-
dent of the existence of a traction gradient. More gen-
erally, in cases where the traction gradient is not quite
uniform, the spreading velocity will be relatively insen-
sitive to that gradient. The velocity of the center of
mass, however, is sensitive to the existence of a trac-
tion gradient, which gives rise to the phenomenon of
durotaxis.

Next, we discuss the results in the dry and wet limits.
Taking v = 0, the expression of the edge velocities in
the dry limit (L. < A < L) reads

Z

:dtry ~ )\C |C| iQC L2

Q‘Li

- vi’dw?) - (10)

where Cii are the local values of the traction at
the edges. The corresponding center-of-mass velocity,
neglecting 2L2 in front of L), reads

LcA LA

dry L _

(& =6 (11)

and the spreading velocity is V&Y = Vwdy(¢9) with
¢Y = (¢ +¢;7)/2. Although L appears in Eq. (11), giv-
ing a linear increase in U with L (dotted lines in Fig. 4),
U can be rewritten in terms of the traction difference
emphasizing that the spreading dynamics is local in the
sense that the two edges behave independently from the
other. The traction difference then directly drives tissue
durotaxis.

On the contrary, in the wet limit! L. < L < A, the
two edges are coupled through hydrodynamic interac-
tions, and we get

ot e [Lgii LA (x2 2L2)}

21
L@ </\2 _ §L2>, (12)

— Uivwet(gii) + 277

which yields a center-of-mass velocity

e e )~ g

(13)

and a spreading velocity VVet = Vwwet(¢9) Both vy
and U depend on the system size L and the traction

! The strict wet limit A — oo (¢ — 0) with finite L. is ill-
defined for a the case of a nonzero ¢/, because force balance
cannot be globally satisfied unless there is friction.
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Fig. 4 Center-of-mass velocity as a function of the mono-
layer half-width for a linear traction profile, with L, = 200
pwm and A = 100,200 and 300 pm. As in Fig. 2, the solid
lines represent the full expression in Eq. (B.9), and the dot-
ted and dashed lines represent the dry and the wet limits,
respectively. Parameter values are in Table 1, except for
L.=5pm

gradient ¢/, which illustrates that the two edges are
hydrodynamically coupled. We provide a summary of
results for tissue durotaxis U and spreading V in the
wet and dry limits in Table 2.

Two main conclusions emerge which are general in
the whole wet/dry range for this case of uniform trac-
tion gradient ¢/ and uniform friction (¢’ = 0). On the
one hand, the center-of-mass velocity U is proportional
to the traction gradient ¢/ and independent of the trac-
tion offset (2. U has the same sign as ¢/, and there
is durotaxis to stiffer regions as long as the traction
is a monotonically increasing function of the stiffness.
On the other hand, the spreading velocity depends on
the traction offset and not on the traction gradient.
Accordingly, Fig. 2 still applies in the present case, and
durotaxis is independent of whether the monolayer is
spreading or contracting (Fig. 4).

In fact, the following situations are possible. First,
the monolayer can contract either with the two edges
moving in opposite directions (v— > 0 and vy < 0) or in
the same direction (0 < vy < v_). In the former case,
both edges are retracting, or dewetting. In the latter
case, the 4+ edge is wetting and the — edge is dewetting.
Second, the monolayer can expand, or spread, if both
edges move away from each other (v_ < 0 and vy > 0),
both wetting the substrate, but also if both edges move
in the same direction (0 < v_ < vy ), with the + edge
wetting and the — one dewetting.

It is thus clear that the condition of spreading or con-
traction, which is a property of the cell monolayer as a
whole, and the condition of wetting or dewetting, which
refers to the direction of motion of each tissue edge, are
two distinct conditions that only coincide when the cen-
ter of mass does not move (U = 0), as in Ref. [18]. We
show examples of these distinct situations in Figs. 5 and
14 in Appendix C.

The repertoire of dynamical behaviors contained in
the model as a function of parameters is quite rich.
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Table 2 Summary of the results. In the wet limit, the critical length is such that if L < L* ~ L, there is contraction
(V < 0) whereas if L > L* there is expansion (V > 0). In the dry limit, both regimes are defined by \* ~ L,

Uniform Stiffness gradient
(G, & umif.) (lin. ¢;(x), unif. &)
Wet (L <)) U 0 L;n* !
) .c0
14 Lebi (L - Ly) Ll (L - 1,)
Dry (A < L) U 0 S L
) .0
4 Esi(A = Ly) Ll (A~ L,)

Spreading and center-of-mass velocities can be plot-
ted against monolayer size (Fig. 6) and traction offset
(Fig. 7), which are two quantities that can be easily
varied and controlled in experiments [9]. Importantly,
in addition to being independent of traction offset, the
durotactic velocity U does not depend on the contrac-
tility either, which is a parameter that is more difficult
to infer from experiments, and is assumed to be uniform
throughout the system. An increase in either monolayer
size L or traction gradient ¢/ implies an increase in the
difference of local tractions at the edges, (;r —¢; , and
thus an increase in durotactic velocity U. The spread-
ing velocity V, which is independent of the traction
gradient !, increases with the monolayer size L, the
screening length )\, and the traction offset ¢?, and it
decreases with the contractility |(]|.

The velocity and stress profiles, plotted in Fig. 8 for
a range of \, are qualitatively similar to those of the
uniform-stiffness substrate (Fig. 3), except that they
become asymmetric due to the stiffness gradient.

3.2 Linear friction and saturation profiles

In this section, we relax the restriction of a uniform
friction coefficient. This is a more realistic situation
since both active traction and passive friction rely on
the dynamics of cell-substrate adhesion molecules [33],
and hence they both depend on substrate stiffness. Pre-
vious works indeed support that cell-substrate friction
increases with substrate stiffness [43-46]. To illustrate
the role of this effect on tissue durotaxis, and for the
sake of simplicity, we consider a linear friction increase
&(x) = & + 'z, with ¢ # 0. The problem with space
dependent ¢ can no longer be solved analytically. Solv-
ing Eq. (6) numerically with a finite-difference method,
we find that the center-of-mass velocity now decreases
with the traction offset (Fig. 9). This is because now
larger traction correlates with larger friction, which
leads to smaller velocities. Accordingly, the spreading
velocity grows more slowly with traction offset than in
the uniform-friction case.

As already mentioned, the use of linear profiles is
particularly convenient from a theoretical point of view
since it avoids introducing too many parameters. How-
ever, to obtain a more realistic description and to com-
pare with experimental data, other profiles may be

more appropriate. A simple feature that can be imple-
mented in the model is the fact that the increase in
traction and friction with substrate stiffness must even-
tually saturate. Then, following Ref. [17] and the refer-
ences therein, we consider profiles of the form

e B@
“o) =g F@) + B

i ma §(w) =&~ (14)

in terms of the spatially varying Young modulus F(z) of
the substrate. For in vitro experiments such as those of
Ref. [9], a simple choice is to prepare the substrate with
a linear stiffness profile £ = Ey + F'(z — X). Numer-
ical results for this more general case are qualitatively
similar to those in Fig. 9. However, at high stiffness,
the saturation of traction and friction makes the tissue
dynamics approach those of the uniform-stiffness case,
with vanishing durotactic velocity U. The approach to
this durotaxis-free regime at high stiffness is controlled
by the new parameters (°, £, E* and E’ introduced
in Eq. (14).

4 Time evolution in a traction gradient

4.1 General case

For a given set of parameters, 7, ¢, L., initial conditions
Xo, Lo, boundary conditions, and imposed profiles (; ()
and £(z), our model supplies a velocity profile v(x) as
the solution of the equation

(2007 — £(2)) v(@) = (2¢p(2)ds — (@) p(2),
(15)

where p(x) = p(x; X, L, L.) is given by Eq. (7). The
position of the center of mass X (t) and the cluster size
L(t) satisfy the differential equations

XZU(X—FL)—;—v(X—L)’
X+L) —v(X-1L)
5 .

(16)

=Y

(17)
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Fig. 5 Spreading velocity V (blue) and center-of-mass
velocity U (red) in their full expressions (solid), dry (dot-
ted) and wet (dashed) limits, for three different values of A
(vertical dashed lines) and for L, = 200 pm. Each figure
corresponds to the V and U in Figs. 2 and 4 for its partic-
ular A. Parameter values are in Table 1, except for L. =5
pm. Together with Fig. 14, these plots show that the mono-
layer contracts with both edges dewetting for all L in (a),
for L £ 127 pm in (b) and for L < 54 pm in (c) (solutions
of v4 = 0 in the wet predictions). It contracts with the +
edge wetting but the — edge dewetting faster for L Z 127
pm in (b) and for 54 pm < L < 200 pm in (c) (solutions
of v+ = v_ in the wet predictions). Finally, the monolayer
expands with the — edge dewetting but slower than the
+ one wets for L £ 200 pm in (c). To have an expanding
monolayer with both edges wetting the substrate, we should
set lower contractilities or larger tractions

As X and L evolve, however, the cell cluster is visiting
different regions of the substrate, so the profiles (;(x)
and &(z) used to solve Eq. (15) are changing with time.
For instance, in the case of a linear traction profile,
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Fig. 6 Plots of the full expressions for V' (blue curves) and
U (red curves) as a function of tissue size L for the param-
eter values in Table 1 but changing (a) the traction offset
¢? =0.01,0.05,0.10,0.15 kPa/um, and (b) the contractility
—(¢ =0,20,40, 60 kPa
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Fig. 7 Plots of the full expressions for V' (blue curves) and
U (red curves) as a function of the traction offset ¢{ for the
parameter values in Table 1 but changing (a) the tissue size
L = 40,100, 200, 350 um, (b) the hydrodynamic length A =
100, 200, 300, 450 wm, (c) the contractility —¢ = 0, 20, 40, 60
kPa, and (d) the traction gradient ¢/ = 107°,8-107°,1.5 -
1074,2-107* kPa/pum?
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Fig. 8 Velocity (a) and stress (b) profiles for a linear trac-
tion profile, for the parameter values in Table 1 and chang-
ing A = 40, 100, 200, 300, 450 pm. Note that with the values
of v, at the tissue edges we would obtain the spreading and
durotactic velocities in Fig. 7b, for ¢0 = 0.05 kPa/pm

Ci(z) = ¢+ ¢l(xz — X), the traction offset changes with
time according to ¢P(t) = ¢2(0) + ¢/(X(t) — Xo). In the
rest of this section, we focus on this case with and take
no friction gradient (£’ = 0).
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Fig. 9 Durotactic velocity U (a) and spreading velocity V/
(b) when there is a positive gradient of the friction coeffi-
cient, for parameters in Table 1, varying the friction gradient
¢ =0,10"%,5-107%,1073,3- 1072 kPa-s/pm?, and taking
a stiffness offset £ = 2 kPa-s/pm?

4.2 Uniform traction gradient

Since the durotactic motion is toward increasing trac-
tion (U > 0 for ¢/ > 0), the local traction offset ¢?
increases with time. In a uniform traction gradient, the
durotactic velocity U is insensitive to the local trac-
tion offset. Therefore, the increasing traction offset does
not lead to an increasing durotactic speed. However, U
depends also on the monolayer size L, which may grow
or decay according to the sign of the spreading veloc-
ity V. In general, U increases monotonically with L.
Therefore, if L is large enough, the monolayer spreads
and then the center-of-mass velocity U increases during
the evolution as L increases. As a conclusion, monolayer
spreading produces increasingly faster durotaxis.

For small enough L, the monolayer initially contracts
(V' < 0). However, as the tissue moves toward stiffer
regions, it may reach values of traction that are large
enough to change the sign of V' and produce a transition
to spreading. In this case, the evolution of L is non-
monotonic in time, corresponding to initial contraction
followed by spreading. Finally, if L is even smaller, the
durotactic velocity U may not be sufficient to reach
sufficiently large values of traction to reverse the sign
of V' to produce spreading. In this case, the monolayer
contracts (dewets) completely into a three-dimensional
spheroid.

The asymptotic behavior of the system at long times
is thus either indefinite expansion or the collapse. In
both situations, the model is no longer adequate as
additional physics will take over at long times. In the
case of asymptotic spreading, even if the traction forces
do not saturate, other forces such as elastic forces may
eventually slow down and even suppress the spreading
as discussed below. In the case of monolayer retraction
and collapse with . — 0, the quasi-two-dimensional
description breaks down and a more elaborate treat-
ment of the three-dimensional structure of the tissue
becomes necessary.

For a given set of parameters, the tissue width L con-
trols the transitions between the three possible spread-
ing dynamics. For L > L*, the monolayer expands for
all times V(¢) > 0. Here, L* is the critical size for
spreading on uniform substrates (V(L*) = 0), which
we discussed before. An explicit and exact expression
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Fig. 10 Time evolution of a cell monolayer on a traction
gradient. (a) Position of the monolayer edges x4 (t), filling
the area between them to represent the tissue width. (b)
Monolayer width divided by its initial value. (c) Spreading
velocity. (d) Center-of-mass velocity (d). In each plot, curves
from lighter to darker show three different examples with
Lo = 200,215 and 300 wm, which are characteristic of the
three different dynamical regimes. The initial center-of-mass
position is Xo = 0 pm in all three cases, the traction gradi-
ent (; is uniform, the friction is uniform (¢’ = 0), and other
parameter values are those in Table 1. Here, L™ = 276.35
pm and L*¢ &~ 213 pm. The tissue contracts when the nor-
malized L and U decrease and V' < 0, whereas the tissue
expands when L and U increase and V' > 0. The regime with
initial contraction and later expansion presents an almost
constant durotactic velocity U and tissue width L. The cor-
responding edge velocities together with U and V in each
case are shown in Fig. 15

for L* is given by equating Egs. (A.3) and (B.10) to
zero. For intermediate values of L, L™ < L < L*,
the monolayer initially contracts (V' < 0) and later
expands (V' > 0) indefinitely. Finally, for L < L*¢, the
monolayer contracts for all times (V' (¢) < 0). The three
regimes are illustrated in Fig. 10.

4.3 Some generalizations of the model

More general profiles of traction and friction can also be
used for studying the time evolution. As long as the pro-
files are both monotonically increasing, the qualitative
behavior is similar. The three spreading regimes dis-
cussed above, separated by the critical lengths L* and
L*¢, still exist, but their expressions and values change.
For the case of uniform traction gradient ¢/ and no fric-
tion gradient (£’ = 0), given the initial monolayer size
Ly, we predict the critical lengths as a function of the
traction offset, as shown in Fig. 11.

As mentioned above, the two possible asymptotic
behaviors of the monolayer dynamics are not partic-
ularly interesting. This is because the traction pro-
file cannot grow indefinitely, and other physical effects
will either stop the extreme stretching of the cells in
the case of spreading or enable the formation of a
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Fig. 11 Critical lengths defining the three spreading
regimes as a function of traction offset. The solid curve
corresponds to L*, which is the solution of V(L*) = 0
obtained from Eq. (B.10). The dashed curve corresponds
to L*°, which defines the length below which the mono-
layer contracts for all times (V(t) < 0). The region between
both curves defines the intermediate contraction—expansion
regime. Parameter values are given in Table 1

three-dimensional cell aggregate in the case of contrac-
tion. The latter will not be considered here because it
requires essential modifications of the model that are
deferred to future work. However, different effects may
be easily introduced in our current model either to slow
down the indefinite spreading of the cluster size or even
to stop it.

The first possibility is to introduce of an effective
surface tension 7 at the tissue edge, as already men-
tioned in Sect. 2.1. The introduction of this surface ten-
sion can be understood if we interpret our 1d model as
an approximation for a circular monolayer of radius L.
This surface tension slows down the spreading process,
less effectively for larger monolayers. For contracting
monolayers, surface tension accelerates the contraction.

A less trivial but more determinant modification is to
introduce an effective elastic force that prevents exces-
sive cell stretching. This type of force has been intro-
duced at a phenomenological level for single cells to
favor a characteristic cell size. It was used for instance
in Refs. [49,50] in effective 1d models for single-cell
motility. Such an elastic force, together with the Young—
Laplace pressure drop due to surface tension «y, can be
implemented in the following boundary condition for
the stress:

v (L-L7)

o4+ = 7 k Ir . (18)
Here, k is an elastic constant, and L" is a characteristic
size of the cell monolayer, which is proportional to the
number of cells if the cell size is somehow regulated.

For a uniform traction gradient ¢/ and no friction gra-
dient (¢’ = 0), the center-of-mass velocity U turns out
to be independent of both surface tension and elasticity
(see Appendix B). The spreading velocity V', however,
is affected, respectively, giving
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Fig. 12 Spreading velocity V' as a function of tissue size
L for the parameter values in Table 1 but with (a) surface
tension v = 0,20,40,80 kPa-spm (k = 0), and (b) elastic
constant k£ = 0,0.05,0.1,0.2 kPa (L" = 150 wm and v = 0).
Here, to showcase its effects, we take values of v larger than
what is measured experimentally for cell aggregates (Table
1). Respectively, we take k comparable to ;L. ~ o

V(y) = V(y=0) - %23 tanh (A) (19)
Vk) = V(k=0) - kZ ;TLT % tanh ( A) (20)

when either surface tension or elasticity are added. The
surface tension y always decreases the spreading veloc-
ity, while the elastic term contributes with a different
sign depending on whether the monolayer size is larger
or smaller than L", always in the direction of approach-
ing the reference value L” (Fig. 12). Both effects affect
the spreading dynamics, changing for instance the criti-
cal lengths, but the phenomenology and qualitative evo-
lution of the monolayer typically remains unchanged.
However, for large k and L > L" (Fig. 13a), a mono-
layer that starts spreading can change to contraction. In
this case, similar to surface tension (Fig. 13c), elasticity
slows down expansion and accelerates contraction. On
the other hand, if L < L" (Fig. 13b), elasticity accel-
erates expansion and slows down contraction, although
only very large values of k (k > TL. ~ o), presum-
ably not biologically possible, enable a transition from
contraction to expansion.

5 Conclusions

In this work, we have presented a comprehensive study
of collective cell durotaxis based on a continuum model
of cell monolayers as a two-dimensional active fluid on
a gradient of substrate stiffness. The stiffness gradi-
ent affects tissue dynamics through a spatially depen-
dent traction and friction coefficients (;(z) and &(x).
We analytically solve the model in a one-dimensional
setup. The tissue dynamics is characterized by two main
observables: the velocity of the center of mass and the
spreading velocity. For the simple case of a uniform
traction gradient ¢/ and uniform friction (£’ = 0), the
spreading velocity is exactly the same as that for the
uniform substrate case, so the spreading behavior is
independent of the existence of a traction gradient. The
velocity of the center of mass, instead, is finite and pro-
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Fig. 13 Examples of monolayer spreading dynamics to
illustrate the effect of elasticity k (first row) and surface
tension « (second row). In each plot, curves of the same
color show the evolution of the position of the edges x4 (t),
filling the area between them to represent the tissue width.
In the first row, v =0 and L” = 150 pm. In (a), the initial
size is Lo = 215 pm and k = 0,0.03,0.05,0.5 kPa. In (b),
Lo = 100 pm and £ = 0,2,3,5 kPa. The elastic constant
k increases from lighter to darker curves. In (c), k = 0 and
only the Lo = 215 pm case is shown with v = 0,1, 3,10
mN/m, which also increases from lighter to darker green.
Other parameter values are those in Table 1

portional to (/. Therefore, the cell monolayer performs
durotaxis as long as the traction is a monotonically
increasing function of the substrate stiffness. These con-
clusions are locally valid for more general traction pro-
files provided that the gradient does not change signif-
icantly over the monolayer width.

We have analyzed the durotactic dynamics as a func-
tion of physical parameters, for example discussing the
wet and dry limits that result from comparing the
monolayer size L to the hydrodynamic screening length
A. For broad ranges of values and profiles physical
parameters, and for different boundary conditions, we
have characterized the different regimes that result from
combining states of spreading and contraction with
states of interface wetting and dewetting. All of them
give rise to durotactic motion. The durotactic velocity
increases with both the traction gradient ¢/ and the
monolayer size L, as seen in Ref. [13]. Moreover, for
uniform ¢/ and uniform friction, the durotactic veloc-
ity is independent of the contractility ¢ and the trac-
tion offset ¢?. Therefore, the same monolayer placed
at different positions along the stiffness gradient would
have the same durotactic velocity but different spread-
ing dynamics.

However, for non-uniform friction (¢’ # 0), as well as
for traction and friction profiles that saturate with stiff-
ness, the model predicts lower velocities for larger stiff-
ness offsets, thus recovering the results in Ref. [9,13,14].
At high stiffness, parameter saturation makes the sys-
tem asymptotically approach the dynamics on uniform
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substrates, with vanishing durotaxis. The spreading
velocity increases with the traction offset ¢, the mono-
layer size L, and the hydrodynamic length A, but it
decreases with contractility.

In addition to the predictions for local durotaxis and
spreading, we have discussed the temporal evolution of
a monolayer along the stiffness gradient as it changes
its position and size. We have identified three regimes
for the evolution of monolayer size. Large monolayers
spread indefinitely, small monolayers contract indefi-
nitely, and monolayers in an intermediate size range
display a non-monotonic evolution whereby they switch
from contraction to spreading at a finite time. These
three regimes are separated by two critical lengths,
which we determined analytically in some simple cases,
and we illustrated numerically for more general situa-
tions. We also discussed the effect of additional physi-
cal ingredients such as surface tension and elastic forces
that oppose large deformations of the tissue. We have
shown that they typically slow down the expansion and
accelerate the contraction.

Our model is relatively simple and strongly predic-
tive, so it could be tested in experiments and used to
infer parameter values from experimental data. It could
also guide the design of further experiments on collec-
tive durotaxis. Nevertheless, the model has obvious lim-
itations: It is restricted to cell monolayers, and it is
unrealistic in its long-time behavior. Addressing these
limitations would require to include additional physics
such as effects from the three-dimensional, multiple-
layer structure resulting from monolayer contraction,
additional forces to prevent indefinite spreading, and
other ingredients such as cell proliferation. All these
generalizations of the model are deferred to future work.
Finally, it is a question of great interest to elucidate to
what extent a purely mechanical description, with no
need to invoke biochemical signaling, can account for
the observed phenomenology in different forms of col-
lective cell migration.
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Appendices

Appendix A: Uniform substrate

The solution to Eq. (6) for a constant traction ¢; and fric-
tion £ is obtained assuming a normal component of the stress
in the boundaries due to two different effects: an effective
surface tension v (interpreting our 1d model as an approx-
imation for a circular cluster of radius L), and an effective
elastic stiffness k, accounting for a mean-field-type linear
elastic interaction as in Ref. [49] that prevents the tissue
from excessive stretching, being L” the reference length (jus-
tification more extended in Sect. 4.3). Thus,

ox=-p -k

1 ~y L-L"
_217<C L b Lr )

Without loss of generalization, we can take X =0 (U = 0).
The solution for the velocity profile reads

— Ol

(A1)

D) vy L—L"  XNL
v(z) = %{(C_L_ I +)\27L§ coth (L/L.)

oM 9 sinh (z/))
4N — L2 2+ esch (L/Lc))) cosh (L/X)
. AL, < ¢ sinh (2z/L.)

sinh (L/Lc) \ 4\2 — L2 sinh (L/L.)

iLc .
_ )\ZC_ 2 sinh (J:/Lc))

. (A.2)

From here, we can easily write vy = v(L) and v— = v(—L),
giving

A
-+
V4 o

v L-L" ML
({ 7 k I + N2 coth (L/L¢)

_% 2+ cschZ(L/Lc))> tanh (L/\)

and V = vy = —v_. The exact critical L* is such that
Eq. (A.3) = 0. In the relevant limit L. < L and L. < A,

1 0% L-L"
ve  do- {Atanh(L/)\) (chz S Ay )
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(A4)

+Lc (g - (iLc>:| )

and further, in the wet (L < A) and dry (L > \) cases,

we LC L L_LT‘
o m gt o - Lo+ 5|7 o (T2,

2n
(A.5)
dary o L Le [y Sl A (v L1
ol -2+ £] 5 5 (325,
(A.6)

Setting v = 0 and k£ = 0 and neglecting L. in front of X\ or
L, we obtain Egs. (8) and (9), respectively.

Appendix B: Linear traction profile

For a linear traction profile (;(x) (constant (;), constant
friction £ (¢ = 0), and same boundary conditions as
in Appendix A, the solution to Eq. (6) yields

2nsinh (L/Lc) | 432 — L2 sinh(L/Lc)

e a2

401/ 4 Cre™®/> . where
_X "

1A2L, ( 2C(1L-i—(zc>>\t2hi %%/)Lc))

_)\g{gﬁig coth (L/L.)

+g (;(;t}i(fg//\) (f?/\iLLg — Lo — Lcoth (L/LC)>>:|7
« .

Oy = WOA:TA(L//\) - (4’%7#; )

e (% ﬂLt(Zit?hi (LLg/)LC))

_ Agfm; coth (L/L¢)

+<14 c)\(;tli(LLgA) (fz/\jLL? — Lo — Lcoth (L/Lc)))}

X
CIN3Leex 222 L.
2nsinh (L/A)(A2 — L2) \ A2 — L2

—L¢ — Lcoth (L/Lc)>] . (B.7)

The expressions for vy and v_ are directly obtained by sub-
stituting x4+ = X + L and z— = X — L, giving

LCE
A2 — L2

2
pe g N Le [QCcoth (L/Le)

2n N2 — 2
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31
% coth (L L.)
_% (2+ cschQ(L/Lc))) tanh (L/A)
+AL, (% coth (L/Le)
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which is equal to Eq. (A.3) from the uniform case, with
¢ = ¢i(X). Importantly, U does not depend on the traction
offset ¢ = ¢;(X), ¢,y or k. In the relevant limit L. < A and
Lc < La

v~ L |S S L2l 7
2n |2
XNy o L-L" L
o <Z + k- LCQ(X)) tanh <X>
, L
In the wet (L < ) and dry (L > \) cases,
L.
ot & j:% L + g
/ 2 2 2 L v L—-L"
! 2L = (L
ig’@ 3 ) :an(L+ L )
(B.12)
o~ g NG+
ol LA (L=
£20LE| F 5 (L + R ) (B.13)

Setting v = 0 and k = 0, we obtain Egs. (10-13).
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Fig. 14 Edge velocities v_ (blue lines) and v4 (red lines)
in their full expressions (continuous), dry (dotted) and wet
(dashed) limits, for three different values of A\ (vertical
dashed lines) and a constant L, = 200 pm. Equivalent to
the examples giving V' and U in Fig. 5

Appendix C: Edge velocities

Here, we present some examples of plots including both
spreading and center-of-mass velocity, on the one hand, and
edge velocities on the other hand, for better illustration and
understanding of the phenomenology.
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