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Abstract Flows at moderate Reynolds numbers in inertial microfluidics enable high throughput and inertial
focusing of particles and cells with relevance in biomedical applications. In the present work, we consider
a viscosity-stratified three-layer flow in the inertial regime. We investigate the interfacial instability of
a liquid sheet surrounded by a density-matched but more viscous fluid in a channel flow. We use linear
stability analysis based on the Orr–Sommerfeld equation and direct numerical simulations with the lat-
tice Boltzmann method (LBM) to perform an extensive parameter study. Our aim is to contribute to a
controlled droplet production in inertial microfluidics. In the first part, on the linear stability analysis we
show that the growth rate of the fastest growing mode ξ∗ increases with the Reynolds number Re and that
its wavelength λ∗ is always smaller than the channel width w for sufficiently small interfacial tension Γ.
For thin sheets we find the scaling relation ξ∗ ∝ mt2.5

s , where m is viscosity ratio and ts the sheet thick-
ness. In contrast, for thicker sheets ξ∗ decreases with increasing ts or m due to the nearby channel walls.
Examining the eigenvalue spectra, we identify Yih modes at the interface. In the second part on the LBM
simulations, the thin liquid sheet develops two distinct dynamic states: waves traveling along the interface
and breakup into droplets with bullet shape. For smaller flow rates and larger sheet thicknesses, we also
observe ligament formation and the sheet eventually evolves irregularly. Our work gives some indication
how droplet formation can be controlled with a suitable parameter set {λ, ts, m, Γ, Re}.

1 Introduction

Miniaturized flow devices in the form of a lab-on-a-
chip [1] are often employed for processing fluid flows on
the micron scale [2]. Lab-on-a-chip microfluidic appli-
cations are used in cell biology [3], chemical synthesis
[4], and for manipulating multi-component flows [5], to
name but a few. Standard microfluidic devices oper-
ate in the Stokes flow regime, while only recently iner-
tial microfluidic platforms have emerged [6]. Their flows
at moderate Reynolds numbers enable high throughput
and inertial focusing [7,8] in order to develop manipula-
tion techniques for biomedical applications. Motivated
by this, a plethora of research has been carried out on
inertial microfluidics in the last decade [9–13] including
our own studies on the manipulation of soft capsules
and solid particles using the inertial lift force [14–16].

Recently, instabilities of single-phase flow in different
geometries have also been investigated in the inertial
regime with the aim to enhance fluid mixing [17,18].
In this article, we use linear stability analysis and lat-
tice Boltzmann simulations to investigate the viscosity-
driven instability of a multi-component microfluidic
flow at finite Reynolds numbers. We let a liquid sheet
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stream at the center of a microchannel surrounded by
a flowing liquid of larger viscosity and same density
and monitor its instability towards modulated inter-
faces and droplet breakup. Figure 1a shows how the
instability develops along the flow direction in a suf-
ficiently long channel. In contrast, in our theoretical
investigation we will assume periodic boundary condi-
tions. Such three-layer configurations with two inter-
faces are commonly encountered in two-phase microflu-
idic flows [19].

Yih [20] first showed that the fluid–fluid interface
in two-layer Couette and Poiseuille flows with viscos-
ity contrast is unstable irrespective of the value of
the Reynolds number. Later studies concentrated on
interface perturbations with small wavelengths [21,22].
In general, instabilities in viscosity-stratified flows can
occur either due to the direct presence of the fluid
interface but also due to bounding walls. Boomkamp
and Miesen presented an energy budget analysis for
the unstable Yih or interface mode, which is triggered
by the discontinuity of the shear rate at the interface
[23]. Already single-phase flows become unstable at suf-
ficiently large Reynolds numbers due to the presence
of bounding walls which cause destabilizing Reynolds
stresses. The resulting shear or Tollmien–Schlichting
modes also exist in viscosity-stratified flows. Different
energy contributions in the energy budget analysis of
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Fig. 1 a Schematic of how an interfacial instability devel-
ops along a three-layer flow with viscosity contrast resulting
in a steady interfacial wave or the formation of droplets. b
Typical design of a channel inlet to generate a three-layer
flow. The dashed green line indicates, where the channel
walls separating fluid 1 and 2 ends and where the fluid–fluid
interface begins

Boomkamp and Miesen [23] were quantified for two-
layer channel flows by Valluri et al. [24] using linear sta-
bility analysis. Various nonlinear mechanisms governing
the instability of viscosity-stratified flows were reported
by Ó Náraigh et al. [25] using three-dimensional direct
numerical simulations. Recently, Kalogirou et al. pre-
sented the interface dynamics of a thin viscous film
adjacent to a wall in a two-layer channel flow with small
viscosity contrast [26].

In addition to planar configurations, also core-annular
flows in cylindrical channels have been investigated [27–
31]. A recent linear stability analysis of core annular
flows by Sahu [32] showed the existence of an unsta-
ble mode different from Yih and Tollmien–Schlichting
modes, which Mohammadi and Smits [33] had also
reported earlier in their linear stability analysis of two-
layer Couette flows. Redapangu et al. [34] considered a
two-phase flow in an inclined channel with the fluid–
fluid interface of two immiscible fluids normal to the
channel walls. In their numerical simulations they then
studied how one fluid intrudes the other so that a very
irregular three-layer flow arose. For more details on
the instability of viscosity-stratified flows, we refer the
reader to the comprehensive review article by Govin-
darajan and Sahu [35].

Viscosity-stratified flows naturally occur in microflu-
idics when droplets are generated. We review some rele-
vant work. Kurdzinski et al. [36] working in the inertial
regime reported different behavior of the central stream
in a three-layer configuration of miscible fluids. With
increasing Reynolds number they observed a disturbed,
a broken, an oscillating, and a stable central stream. In
their experiments at low to moderate Reynolds num-
bers, Hu and Cubaud [37] studied two-layer flows of

miscible and immiscible fluids. They observed a linear
relation between the wave frequency and the interface
velocity. They could describe the dispersion relation-
ship of the interfacial wave using capillary theory in
the long-wave regime. Sengupta et al. [38] performed
linear stability analysis of miscible fluids with viscosity
contrast in rotationally actuated microfluid platforms
in order to study fluid mixing. Already in 2007, Guillot
et al. [39] investigated the formation of jets and droplets
in core-annular microfluidic flows of immiscible fluids at
low Reynolds numbers. Microfluidic experiments of Hu
and Cubaud [40] addressed the formation of droplets via
dripping and jetting in a quadratic microchannel with
a less viscous center fluid. Moreover, at relatively high
flow rates they only observed waves along the interface.
Most recently, Dinh and Cubaud [41] also studied the
effect of surface tension continuing work in Ref. [40]
but with coaxial microchannels. A detailed review of
various active and passive drop generation techniques
in microfluidics can be found in Ref. [42]. In particular,
external forces are used for active drop generation [43].

In the present work, we investigate the viscosity-
driven instability of the fluid–fluid interface in a three-
layer Poiseuille flow. We perform our work in the frame-
work of inertial microfluidics also with the idea to con-
tribute to controlled droplet generation by tuning fluid
properties and geometry appropriately. We perform a
thorough parameter study by varying sheet thickness,
viscosity ratio, interfacial tension, and flow rate. In par-
ticular, we are also interested how the instability devel-
ops for different wavelengths of the interfacial pertur-
bation as control parameter. In an experimental setting
as sketched in Fig. 1b, an interfacial perturbation with
a defined wavelength can be imposed by applying an
electric field [44] or an oscillating pressure drop [45]
across the inlet of the center fluid. Note, these mech-
anisms are required only for initial perturbation. The
remaining process is solely governed by hydrodynam-
ics. We also note that in this article, we study a two-
dimensional flow configuration, which can be realized
in microchannels with a large aspect ratio.

In the first part of our numerical study we per-
form a linear stability analysis based on the Orr–
Sommerfeld equation and obtain dispersion relations of
the unstable interface mode for various combinations of
sheet thickness, viscosity ratio, interfacial tension, and
Reynolds number. Furthermore, we discuss the struc-
ture of the eigenvalue spectra obtained by solving the
Orr–Sommerfeld equation in the form of a general-
ized eigenvalue problem. In the second part, we present
direct numerical simulations based on the lattice Boltz-
mann method (LBM). Starting from an interfacial per-
turbation of wavelength λ, for thin central sheets we
observe two distinct dynamic states of the unstable
fluid–fluid interface: traveling interfacial waves and gen-
eration of droplets via breakup of the fluid interface.
Instead, for thicker sheets we observe interfacial waves
but also ligament formation, where the sheet ultimately
develops a very irregular shape instead of breaking up
into droplets. Thus our study demonstrates the advan-
tage of thin central sheets for controlled droplet genera-
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Fig. 2 Computational setup for studying the instability of
a liquid sheet. A microfluidic channel of width w and length
λ is considered, where λ is also the wavelength of the inter-
facial perturbation. The liquid sheet of thickness ts, density
ρ, and viscosity μ2 is placed at the center of the microfluidic
channel. The rest of the channel is filled with the fluid of the
same density and viscosity μ1, where μ1 > μ2. The surface
tension of the fluid interface is σ

tion. We also perform direct numerical simulations with
multi-mode perturbations and show that they result in
traveling waves with irregular shape.

The outline of the present article is as follows. In Sect.
2, we present the computational setup and the theory
of the linear stability analysis along with the model-
ing of multi-component flows using the lattice Boltz-
mann method. We also benchmark our solvers for the
linear stability analysis and the lattice Boltzmann sim-
ulations. Section 3 presents the numerical results of the
linear stability analysis and the direct numerical simu-
lations. We conclude with a summary and final remarks
in Sect. 4.

2 Problem setup and numerical
methodology

2.1 Computational domain

The microfluidic setup for the present problem is shown
in Fig. 2. We consider a microfluidic channel with no-
slip boundary condition at the bounding top and bot-
tom walls of the channel and periodic boundary con-
dition in the x-direction. The width and length of the
channel are set to w and λ, respectively. λ is also the
wavelength of the interfacial perturbation to be studied
in the following. To simplify the numerical implemen-
tation of the linear stability analysis, we will only con-
sider perturbations symmetric about the channel cen-
ter with an appropriate symmetry boundary condition
at the channel center. However, direct numerical sim-
ulations are performed in the entire domain with no-
slip boundary condition at the top and bottom channel
walls. This allows us to capture a possible symmetry
breaking of the liquid sheet driven by the instability.

We place the liquid sheet of thickness ts, density ρ,
and viscosity μ2 at the center of the microfluidic chan-
nel and fill the remaining part with another more vis-
cous fluid of viscosity μ1 but matched by density. Solv-
ing the Navier–Stokes equation with constant magni-
tude of the pressure gradient γ and interfacial boundary
conditions

UFluid 1 = UFluid 2

μ1
dU

dy

∣
∣
∣
∣
Fluid 1

= μ2
dU

dy

∣
∣
∣
∣
Fluid 2

, (1)

so that flow velocity U and shear stress are continu-
ous at the two interfaces, we arrive at the flow profile
symmetric about the channel center at y = 0:

U(y) =

⎧

⎪⎪⎨

⎪⎪⎩

γw2

8μ1

(

1 − 4
y2

w2

)

=
γw2

8μ1
U1 Fluid 1

γw2

8μ2
U2 Fluid 2,

(2)

with

U2 =
t2s
w2

+
μ2

μ1

(

1 − t2s
w2

)

− 4
y2

w2
. (3)

Finally, to characterize the strength of the flow pro-
file and the surface tension σ of the interface, when
introducing dimensionless quantities in our equations,
we define the Reynolds number and the inverse capil-
lary number as

Rec =
ρUcw

μ2
and Γc =

σ

μ2Uc
, (4)

where Uc is a characteristic flow velocity. We choose
Uc = γw2/8μ1, which according to Eqs. (2) and (3) is
the maximum flow velocity for ts → 0. We also take
μ2 as the viscosity scale and for later use introduce the
viscosity ratio m = μ1/μ2. From now on, we rescale all
lengths by the channel width w and, in particular, use
the dimensionless parameter ts/w → ts to quantify the
sheet thickness.

In the following we consider two types of perturba-
tions of the fluid–fluid interface. For the single-mode
perturbation the interface is perturbed symmetrically
about the channel center with an initial amplitude of
10−3. For the multi-mode perturbation we superimpose
multiple cosine waves with random phase and ampli-
tude 10−3.

2.2 Computational linear stability analysis

To set up the linear stability analysis, we introduce a
small perturbation of the base solution introduced in
Eq. (2) and linearize the mass continuity equation and
the Navier–Stokes equations in this perturbation. We
name the non-dimensional perturbation for pressure p
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and we use u, v for the x, y components of the pertur-
bations in the velocity flow field. Using the fact that
the base solution satisfies the Navier–Stokes equations,
we arrive at the linearized equations written in non-
dimensional form:

∂un

∂x
+

∂vn

∂y
= 0, (5)

∂un

∂t
+ Un

∂un

∂x
+ vn

∂Un

∂y
= −∂pn

∂x
+

mn

Rec
∇2un, (6)

∂vn

∂t
+ Un

∂vn

∂x
= −∂pn

∂y
+

mn

Rec
∇2vn, (7)

where m1 = m = μ1/μ2 and m2 = 1 refer to fluids 1
and 2, respectively, and Un are the dimensionless flow
profiles introduced in Eqs. (2) and (3).

We now formulate the Orr–Sommerfeld equation for
both fluid phases, which is the basis for the linear sta-
bility analysis. For the velocity components in fluid 1
and 2 we introduce the stream functions ψn such that
the perturbations are written as

un =
∂ψn

∂y
and − vn =

∂ψn

∂x
. (8)

For stream function and pressure perturbation in both
fluids, we make a plane wave ansatz along the channel
axis and varying amplitude along the y direction:

[ψn, pn] = [ϕn(y), gn(y)]eik(x−ct), (9)

where k and c represent the real wave number and
complex wave speed, respectively. The base flow is lin-
early unstable if growth rate ξ = Im(kc) is positive.
Upon substituting the ansatz functions in the linearized
Eqs. (6) and (7) and eliminating the pressure gradi-
ent terms, we arrive at the well-known Orr–Sommerfeld
equations for fluids 1 and 2:

(anUn − c)(ϕ′′
n − k2ϕn) − anU ′′

nϕn

= − imn

kRec
(ϕ′′′′

n − 2k2ϕ′
n + k4ϕn), (10)

where a1 = 1 and a2 = m = μ1/μ2.
The linear stability analysis of the present problem

requires the solution of Eq. (10) along with the following
boundary conditions:

• No-slip boundary condition at the walls at y =
±1/2:

ϕ1 = ϕ′
1 = 0, (11)

• Symmetry boundary condition at y = 0 for sym-
metric perturbations about the channel center:

ϕ2 = ϕ′′
2 = 0, (12)

• The continuity of u at both interfaces:

ϕ′
1 +

ϕ1U
′
1

c − U1
= ϕ′

2 +
ϕ2mU ′

2

c − mU2
, (13)

• The continuity of v at both interfaces:

ϕ1 = ϕ2, (14)

• The continuity of shear stress at both interfaces:

m
[

ϕ′′
1 + k2ϕ1

]

= ϕ′′
2 + k2ϕ2, (15)

• The continuity of normal stress at both interfaces:

ikRec(U1ϕ
′
1 − mU2ϕ

′
2) − m(ϕ′′′

1 − 3k2ϕ′
1)

+(ϕ′′′
2 − 3k2ϕ′

2) − ikRec(U ′
1ϕ1 − mU ′

2ϕ2)

=
ik3Γc

mU ′
2 − U ′

1

(ϕ′
1 − ϕ′

2) + ikcRec(ϕ′
1 − ϕ′

2).

(16)

In the present work, we employ the Chebyshev collo-
cation method [46,47] to obtain a numerical solution of
the Orr–Sommerfeld equation. In the Chebyshev collo-
cation method ϕn(y) is approximated as

ϕn(y) =
Nn∑

i=0

an
i Tn

i (ηn), (17)

where Tn
i (ηn) = cos(i cos−1(ηn)) is the ith Chebyshev

polynomial of the first kind. The application of the
Chebyshev collocation method requires a linear trans-
formation of the global y-coordinate (see Fig. 2) into
local coordinates η1, η2 of fluids 1 and 2 such that
η1, η2 ∈ [−1, 1]:

η1 =
−4|y| + ts + 1

ts − 1
and η2 =

4|y|
ts

− 1. (18)

Derivatives of ϕn(y) needed in Eqs. (10)–(16) are
obtained by differentiating Eq. (17) and using the linear
transformation. Once the number of collocation points
N1 and N2 are fixed, the local coordinates of Nn − 3
interior collocation points are

ηn = cos
(

πj

Nn − 2

)

, where j = [1, . . . , Nn − 3].

(19)

Now, we evaluate the Orr–Sommerfeld equation at
the interior collocation points in the liquid sheet and the
surrounding fluid using the trial solution of Eq. (17) and
obtain N1+N2−6 equations with N1+N2+2 unknowns.
The system of equations is closed by introducing the
eight boundary conditions of Eqs. (11)–(16). Finally,

123



Eur. Phys. J. E (2021) 44 :144 Page 5 of 19 144

the entire problem can be presented in the form of a
generalized eigenvalue problem:

[A]Φ = −ikc[B]Φ, (20)

where [A] and [B] are complex square matrices of
dimension N1 + N2 + 2 and Φ is a vector of the same
dimension. In the present work, we use the eigenvalue
solver provided by Matlab� to obtain the solution of
Eq. (20).

2.3 Lattice Boltzmann method for multi-component
flows

Direct numerical simulations of multi-component flows
[48] require the solution of the mass and momen-
tum conservation laws in each fluid component. More-
over, one also needs to trace the temporal evolution of
the interface separating different fluid components. We
start with the latter and then address lattice Boltzmann
simulations of the fluid flow.

2.3.1 Interface dynamics in lattice Boltzmann
simulations

Several techniques exist to access the time evolution
of interfaces. On the one hand, they include track-
ing methods based on Lagrangian coordinates such as
front tracking [49] and Lagrangian–Eulerian methods
[50]. On the other hand, there also exist capturing
methods based on Eulerian coordinates such as the
volume-of-fluid [51], the diffuse [52] or sharp [53] inter-
face level-set, and the phase-field [54] method. Interface
capturing methods employ a scalar field to distinguish
between two fluid components and have the inherent
capability to realize the breakup of the fluid–fluid inter-
face. In the present work, we implement the phase-field
model based on the conservative Allen–Cahn equation
(CACE):

∂φ

∂t
+ ∇ · (φû)

= ∇ ·
[

M

(

∇φ − 1 − 4(φ − 0.5)2

W

∇φ

|∇φ|

)]

,

(21)

where φ ∈ [0, 1] is the phase-field variable and φ = 0
and 1 characterize the two pure fluid components. Fur-
thermore, û is the fluid velocity field, M a mobility, and
W quantifies the thickness of the fluid–fluid interface.
The Allen–Cahn equation can also be derived from a
generalized advection equation for interfaces [55], which
was then reformulated as the above continuity equation
[56].

In steady state, the phase-field equation (21) is solved
by the hyperbolic tangent profile

φeq(ζ) =
1
2

+
1
2
tanh

(
2ζ

W

)

, (22)

where ζ is the coordinate normal to the fluid–fluid inter-
face [55]. For more details on the implications, which
the hyperbolic tangent profile has in descriptions of the
interface different from the phase-field method, please
refer to Ref. [57].

The Allen–Cahn equation can be discretized using
techniques from traditional computational fluid dynam-
ics (CFD) such as finite-volume and finite-element
methods. However, for the present work the mesoscale
approach based on the lattice-Boltzmann method (LBM)
is more appropriate [58–60]. In the last two decades
the lattice Boltzmann method has emerged as a com-
putationally efficient alternative to traditional CFD
techniques, mainly due to the capability of handling
multi-physics problems involving soft-matter and fluid
flow and the relative ease of parallel implementation
[58,59,61].

We implement the phase-field lattice Boltzmann
equation proposed by Fakhari et al. [62] on a uniform
grid. The method uses the distribution function hi for
the phase-field variable φ, where the index i refers to a
specific lattice-Boltzmann velocity vector ci. The dis-
tribution evolves through successive steps of collision,

ĥi(x, t) = hi(x, t) − hi(x, t) − heq
i (x, t)

τφ + 0.5
, (23)

and advection,

hi(x, t + Δt) = ĥi(x − ci, t), (24)

where the equilibrium phase-field distribution function
obeys

heq
i = φwi

[

1 + 3(û · ci) +
9
2

(û · ci)
2 − 3

2
(û · û)

]

+ 3wiM

[

1 − 4(φ − 0.5)2

W

] [

ci ·
( ∇φ

|∇φ|
)]

.

(25)

τφ in Eq. (23) represents the relaxation time, which
can be related to the mobility as M = τφ/3. Note that
while deriving the Allen–Cahn equation (21) [55,56],
the curvature-driven motion is discarded using the
counter-term approach proposed by Folch et al. [63].
Hence, M is a purely numerical parameter in our cal-
culations. Note, the present LBM simulations are per-
formed using the D2Q9 lattice with 9 discrete veloc-
ity vectors ci = {(0, 0), cyc(±1, 0), (±1,±1)} and cor-
responding weights wi = {4/9, 1/9, 1/36}.

Now, we can calculate the phase-field variable φ since
it is the zeroth moment of the distribution function hi:

φ =
8∑

i=0

hi. (26)

Finally, we compute the gradient of the phase-field vari-
able ∇φ in second-order accuracy using the isotropic
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central difference scheme [62,64,65]:

∇φ =
3
2

8∑

i=1

wici [φ(x + ci, t) − φ(x − ci, t)] . (27)

2.3.2 Lattice Boltzmann model for fluid flow

The lattice Boltzmann equation governing the trans-
port of the distribution function fi for the discrete
velocity vectors ci and in the presence of body forces F
can be written as [66]

∂fi

∂t
+ ci · ∇fi = Λ(f eq

i − fi) + 3Θi [(ci − û) · F] ,

(28)

where Λ is a collision operator to be introduced below
and f eq

i is the discrete Maxwell distribution: f eq
i = ρΘi

with

Θi = wi

[

1 + 3(û · ci) +
9
2

(û · ci)
2 − 3

2
(û · û)

]

.

(29)

In general, the density ρ in f eq
i is calculated as an aver-

age over the two fluid densities ρ1 and ρ2 using the
phase field, ρ = φ(ρ1 − ρ2) + ρ2, where ρ1 > ρ2. How-
ever, in our case we consider density-matched fluids (see
Fig. 2). Finally, the last term in Eq. (28) is a forcing
scheme proposed by He et al. [67].

The body force F can be decomposed into three parts
[66]:

F = ∇(
ρ

3
− p̂) + Fs + Fb, (30)

where p̂ is the pressure in lattice units and Fb is an
external force acting on the fluid. The first term ∇(ρ

3 −
p̂) arises because close to the interface the LB fluid is no
longer ideal. The force Fs is due to the surface tension
of the fluid interface and in the present work following
Ref. [68] is modeled as

Fs = μφ∇φ, (31)

with the chemical potential [69,70]

μφ =
48σ

W
[φ(φ − 0.5)(φ − 1)] − 3σW

2
∇2φ. (32)

An alternative definition of the surface tension force
uses Fs = −φ∇μφ [71,72]. However, Eq. (31) is the
most suitable way for implementing Fs in a computer
code since it avoids the necessity to calculate third-
order derivatives of φ. Following Fakhari et al. [65], we
discretize ∇2φ in Eq. (32) using

∇2φ = 6
8∑

i=1

wi [φ(x + ci, t) − φ(x, t)] , (33)

which is accurate up to second-order.
To improve the numerical stability of our lattice

Boltzmann scheme [62,66,73], we introduce a new dis-
tribution function

gi =
fi

3
+ wi

(

p̂ − ρ

3

)

. (34)

Substituting it in Eq. (28) and using Eq. (30) for the
body force, we obtain the pressure-evolution lattice
Boltzmann equation,

∂gi

∂t
+ ci · ∇gi = Λ(geqi − gi) + Θi(ci − û) · Fg (35)

which looks the same as Eq. (28) but with a modified
body force Fg:

Fg = Fb +
[
(Θi − wi)(ρ1 − ρ2)

3Θi
+ μφ

]

∇φ, (36)

where in our case ρ1 = ρ2 and the respective term in
Fg vanishes.

In the present work, we employ the multiple-relaxa-
tion-time (MRT) collision operator

Λ = M−1ŜM, (37)

where Ŝ is the diagonal relaxation matrix of the follow-
ing form [62]:

Ŝ = diag{1, 1, 1, 1, 1, 1, 1, 1/τ, 1/τ}. (38)

Following the Gram–Schmidt procedure [59], it is trans-
formed using the transformation matrix for the D2Q9
lattice:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (39)

In the relaxation matrix Ŝ, τ = 3ν + 0.5 is the relax-
ation time and ν is the kinematic viscosity. To obtain
the relaxation time within the fluid–fluid interface, we
average the inverse time accordingly using the phase
field φ,

1
τ − 0.5

= φ

(
1

τ1 − 0.5
− 1

τ2 − 0.5

)

+
1

τ2 − 0.5
,

(40)

where τ1 and τ2 are the respective relaxation times of
the two fluid phases.
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As usual, one solves the pressure-evolution lattice
Boltzmann equation (36) in two steps [62,74]:

1. Collision step

ĝi(x, t) = ḡi(x, t) + Λ[ḡeqi (x, t) − ḡi(x, t)]
+ Θi(ci − û) · Fg (41)

where we introduced the pressure distribution func-
tion

ḡi(x, t) = gi(x, t) − 1
2
Ŝ[geqi (x, t) − gi(x, t)]

−1
2
Θi(ci − û) · Fg (42)

and the expression for ḡeqi (x, t) is obtained by replac-
ing gi and ḡi by their respective equilibrium distribu-
tions geqi and ḡeqi in the previous formula. Note, the
transformation of the pressure distribution function
gi(x, t) into ḡi(x, t) using Eq. (42) in the collision
and the following advection steps is performed to
make the scheme explicit in time. [62,65].

2. Advection step

ḡi(x, t + Δt) = ĝi(x − ci, t). (43)

The directional derivative of the phase-field variable,
ci · ∇φ, which appears in the collision step when calcu-
lating (ci − û) ·Fg, is discretized using the mixed finite
difference approximation [62,75],

ci · ∇φ(x, t) =
1
4

[−φ(x − ci, t) − 3φ(x, t)

+ 5φ(x + ci, t) − φ(x + 2ci, t)] .
(44)

The isotropic central difference scheme with the same
accuracy is used for computing the modified equilib-
rium distribution function ḡeqi (x, t):

ci · ∇φ(x, t) =
1
2

[φ(x + ci, t) − φ(x − ci, t)] . (45)

Finally, the macroscopic quantities such as momen-
tum density ρû and pressure p̂ are calculated from the
pressure distribution function ḡi:

ρû = 3

[
8∑

i=0

ḡici +
1
2

(μφ∇φ + Fb)

]

,

p̂ =
8∑

i=0

ḡi +
1
6

(ρ1 − ρ2) (û · ∇φ). (46)

In our lattice Boltzmann simulations, we set the inter-
face width W to 4 lattice units and use a bounce-back
rule to implement a no-slip boundary condition at the
channel walls [59,62].

2.4 Simulation parameters

The instability of the liquid sheet is governed by its
thickness, the wavelength of the interfacial perturba-
tion, viscosity ratio, Reynolds number, and inverse cap-
illary number. In this subsection, we discuss the values
of these parameters, which we take for the linear sta-
bility analysis and direct numerical simulations.

Before proceeding, we introduce the mean flow veloc-
ity Ub in addition to the previously defined velocity
scale Uc = γw2/8μ1. The velocity scale Uc is conve-
nient in theory for making the governing equations non-
dimensional. However, to connect the present numerical
simulations to microfluidic experiments, the mean flow
velocity is more appropriate since it directly determines
the volumetric flow rate Q = Ubw. Thus, for the follow-
ing discussions we use the new Reynolds number Re
and inverse capillary number Γ based on the velocity
scale Ub. They are readily linked to Rec and Γc intro-
duced in Eq. (4) using the flow profiles from Eqs. (2)
and (3) to calculate Ub from the flow rate Q:

Re =
ρUbw

μ2
= Rec

2
3

[

t3s(m − 1) + 1
]

, (47)

Γ =
σ

μ2Ub
= Γc

3
2

[

t3s(m − 1) + 1
]−1

. (48)

We will perform an extensive parameter study to
obtain a complete overview on the behavior of unsta-
ble interfacial perturbations using realistic parameter
values. In the linear stability analysis we vary the
Reynolds number Re from 10 to 500 in steps of 5 and
the reduced wavelength λ of the interfacial perturbation
from 0.01 to 5 in steps of 1.25 × 10−3, quasi continu-
ously. This will enable us to present the color coded
growth rate of an unstable perturbation in the Re–λ
plane for two values of the non-dimensional sheet thick-
ness, ts = 0.1 and 0.13, two viscosity ratios, m = 30 and
100 and four values of the inverse capillary number,
Γ = {10−2, 10−1, 1, 10}. We will also investigate larger
sheet thicknesses ts up to 0.5 at Re = 100 and Γ = 0.01.
In direct numerical simulations on the time evolution
of interfacial single-mode perturbations, we study all
the combinations arising from λ = {0.25, 0.5, 0.75, 1}
for Re = 500, with the same parameter values of Γ, ts,
and m, as mentioned before. The specific choices of the
wavelength λ and Reynolds number Re is based on the
outcome of the linear stability analysis and will become
apparent in the next section. Exemplary simulations are
also carried out at Re=100. Moreover, we use the same
values of ts, m, and Re for direct numerical simulations
of multi-mode perturbations using Γ = 10−2.

In typical inertial microfluidic applications, where
particles are manipulated using the inertial lift force,
the channel Reynolds number varies in the range 1 −
100. [76]. We are well in this range, when we define a
proper Reynolds number. For example, when we con-
centrate on the thin liquid sheet, we need to replace
in Eq. (47) the channel width w by the sheet thick-
ness ts. Or to describe the outer fluid using the higher
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viscosity μ1 is more appropriate. An alternative would
be to replace the viscosity μ2 by averaging the viscos-
ity over the whole channel cross section with the two
fluid components, which then gives the Reynolds num-
ber Re[ts(m − 1) + 1]m−1. In the present setup for all
the possible combinations of Re, ts, and m this multi-
component Reynolds number is below 100.

In experiments one of the possible ways to realize
the setup shown in Fig. 2 is by appropriately merging
the outlets of three different microchannels containing
the top (fluid 1), middle (fluid 2), and bottom (fluid 1)
layers, as sketched in Fig. 1b. In this case the size of
the microchannel outlet delivering fluid 2 will deter-
mine the sheet thickness ts. The small thickness-to-
width ratio ts chosen in our work is achievable in experi-
ments since microchannels with widths ranging from 16
to 500 μm were employed in experiments [77,78]. Fur-
thermore, the viscosity ratio m can roughly range from
1 to 1000, which justifies our choice of m = 30 and
100. For example, pure water (μ = 1 cP) and different
silicone oils (μ = 9.3, 97, and 971 cP) cover a range of
the viscosity ratio from ca. 10 to 1000 [79]. This makes
our choice of high viscosity ratios realistic. Finally, in
microfluidic experiments at Re � 1 the inverse capil-
lary number Γ can assume values of order 1 or larger,
e.g., by choosing ethanol and silicone oil with m = 45
and σ = 0.65 mN/m [40]. In an inertial microfluidic
setup, the bulk velocity Ub is larger and inverse capil-
lary numbers, Γ ∝ U−1

b , below one are feasible. Hence,
also the range of Γ in the present work is justified.

2.5 Validation and grid convergence

To validate our solver for the linear stability analysis,
we consider a two-layer flow with just one interface in a
channel of height 1, where the bottom layer has viscos-
ity μ1 and thickness h. The viscosity of the less viscous
top layer is μ2. Note, this problem can be transformed
into our original problem (see Fig. 2) by replacing the
no-slip boundary condition with the symmetry bound-
ary condition at the top domain boundary. We address
two cases with {Re, h,m,Γ} = {500, 0.15, e = 2.718, 0}
and {50, 0.3, 30, 0.01}. In both cases, we use 51 colloca-
tion points in each fluid layer. The dispersion curves,
growth rate ξ versus wave number k, obtained from
our solver for both cases are plotted in Fig. 3 along
with the dispersion curve reported by Sahu and Govin-
darajan [80] for the first case and the fastest growing
mode from Valluri et al. [81] for the second case. It is
evident from Fig. 3 that our results are in very good
agreement with published works. In particular, our dis-
persion curve and the one from Ref. [80] lie exactly on
top of each other.

We now focus our attention on the validation and grid
convergence of the present lattice-Boltzmann solver for
the setup shown in Fig. 2. We select two sets of param-
eters: {λ,Re, ts,m,Γ} = {0.5, 500, 0.13, 100, 0.01} and
{0.5, 500, 0.1, 30, 0.01}. In each case we compare the
time evolution of the amplitude of the unstable mode
obtained from lattice Boltzmann simulations with the

Fig. 3 Validation of the dispersion curves, growth rate ξ
versus wave number k, with published results on the insta-
bility in two-layer flows

result of the linear stability analysis using 51 colloca-
tion points in each fluid component. For lattice Boltz-
mann simulations we employ four grid resolutions: N =
128, 256, 512, and 1024, where N is the number of grid
points across the channel width.

As shown in Fig. 4, the linear stability analysis and
lattice Boltzmann simulations with N = 512 and 1024
produce nearly identical results for the early growth of
the interface disturbance. In the first case [see Fig. 4a],
lattice Boltzmann simulations suggest that the pertur-
bation grows initially and then reaches a plateau. In
contrast, in the second case [see Fig. 4b] we observe the
breakup of the liquid sheet. Finally, we conclude that
the grid resolution of N = 512 is good enough to cap-
ture the interfacial instability in the present problem
using lattice Boltzmann simulations.

3 Results and discussion

We begin with the results obtained from the linear sta-
bility analysis for the perturbed liquid sheet. Based
on our findings, we then present results from lattice
Boltzmann simulations for specific cases with single and
multi-mode perturbations.

3.1 Linear stability analysis

3.1.1 Parameter study of the interfacial mode

We first look at how our material parameters influence
the instability of the liquid sheet when symmetric per-
turbations with wavelength λ are applied at both inter-
faces. For this we performed an extensive parameter
study and plot in Fig. 5 the color-coded growth rate
ξ in the Re–λ plane for specific parameter combina-
tions of the sheet thickness ts, viscosity ratio m, and
inverse capillary number Γ. Stable perturbations are
indicated by white regions. We find that for all Re–λ
combinations, perturbations are unstable for flows with
relatively weak interfacial tension [see Fig. 5(a1)–(a4)],
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(b)

(a)

Fig. 4 Time evolution of the amplitude of an unstable
interface mode determined with the linear stability analysis
and lattice Boltzmann simulations. N indicates the number
of grid points across the channel width in lattice Boltzmann
simulations

while stable modes at small λ appear in the columns
2-4, where Γ is larger. Interestingly, in all cases except
when larger white regions with stable modes exist, the
wavelength associated with the fastest growing mode
is always below the channel width, which is one in our
reduced units. Moreover, the growth rate of the fastest
growing mode always increases with the Reynolds num-
ber. The growth rate strongly depends on the wave-
length for values smaller than the channel width. For
wavelengths larger than the channel width, it reaches a
plateau for constant Re.

Increasing the viscosity ratio m or the sheet thickness
ts, makes the fluid–fluid interface clearly more unsta-
ble, which can be qualitatively described as ξ ∝ matbs
(a, b > 0). This shows that the present interfacial insta-
bility is strongly governed by the viscosity contrast.
Most notably, increasing the sheet thickness from 0.1 to
0.13 seems to be a small variation, but it has a signifi-
cant effect on the growth rate, as rows 3 and 4 in Fig. 5
show. The observed dependence is made more quan-
titative upon rescaling the growth rate of the fastest

growing mode, ξ∗ → ξ∗/mt2.5
s . Values of exponents a

and b in the scaling law are obtained based on the best
fit. The rescaled values plotted versus Re nicely fall on
a master curve for the same Γ = 0.01 and Re up to ca.
200 (see Fig. 6). The master curve is represented by a
cubic polynomial fit and shown as a dashed line. While
the curve for ts = 0.13 and m = 100 strongly deviates
from the master curve beyond Re ≈ 200, the curves for
the other parameters still roughly follow it. In particu-
lar, the rescaling with t2.5

s demonstrates the sensitivity
of the most unstable mode on the sheet thickness.

We now focus our attention on investigating the
instability over an extensive range of sheet thickness
and viscosity ratio keeping Reynolds and inverses cap-
illary numbers fixed. In order to study sheet thicknesses
up to values of 0.5 relevant in microfluidic devices,
we choose Re = 100 which keeps the relevant multi-
component Reynolds number (see discussion in Sect.
2.4) below 100. In Fig. 7, we plot the color-coded growth
rate of the fastest growing mode ξ∗ in the m–ts plane.
Interestingly, in contrast to what we observed so far
that with increasing ts the instability of the interface
becomes stronger, we now identify a critical sheet thick-
ness t∗s beyond which the growth rate decreases. We
speculate that this is due to interactions with the chan-
nel walls. The critical sheet thickness for different vis-
cosity ratios is marked using filled circles in Fig. 7 and
described by the fit curve t∗s = 0.7m−0.2675 (solid black
line). It quantifies the slow decrease of ts with increas-
ing m.

To explore the large range of sheet thicknesses fur-
ther, we plot in Fig. 8 the wavelength of the fastest
growing mode λ∗ versus ts for viscosity ratios m = 50
and 100. While for small ts below the critical thick-
ness, the wavelength increases noticeably and roughly
linearly, its variation above t∗s is much weaker. Simi-
lar trends are observed for the other viscosity ratios.
Secondly, in Fig. 6 we showed that the growth rate ξ∗
of the fastest growing mode scales with mt2.5

s up to
Re ≈ 200. In Fig. 9, we plot ξ∗/m versus ts for the full
range from 0.1 to 0.5 for several m values. On the left
of the maximum of ξ∗/m, i.e., for small ts, we confirm
the scaling, while beyond the maximum it is no longer
valid. In Fig. 9, we see that the scaling law starts to
deviate as the sheet thickness approaches the critical
value. For a fixed viscosity ratio, the value of the crit-
ical sheet thickness decreases with the increase in the
Reynolds number (not shown here), which results in
the early deviation of the scaling law at higher values
of Re. This can be the possible cause for the departure
of ts = 0.13 m = 100 curve beyond Re=200 in Fig. 6.

3.1.2 Exemplary eigenvalue spectra

So far we have concentrated on the unstable interface
mode. For sufficiently small reduced surface tension Γ
it always occurs for a nonzero viscosity contrast, i.e.,
for m �= 1 [20,23]. Now, we present the full eigenvalue
spectrum of modes, which we obtain for a given wave-
length λ, when solving the Orr–Sommerfeld equations
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Fig. 5 Color-coded growth rate ξ in the Re–λ plane for different values of the sheet thickness ts, viscosity ratio m, and
inverse capillary number Γ. Regions of stable modes with negative ξ are marked in white

(10) in the form of the generalized eigenvalue problem
of Eq. (20). For the parameters Re = 500, ts = 0.13,
m = 100, and Γ = 0.01 (bottom left of Fig. 5), we
choose two wavelengths: λ = 0.25, which is close to the
fastest growing mode, and λ = 2.5, which is less unsta-
ble. Figure 10 represents the complex wave speed of
the perturbation modes introduced in Eq. (9), where
Im(c) = ξ/k with k = 2π/λ is proportional to the
growth rate and Re(c) is the wave velocity.

In both cases, we observe only one unstable mode
[red dot with positive Im(c)], which clearly belongs to
the interface becoming unstable. All the other modes
are stable [blue dots with negative Im(c)]. For λ = 0.25

and small |Im(c)|, we identify A and P branches, which
are reminiscent of the eigenvalue spectrum observed in
the single-phase channel flow of a Newtonian fluid [47].
They form the typical upper left and upper right part of
a Y-shaped structure in the eigenvalue spectrum called
Tollmien–Schlichting modes and center modes, respec-
tively. The modes travel with the respective speeds
Re(c)/U0 → 0 and Re(c)/U0 → 1. As expected, for
stable Poiseuille flow they are also stable.

The unstable interface mode is called Yih mode,
named after the scientist who first described these
modes quantitatively also in a Poiseuille flow with vis-
cosity contrast [20,23]. For λ = 0.25, the wave speed is
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Fig. 6 Master curve of the growth rate of the fastest grow-
ing mode ξ∗ in units of mt2.5

s plotted versus Re for weak
interfacial tension Γ = 0.01 and several combinations of m
and ts. Note, the master curve fits well until ca. Re = 200

Fig. 7 Variation of the growth rate of the fastest growing
mode ξ∗ in the m–ts parameter space at Reynolds number
Re = 100 and inverse capillary number Γ = 0.01. Filled
circles represent the critical thickness t∗

s at which the growth
rate ξ∗ is maximal for a fixed viscosity ratio m. The solid
black line is a power-law fit for the critical thickness: t∗

s =
0.7m−0.2675
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Fig. 8 Wavelength of the fastest growing mode λ∗ plotted
versus the sheet thickness ts for viscosity ratios m = 50 and
100 at Reynolds number Re = 100 and inverse capillary
number Γ = 0.01
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Fig. 9 Rescaled growth rate of the fastest growing mode
ξ∗/m plotted versus ts for different m. Dashed line: Scaling
law ξ∗/m ∝ t2.5

s
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Fig. 10 Eigenvalue spectra representing the complex wave
speed c of flow perturbations for a λ = 0.25 and b λ =
2.5. The imaginary part Im(c) = ξ/k is proportional to the
growth rate, while Re(c) is the wave speed, both given in
units of centerline velocity U0. The remaining parameters
are Re = 500, ts = 0.13, m = 100, and Γ = 0.01

close to the flow velocity of the interface, thus in the
co-moving frame of the interface, the perturbation wave
is static and only the amplitude grows. This changes,
when we look at the wavelength λ = 2.5, larger than
the channel width. First of all, in the stable modes we
do not observe A and P branches. Instead, we recognize
two vertical branches: one with wave speed very close to
the interface velocity and another branch with a larger
wave speed. Interestingly, the unstable interface mode
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has a wave speed close to the centerline velocity U0.
Hence, in a co-moving frame of the fluid–fluid interface,
the wave is traveling with growing amplitude.

3.1.3 Energy-budget analysis

The unstable interface mode reveals itself also when
looking at the energy budget of the disturbance flow
[23,24,82]. Here, one considers the kinetic energy of
the disturbance flow, which in our case amounts to
E(t) =

∫

V

(u2
n + v2

n)/2 dV , where V = λ × w is the total

volume. The base flow solution of the Navier–Stokes
equations is stable if the disturbance kinetic energy
E(t) > 0 converges to zero with time, meaning the
base flow is restored. To decide on this, one calculates
the time derivative dE/dt from the Navier–Stokes equa-
tions as outlined in “Appendix A.” For a flow geometry
with interfaces such as the three-layer flow, one obtains

dE(t)
dt

= qdis + qRey + qnor + qtan (49)

with four energy rates on the RHS associated with dif-
ferent mechanisms. The first two terms already exist
in a single-phase flow. The rate qdis < 0 denotes
the typical energy dissipation through viscous friction,
while qRey results from the convective derivative in
the Navier–Stokes equations. It couples Reynolds shear
stresses to the base flow and when positive signals
the presence of an unstable Tollmien–Schlichting mode.
The third and the fourth terms occur when applying the
continuity of normal and tangential shear stresses at the
fluid interface, respectively. In the energy-budget analy-
sis, the destabilizing disturbance mode can be assigned
to one of the four energy rates driving the instability.

To illustrate the energy budget analysis, we apply it
to the unstable mode identified in Fig. 10a. The stream
function ϕ is illustrated in the inset of Fig. 11. Since the
x component of the velocity derives from the derivative
of the stream function, un ∝ dϕn/dy, one realizes that
the disturbance flow is concentrated at the interface.
When calculating the different energy rates, we skipped
the exponential time factor. Clearly, dissipation due to
viscous friction (qdis) is overcome by energy qtan fed
into the system by the tangential stresses at the inter-
face due to the viscosity contrast. Thus the interface
mode is unstable. Negligible contributions arise from
qRey > 0 and qnor < 0. From a mathematical view, the
destabilizing energy rate qtan is connected to the dis-
continuity in un ∝ dϕn/dy (see “Appendix A”), which
has its origin in the viscosity contrast.

3.1.4 Fluid–fluid interface close to the channel wall

As a side remark, we consider the case where the thin
liquid sheet is put in contact with one of the channel
walls. Thus the current three-layer system transforms
into a two-layer configuration with only one interface.
We can also treat this geometry with our formalism by
changing the relevant boundary condition. Figure 12

q
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Fig. 11 Values of the four energy rates (per channel length
λ) from the energy-budget equation (A1) calculated for an
unstable interface mode, which was determined in the linear
stability analysis. Inset: Real and imaginary parts of the
eigenfunction in the vicinity of the fluid–fluid interface at
y = 0.065. The remaining parameters are λ = 0.25, Re =
500, ts = 0.13, m = 100, and Γ = 0.01
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Fig. 12 Comparison of the dispersion curves, growth rate
ξ versus wavelength λ, for two- and three-layer configura-
tions. Other parameters are indicated in the plot

compares the growth rates as a function of λ for the
exemplary case of Re = 500, ts = 0.1, m = 100, and
Γ = 0.01. While the three-layer configuration shows
the behavior as discussed before, we observe that the
presence of the wall close to the interface makes the
interface mode stable for wavelengths smaller than the
channel width, but even at larger λ the growth rate
is considerably smaller. Interested readers may refer to
Ref. [21] for further discussion on the neutral stability
of interface modes in two-layer configurations.

3.2 Direct numerical simulations

In this subsection, we present results obtained from
direct numerical simulations (DNS) using the lattice
Boltzmann method. We carry out DNS for two differ-
ent values of the Reynolds number: Re = 100 and 500.
We begin with results from DNS of flows with Re = 500
since, compared to Re = 100, it requires less computa-
tional time to obtain conclusive results for the small
sheet thicknesses ts = 0.1 and 0.13. In a second step,
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Fig. 13 The liquid sheet
is either stable against an
imposed perturbation of
wavelength λ, develops
traveling waves along the
two interfaces, or breaks
up into droplets depending
on inverse capillary
number Γ, sheet thickness
ts, and viscosity ratio m.
The Reynolds number is
Re = 500 0.25 0.50 0.75 1.00

10-2

10-1

100

101

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

based on the results for Re = 500, we simulate flows at
Re = 100 for specific values of the perturbation wave-
length and interfacial tension.

3.2.1 Flows with Re = 500

First, we discuss the case of single-mode perturba-
tions and then proceed to multi-mode perturbations.
The results of the linear stability analysis in Fig. 5
indicated strong variations of the growth rate ξ for
λ ≤ 1. In the following, we thus consider the wave-
lengths λ = {0.25, 0.5, 0.75, 1} and use the same com-
binations of ts, m, and Γ as in Fig. 5.

In Fig. 13, we summarize the dynamic states into
which the perturbed interface evolves in the λ–Γ plane.
Only for the smaller viscosity ratio and the highest
reduced surface tension Γ, the interface is stable in
agreement with the findings in Fig. 5. Unstable per-
turbations evolve into traveling waves in the range of
smaller wavelengths, which extends to larger values if
Γ is increased. In contrast, at larger wavelengths the
interface breaks up and droplets form. We now proceed
to a detailed discussion of the two dynamic states of
propagating interface waves and droplet formation.

Figure 14 shows examples of steady-state wave pat-
terns, which we observe for different λ and Γ. For flows
with weak interfacial tension (Γ = 0.01) and small
wavelength a sawtooth-shaped fluid interface develops.
For Γ = 1 and λ = 0.5, we obtain an interface shaped
like an hourglass, reminiscent of experimental results
reported by d’Olce et al. [83] for core annular flows of
two miscible fluids with a viscosity contrast. At our
maximal value of the interfacial tension (Γ = 10) and
perturbation wavelength equal to the channel width
(λ = 1), we see two liquid blobs connected by a thin
liquid thread [see Fig. 14c and video V1]. For all these
cases the interface patterns preserve the wavelength of
the initial perturbation. However, we observe an excep-
tion for parameters ts = 0.1, m = 100, and Γ = 10.
For this particular setting, the initial perturbation ulti-
mately develops into a secondary disturbance with half
the initial wavelength λ = 1 (see video V2). At interme-
diate times we observe two weak peaks as shown in the
top inset of Fig. 15. They oscillate relative to each other
in the stream-wise and cross-stream directions. Upon
plotting their relative coordinates in both directions,
we obtain an inward spiral, as shown in the main plot.

Fig. 14 Steady-state wave patterns obtained from lattice
Boltzmann simulations starting with an interfacial distur-
bance of wavelength λ at different inverse capillary numbers
Γ. The remaining parameters are Re = 500, ts = 0.1, and
m = 30

In steady state (blue dot in Fig. 15), both peaks attain
the same lateral position and a distance of 0.5 along the
flow. Thus, the initial perturbation has developed into a
an interfacial wave with half the initial wavelength (see
the bottom inset in Fig. 15). Finally, in Fig. 16 we show
the disturbance velocity field in the y-direction for the
wave pattern in Fig. 14c. Since the blob moves to the
right, it has to shuffle fluid from the front to the back.
The cross-stream motion of the viscous fluid in Fig. 16
can potentially be utilized to enhance heat transfer in
liquid-liquid microfluidic flows [84].

In the third dynamic state, the unstable interface
breaks up and develops into bullet-shaped droplets of
nearly the same aspect ratio around 2. We show this
in Fig. 17 for specific parameters but observe similar
behavior for other parameter values. However, the tran-
sient dynamics towards the final droplet can differ, as
we illustrate in Fig. 18 where we show different stages
of droplet generation for three representative cases. For
λ = 0.5 the breakup of the interface occurs due to the
merger of the approaching wave crests. In contrast, for
λ = 1 and m = 30, a thin liquid thread of less vis-
cous fluid breaks into multiple satellite droplets, which
then coalesce with the primary droplet (see video V3).
At the higher viscosity ratio of m = 100, we initially
see an additional modulation with half the prescribed
wavelength similar to what we described in Fig. 15.
Instead of observing satellite droplets, we now obtain
a droplet with a slender tail [see Fig. 18(d3)]. The tail
eventually breaks and merges with the droplet behind
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Fig. 15 An interfacial perturbation of wavelength λ = 1
develops a leading and lagging peak. The differences of their
position coordinates along the stream-wise and the cross-
stream direction are plotted in the x–y plane. Insets: Snap-
shots of the fluid–fluid interface at the start (top inset) and
end (bottom inset) of the spiral

Fig. 16 Color-coded representation of the y component of
the disturbance velocity field in the fluid surrounding the
liquid sheet at Re = 500, ts = 0.1, m = 30, and Γ = 10

it. During this process, the entrapment of a viscous
droplet in the less viscous primary droplet occurs, as
shown in Fig. 18(e3). Eventually, the entrapped droplet
escapes from the tip of the primary droplet. Interest-
ingly, in all three cases the bullet-shaped form of the
droplets always develops at approximately the same
time t ≈ 20 (see Fig. 18) irrespective of their timing of
sheet breakup. In Fig. 19, we summarize the breakup
times tb of the liquid sheet for different parameter sets
with relatively weak interfacial tension (Γ = 0.01).
At constant λ we observe that an increase in either
sheet thickness ts or viscosity ratio m leads to an ear-
lier breakup, which coincides with the increase in the
growth rate of the interfacial mode. We do not see any
substantial change of this behavior at higher values of
Γ. The viscosity-driven breakup of the liquid sheet in
the present work can be utilized for a controlled droplet
production in inertial microfluidics. At constant Re,
droplet size and breakup time can be adjusted by select-
ing an appropriate parameter set {λ, ts,m,Γ}.

In the end we briefly discuss a generic case where
we disturb the liquid sheet with a multi-mode pertur-

X

Y

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.2

-0.1

0

0.1

0.2
λ=1

λ=0.50

λ=0.75

flow

Fig. 17 Final droplet shape after the breakup of the liquid
sheet resulting from different perturbation wavelengths λ at
Re = 500, ts = 0.1, m = 30, and Γ = 0.01

bation. We use the same values of viscosity ratio m
and sheet thickness ts from earlier cases of single-mode
perturbation and set the inverse capillary number to
Γ = 0.01. We choose a channel with length λ = 3 and
width w = 1 and disturb the two interfaces symmetri-
cally with a superposition of 15 planar waves:

15∑

n=1

5 × 10−4cos
(

2πnx

3
+ θn

)

, (50)

where θn is a randomly generated phase. For a represen-
tative case the time evolution of the maximum displace-
ment A(t) of one interface determined in the lattice-
Boltzmann simulations is plotted in Fig. 20 along with
the superposition of the 15 time-evolving modes from
linear stability analysis. The dashed line indicates the
growth rate of the fastest growing mode.

The LSA and DNS curves in Fig. 20 indicate three
different stages of time evolution. In the beginning,
both curves roughly lie on top of each other. The insta-
bility grows more slowly in comparison to the fastest
growing mode (the dashed black line in Fig. 20). But
then it speeds up since small wavelengths become effec-
tive and enhance the growth rate; from Fig. 5 we know
that waves of small wavelengths grow faster than those
with long wavelengths. In particular, in the LSA curve
one recognizes that between t ≈ 0.5 and 0.7 the fastest
growing mode dominates before all the other modes fur-
ther speed up the growth. The time evolution enters
the second stage at t ≈ 0.7, where both curves start to
depart from each other obviously due to nonlinearities,
which only the DNS curve takes into account. Inter-
estingly, after t ≈ 1 both curves grow with the same
rate. In the third and final stage starting at t ≈ 2 the
DNS curve reaches a plateau as indicated in the bot-
tom inset of Fig. 20, while the LSA curve grows further.
The snapshot of the fluid–fluid interface from this stage
shows a sawtooth-like interface profile as observed ear-
lier in single-mode simulations but now the sequence
is irregular (see video V4). We observe similar dynam-
ics for other combinations of the sheet thickness ts and
viscosity ratio m.
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Fig. 18 Influence of the perturbation wavelength λ and viscosity ratio m on the time evolution of the liquid sheet and the
breakup dynamics towards a bullet-shaped droplet at Re = 500 and Γ = 0.01

0.5 0.75 1
0

2.5
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12.5

15

17.5

20

Fig. 19 Interface breakup time tb of the liquid sheet
towards droplet formation for different combinations of the
perturbation wavelength λ, sheet thickness ts, and viscosity
ratio m at Re = 500 with weak interfacial tension

Fig. 20 Time variation of the maximum interface displace-
ment A(t) determined from direct numerical simulations
(DNS) and the dispersion relations of the linear stability
analysis (LSA) when the small multi-mode perturbation of
Eq. (50) is imposed at t = 0. The dashed black line ξ∗ cor-
responds to the fastest growing mode. Bottom inset: Time
evolution of A(t) at later time instances; top inset: snapshot
of the fluid–fluid interface in steady-state
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Fig. 21 Formation of ligaments and enclosure of smaller
droplets in an unstable liquid sheet of critical thickness
t∗
s = 0.28 with perturbation wavelength λ = 1. At later

time instances the mirror symmetry of the sheet breaks.
The other parameters are viscosity ratio m = 30, Re = 100,
and Γ = 0.01

3.2.2 Flows with Re = 100

We further explore here the possibility to generate
droplets, now at a smaller Reynolds number Re = 100.
We concentrate on a sheet thickness set to the criti-
cal value t∗s, where the growth rate is largest, and con-
sider our two viscosity ratios m = 30 and 100. Further-
more, we choose the perturbation wavelength λ = 1 and
Γ = 0.01.

For m = 100 and t∗s = 0.2, only traveling interfa-
cial waves form and the fluid interface does not break.
However, in the second case, for m = 30 and t∗s = 0.28,
the traveling wave develops ligaments close to the wave
crest, as shown in Fig. 21a. Eventually, the ligaments
connect back to the liquid sheet and thereby small
droplets of the more viscous fluid are enclosed in the
sheet [see Fig. 21b]. The formation and reconnection
of ligaments continues while the small droplets get
advected downstream and eventually merge with the
interface, as shown in Fig. 21c (see video V5). This
leads to a small local disturbance at the thinner part of
the sheet [Fig. 21d]. Eventually, the mirror symmetry
of the liquid sheet breaks and the fluid–fluid interface
exhibits an irregular topology [Fig. 21e, f]. A similar
phenomenon of ligament formation and irregular evo-
lution has recently been observed in microfluidic exper-
iments of Hu and Cubaud [40].

Interestingly, for thinner sheets with ts = 0.1 and
{λ,m} = {1, 30} we do observe the formation of a
droplet although the instability is less pronounced com-
pared to the discussed example. This indicates that a
strong growth rate does not guarantee droplet forma-
tion. Instead, it is important that the sheet thickness is
small enough to realize the breakup of the sheet such
that droplets are able to form.

4 Concluding remarks

Lab-on-a-chip devices based on inertial microfluidics
operate in the regime of moderate Reynolds numbers
where fluid flow is still regular. While conventional iner-
tial microfluidic applications manipulate soft capsules
and solid particles using the inertial lift force (see, for
example, Ref. [16]), in this article we focused on multi-
component flows in the inertial regime. Concretely, we
studied the motion of a liquid sheet at the center of a
microchannel surrounded by a flowing liquid of larger
viscosity and monitored its instability towards traveling
interfacial waves and droplet breakup. Such a configura-
tion is ubiquitous in microfluidic applications involving
multi-component flows.

In the first part, we presented dispersion relations
for the interfacial mode of the three-layer configura-
tion. The computational linear stability analysis was
based on the Orr–Sommerfeld equation. We carried out
an extensive parameter study to quantify the effect of
sheet thickness ts, viscosity ratio m, interfacial tension
Γ, and Reynolds number Re on the growth rate. In par-
ticular, we observed that the growth rate of the fastest
growing mode ξ∗ increases with the Reynolds number
Re and that its wavelength λ∗ is always smaller than the
channel width w for sufficiently small inverse capillary
number Γ. Furthermore, we could quantify the depen-
dence of ξ∗ on m and ts by the scaling law ξ∗ ∝ mt2.5

s
in the case of thin sheets, moderate Reynolds numbers,
and at weak interfacial tension. In contrast, for thick
sheets ξ∗ decreases with increasing sheet thickness ts
or viscosity ratio m due to the presence of the channel
walls. Upon examining eigenvalue spectra obtained by
solving the generalized eigenvalue problem of Eq. (20),
we concluded that Yih modes drive the present interfa-
cial instability [20].

In the second part, we narrowed down the range of
material parameters based on the linear stability analy-
sis and presented numerical solutions of the full Navier–
Stokes equations using lattice Boltzmann (LBM) sim-
ulations. At Re = 500 the thin liquid sheet was sta-
ble only for the smaller viscosity ratio and the highest
reduced surface tension Γ. Unstable interfaces either
evolve into traveling waves or for wavelengths λ ≥ 0.5w
they break up and ultimately form droplets when inter-
facial tension is sufficiently small. The droplets eventu-
ally assume a bullet-shaped form. We found that for dif-
ferent perturbation wavelengths λ and viscosity ratios
m the temporal evolution towards the droplet differed
in the observed interface dynamics and the way the
sheet ultimately broke up. However, the droplet for-
mation always ended roughly at the same time. In the
introduction, we briefly explained how the wavelength
of the interfacial perturbation can be controlled in an
experiment.

In practical applications droplet size and breakup
time can be tuned by selecting a suitable parameter set
{λ, ts,m,Γ} at constant Re. In slower flows at Re = 100
and for thicker liquid sheets, we observed the formation
of viscous ligaments at the wave crest, which eventually
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break up into small droplets and ultimately the shape
of the sheet becomes irregular. Thus, we conclude that
controlled droplet formation is better achieved with
thin sheets. Finally, in direct numerical simulations of
multi-mode perturbations we demonstrated how the
interface develops a non-regular shape.

In the present work, we investigated the viscosity-
driven instability of the fluid–fluid interface in the con-
text of inertial microfluidics and demonstrated that
it can be exploited for controlled droplet production.
Such droplets are utilized in food and pharmaceuti-
cal industries [85]. Moreover, microfluidic droplets are
also employed to encapsulate biological cells [86] and as
chemical reactors in lab-on-a-chip devices [87].
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Appendix A: Energy-budget analysis

We consider a volume V filled with multiple fluids separated
by interfaces. We index each fluid component with n and

its rescaled viscosity is mn as in the main text. We start
with the Navier–Stokes equations for the full flow field as
the sum of base and disturbance flow and multiply it with
the disturbance velocity field un

i . Using Gauss theorem, the
incompressibility condition, the no-slip boundary condition
at the surface of V , and in our case also periodic boundary
conditions, one arrives at the budget equation for the kinetic
energy of the disturbance flow field:

dE(t)

dt
= qdis + qRey + qinf. (A1)

Here

E(t) =

∫

V

1

2
(un

i )2dV (A2)

is the kinetic energy of the disturbance flow, where the veloc-
ity field un

i is taken where fluid component n occupies a
region in the volume V . On the right-hand side,

qdis =
2

Re

∫

V

−mnen
ije

n
ijdV (A3)

with the strain-rate tensor

en
ij =

1

2

(
∂un

i

∂xj
+

∂un
j

∂xi

)
, (A4)

and

qRey =

∫

V

−un
i un

j
∂Un

i

∂xj
dV (A5)

with Un
i the velocity components of the base flow. When

applying Gauss theorem, we also arrive at a term from the
fluid interfaces,

qinf =
∑
∀S

∫

S

∑
S±

un
i T n

ijN
n
j dS, (A6)

with the stress tensor

T n
ij = −pnδij +

2mn

Re
en

ij , (A7)

the components Nn
j of the outward unit normal at the sur-

face of fluid component n. The symbols
∑

∀S and
∑

S± ,

respectively, indicate the summation over all interfaces and
the two surfaces of the two fluid components separated by
the interface. The surface term can be further evaluated by
employing conditions for the stress tensor at the interface,
where we index the two fluids by n=1,2. While the tangen-
tial stress is continuous at the interface,

(δij − NiNj)T
1
jkNk = (δij − NiNj)T

2
jkNk, (A8)

the normal stress difference is balance by the Laplace pres-
sure,

NiT
1
ijNj − NiT

2
ijNj = Γκ, (A9)

Here, Γ is the rescaled surface tension as introduced in the
main text and κ the mean curvature.

Now, we can calculate qinf for the interfaces of the three-
layer flow assuming only weakly perturbed interfaces so that
the interface normal approximately points along the y-axis.
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Employing conditions (A8) and (A9) for the tangential and
normal stresses, one obtains the final form qinf = qnor + qtan
with

qnor =
∑
both

interfaces

∫

S

Γ

Re
κu2dS (A10)

and

qtan =

∫

S−

(u1
1 − u2

1)τxydS +

∫

S+

(u2
1 − u1

1)τxydS, (A11)

where τxy = τ1
xy = τ2

xy with τn
xy = mn

Re

(
∂un

1
∂y

+
∂un

2
∂x

)
and

S± indicate the interfaces at y = ±ts/2. We also used the
continuity of the y component of the velocity, u2 = u1

2 = u2
2,

while the x components are different due to the viscosity
contrast.
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