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Abstract

Abstract 'We discuss recent advances in developing a mode-coupling theory of the glass transition (MCT)
of two-dimensional systems of active Brownian particles (ABPs). The theory describes the structural
relaxation close to the active glass in terms of transient dynamical density correlation functions. We
summarize the equations of motion that have been derived for the collective density-fluctuation dynamics
and those for the tagged-particle motion. The latter allow to study the dynamics of both passive and
active tracers in both passive and active host systems. In the limit of small wave numbers, they give rise to
equations of motion describing the mean-squared displacements (MSDs) of these tracers and hence the long-
time diffusion coefficients as a transport coefficient quantifying long-range tracer motion. We specifically
discuss the case of a single ABP tracer in a glass-forming passive host suspension, a case that has recently
been studied in experiments on colloidal Janus particles. We employ event-driven Brownian dynamics
(ED-BD) computer simulations to test the ABP-MCT and find good agreement between the two for the
MSD, provided that known errors in MCT already for the passive system (i.e., an overestimation of the
glassiness of the system) are accounted for by an empirical mapping of packing fractions and host-system
self-propulsion forces. The ED-BD simulation results also compare well to experimental data, although a
peculiar non-monotonic mapping of self-propulsion velocities is required. The ABP-MCT predicts a specific
self-propulsion dependence of the Stokes—Einstein relation between the long-time diffusion coefficient and
the host-system viscosity that matches well the results from simulation. An application of ABP-MCT
within the integration-through transients framework to calculate the density-renormalized effective swim
velocity of the interacting ABP agrees qualitatively with the ED-BD simulation data at densities close to
the glass transition and quantitatively for the full density range only after the mapping of packing fractions

employed for the passive system.

1 Introduction

The study of transport phenomena far from equilibrium
is a current exciting topic in statistical physics. One
class of non-equilibrium systems is provided by living
matter, defined as those biological systems where on the
microscopic level, some mechanism is present to con-
vert energy supplied by some fuel or food into directed
motion. In microswimmer suspensions, these “active”
or “self-propelled” entities are of some pm in size and
are thus subject to both thermal-equilibrium fluctua-
tions that cause Brownian motion, and a motility that
is caused by their non-equilibrium driving forces [1-3].
This alone causes an interesting interplay of dynami-
cal effects; even more intriguing is this interplay in sys-
tems of interacting microswimmers, or in systems where
microswimmers interact with ordinary “passive” Brow-
nian particles.
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Detailed experimental studies of interacting micros-
wimmers are possible in colloidal suspensions of Janus
particles [4-6]. These are generally particles that have
two chemically different sides, such that a specifi-
cally designed interaction with the solvent can trigger
phoretic forces causing motility. A specific example are
colloidal particles coated with a light-absorbing surface
in a suspension where local heating causes reversible
microscale phase separation in the solvent [7,8]. This
model system has been studied extensively [6,9]. It
has also, together with computer simulations, estab-
lished one of the most remarkable effects that appears
in the moderately dense suspension of active particles,
viz. that of motility-induced phase separation (MIPS)
[6,10]. Tt is generally believed that the equilibrium
direct interaction between the particles is hard-sphere
like, and hence, the observation of phase separation (or
cluster formation) in a system with no apparent attrac-
tive interactions is rather striking.

More recently, experimental research has turned to
very dense systems close to dynamical arrest at a glass
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transition and to the interaction of active particles with
viscoelastic surroundings. We refer to a recent review
by Janssen for an excellent overview [11]. Such situa-
tions might be closer to biophysical relevance, because
most bio-relevant active particles tend to move in envi-
ronments that are “crowded.” In particular, in exper-
iment, the motion of a single active Janus particle
in a suspension of passive particles has been studied
through its mean-squared displacement (MSD) [12].
There emerges an interesting sequence of both sub-
diffusive and superdiffusive motion, which signals a
competition between dynamical arrest and persistent
active motion.

Theoretical modeling of microswimmers proceeds via
various model systems, among them that of active
Brownian particle (ABP) [13-19]. In this model, Brow-
nian translational and rotational diffusion is supple-
mented by a fixed self-propulsion velocity that causes
the particles to move persistently with a fixed veloc-
ity in the direction of their (changing) orientation.
Although in the dilute limit, many of the differ-
ent models to implement active motion (such as the
active Ornstein—Uhlenbeck particle (AOUP) model and
related [20-28]) are roughly equivalent [29], they differ
in the treatment of the coupling of orientational motion
to self-propelled translational motion and in the treat-
ment of Brownian to active forces. In particular, it is
not evident whether the effective treatment of persis-
tent motion that is encoded in these models is justified
in very dense systems: it will be once the length scale of
typical swimming motion before a particle loses mem-
ory of its initial orientation is small enough; yet one
easily imagines that in a dense suspension, the small
interparticle distance introduces a length scale that will
interfere in subtle ways with the persistence length.

This rationale prompted us to develop a mode-
coupling theory of the glass transition(MCT) to describe
the approach to dynamical arrest in a dense ABP sys-
tem, starting from the full orientation-resolved equa-
tions of motion. While arguably more complicated
than other approaches, this mode-coupling theory for
active Brownian particles (ABP-MCT) proved capable
of describing states of dynamical arrest that depend on
both the strength and the persistence of self-propelled
motion [30]. More recently, we have extended this the-
ory to include also equations of motion for the tagged-
particle dynamics [31] and, based on that, the MSD of
tracer particles [32]. This includes the case of tracers
of different activity than that of the host system, and
allows a more direct comparison of the theory to exper-
iment, including the prediction of the interplay of sub-
and superdiffusive motion that is not evidently present
in orientation-averaged descriptions.

In the present contribution, we summarize these
recent developments of ABP-MCT, and we provide a
direct comparison of the theory to event-driven Brow-
nian dynamics (ED-BD) computer simulations of ABP
systems. Establishing the link between theory and sim-
ulation, we further extend to compare also the simula-
tions to the experimental data of Ref. [12], to establish
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the extent to which this experimental model system can
be taken as a realization of hard-sphere-like ABP.

A further specific point of ABP-MCT is that it
is based on the integration-through transients (ITT)
approach to the calculation of non-equilibrium trans-
port coefficients in driven systems. Within ITT, one
derives generalized Green—Kubo relations that link
these transport coefficients to specific, microscopi-
cally defined, transient dynamical correlation functions.
Here, the term transient correlation function is taken
to mean those dynamical correlation functions that are
obtained from averages over the equilibrium ensemble,
but where the observables are propagated using the
full non-equilibrium dynamics of the system. MCT-like
approximations to these correlation functions provide
first-principle predictions of the non-equilibrium trans-
port coefficients.

In the case of ABP, the perhaps most interesting
application in the dense system is that of the effective
swim velocity: even though each ABP is supplied with
a fixed self-propulsion velocity vy, on a coarse-grained
level the average motion of the particles is slowed down
due to interactions, to a density-dependent velocity
v(¢) < wo. This quantity is a fundamental quantity
for theories of MIPS [33-36], and in fact ITT is one
of the few systematic approaches to calculate it from
the microscopic equations of motion.

The paper is structured as follows: in Sect. 2.1, we
first outline the ABP-MCT, followed by a derivation of
the ITT expression for the swim velocity in Sect. 2.2,
and by a description of the simulation technique in
Sect. 2.3. Our results for the MSD, the comparison to
the experimental data, and a discussion of the non-
equilibrium long-time active diffusion coefficients are
presented in Sects. 3.1 through 3.3. In Sect. 3.4, we
compare the swim velocities predicted by ITT in com-
bination with ABP-MCT to those obtained from com-
puter simulation, before concluding in Sect. 4.

2 Methods

2.1 Mode-coupling theory

The ABP-MCT for the description of the collective
dynamics in dense ABP systems has been derived in
Ref. [30]. For completeness, we recall the central equa-
tions of that theory.

We consider a system of N ABP in two spatial
dimensions, with positions r; and orientation angle ¢y,
(k=1,...N). The overdamped active-Brownian equa-
tions of motion are then

dry = puFy dt + /2D dWy + von(pr) dt, (la)
der = V2D, dW . (1b)
The interaction forces Fj are approximated to encode

hard-sphere interactions, i.e., no two particles are
allowed to overlap, and there is no direct interaction



Eur. Phys. J. E (2021) 44:27

among them else. Importantly, they are assumed to be
spherically symmetric. The mobility up = SD; is cho-
sen to obey detailed balance for the equilibrium pas-
sive dynamics (where vy = 0, and § = 1/kT is the
inverse temperature). Here, D; and D, are the trans-
lational and rotational diffusion coefficients, and dWy,
and dW;” are component-wise independent Wiener pro-
cesses that drive the diffusive motion. We fix units of
length and time by the typical particle diameter o and

2
g /‘l)t-

The active driving acts along the particle’s orien-
tation vector n(pr) = (cospy,sinp,)? and is pro-

portional to a self-propulsion velocity vy that is, in
this model, fixed per particle. The activity of the
ABP is thus controlled by two parameters, the dimen-
sionless self-propulsion velocity vgo/D; and its persis-
tence time D;/o?D,. These parameters are the rel-
evant dimensionless parameters entering ABP-MCT;
note that for low-density ABP, the alternative com-
bination of parameters into the Péclet number Pe =
v3/2D,D; and the persistence length ¢, = vo/D, is
more natural.

Equation (1) define realizations of a non-Gaussian
Markov process whose time-dependent probability dis-
tribution function p(T',t) in the configuration space
I' = {ri,or}tr=1,.~ is given by the Fokker-Planck
(Smoluchowski) equation Oyp(I',t) = Q(I")p(T',¢). The
adjoint Smoluchowski operator (under the ordinary L?2-
function scalar product) reads

N
Of =3 " Dy(Vi + BFx) - Vi
k=1

—l—DTaik +von(pg) - Vi (2)

In particular, it can be written as Qf = qu—i—JQT,
to separate the detailed-balance fulfilling equilibrium
dynamics and the non-equilibrium perturbation 50 =
von(pg) - Vi. An alternative splitting that we will
encounter in deriving the theory is into the translational
and rotational parts, Qf = QI 4 Q; with Q}% = D02, .

ABP-MCT starts from the angle-resolved density
fluctuations, ¢;(q) = Z,ivzl expliq - i) explilo]/vV/N.
The central quantity of the theory is the transient
dynamical density correlation function

i (q,t) = {0} (@) exp[Q" o (q)) - (3)

In these correlation functions, the averaging denoted
by angular brackets is performed over the equilibrium
ensemble, i.e., over the Boltzmann distribution peq(I")
that satisfies qu Peq = 0. (Note that in our study of an
infinite system in the thermodynamic limit, p., does
not depend on the orientations as QE and qu—QTR
commute.) The initial value of the correlation functions
is @y (q,t) = Si(q)dnr, the matrix of equilibrium static
structure factors. Since the orientations of the particles
are uncorrelated, we have that Sy (q) = 1 for all [ # 0.
The entry Soo(q) = S(q) is the ordinary (hard-sphere)
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static structure factor known from liquid-state theory
of the passive system. These functions and ®gg(q,t)
are isotropic functions of q, setting ¢ = |q|, under
the assumption that the system remains statistically
homogeneous and isotropic. The correlation functions
for I,1’ # 0 obey simple unitary transformation rules
under a rotation of q: in particular the quantities

Dy (g,t) = €i(l7l/)0qq>ll’(q7 t) (4)

where 6, is the orientation angle of the vector q, do not
depend on that orientation.

A Mori-Zwanzig projection operator calculation
allows to derive equations of motion for the density cor-
relation functions,

0:®(g,1) +@(q) - S~ (q) - B(g,1)
+ /Ot dt'm(q,t —t') - (19y + @) - ®(q,t') = 0.
(5)
Here, bold symbols refer to matrices in angular-mode
indices [. The matrix wy/(q) = —(0}(q) Qf or(q)) is

split into its translational and rotational parts, w(q) =
wr(a) +wn given by

- 1voq
o7 (a) = Dig* o — TSZI(Q)5|I—Z/|,1 ;

JJR’”/ = DTZQ(S”/ . (6&)

For the memory kernel, m(q,t) = M(q,t) - d)}l(q),
ABP-MCT proposes

~ n dk
My (q,t) = 2/(27r)2

X @y, (k. )@,1,, (p,t)Viiy1,, (0, kp) (7a)

Z 91Tlgl4 (q7 kp)

l3l4l3/l4/

with g = k + p and vertices VY =Vedand Y = Phea 4
yhned  given by

Vi (a,kp) = €61 i Vi (a,kp),  (7h)
\}Z;ﬁq(% k,p) = €™, 1Su(@)0p—1)1
x YN (a.kp). (7c)

Here, the coupling coefficients YT are determined by the
equilibrium static structure factors of the system:

5};&2261((1, kp) _ Dtefimekefinep

[(a-k)em (k) + (a- p)en(p)] (7d)

with the direct correlation function ¢;(q) = d0c(q)
given by the usual relation from liquid-state theory,
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S(g) = [1 —ne(q)]~*. The non-equilibrium contribution
proportional to vy reads

—imby efmep

Vimed(a, kp) =

X ke_iwk Sl+m,l+m(k)ém,l+m(k)

Vo
75l,m,—i-ne

+p67il6p Sl+n,l+n (p)én,l-&-n (p) (76)

where we have set ¢/ (k) = ¢;(k) — ¢ (k).

Equations (5) to (7) form a closed set of nonlin-
ear integral equations that constitute the backbone of
ABP-MCT. A similar set of equations holds for the
tagged-particle density correlation function [31],

(07" () exp[' t]o} (q)) , (8)

where the N-particle system is extended to include one
additional tracer whose density fluctuations are o7 (q) =
expliq - rs] explilyp;]. The Mori-Zwanzig equation then
reads

¢?l’ (qv t) =

019 (q.t) +@°(q) - & (q,t)
/ dt' (gt —t') - (10y + @) - ¢ (¢,t') = 0.
9)

The ABP-MCT memory kernel for the tagged-particle
motion is given by m®(q,t) = M (g,t) - @5 ' (q) with

rs dk A)S
M (q,t) = ”/W ;Ww,zm (q,k)
344

xBryo(k, )60 (0. 1) (10a)
In other words, the tagged-particle dynamics can be
evaluated once the collective dynamics in terms of
the ®(q,t) has been determined. The coupling coeffi-
cients for the tagged-particle memory kernel are W* =
W#ed 4 Wmed with

Wi (g, k) = e/ =00 5,,.5,09(q, k) ,
(10b)

Wﬁln;qn(q’ K) = ei(1=1)(0q 9p)5|l m_n‘,lei(l*n)%
x Vimed(q, k), (10c)

and
Y>i(a,k) = D;*(a-k)*(c* (k) (10d)
s,ne s Zk —i(l—n s
V(e k) = Dja- k) e (e (1))

% (030mo0 — voS(K)om) . (10e)

For a detailed derivation of this result, we refer to
Ref. [37]. In Eq. (10), c¢°(k) is the tagged-particle
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direct correlation function that describes the interac-
tions between a tracer and a host-system particle; in
the case of tracer being identical to the host particles
that we treat here, ¢*(k) = ¢(k). The peculiar structure
in coupling of angular modes stems from the fact that
the particles are interacting isotropically. Equations (9)
and (10) then are a closed set of integral equations for
the tagged-particle correlation functions, given knowl-
edge of the collective dynamics.

From the limit ¢ — 0 in ¢gy(q,t) =~ 1—(¢%/4)5r%(t) +
O(q*) one obtains the MSD 672(t) or the tracer parti-
cle. Performing this limit in the ABP-MCT equations
is an intricate procedure made complicated by the fact
that the frequency matrix wr(q) is tri-diagonal and
has to be inverted with care in the small-¢g limit. After
a tedious calculation, one obtains a set of integral equa-
tions to determine d72(¢) and its dipole counterpart

ésﬂ,o(t) = quﬂoﬂ/q)éfu,o(qvt) We get
0072 (t) = 4D§ — 2> " (iv)$% 1 0(1)
+
t
—/ dt' mo (t — t")or2(t')
0
t
3 [t (= )@ + D000,
T
(11)

and

(O
2
)@ + D)oy (1) - (12)

(at + Ds)qgftl o(t) =

*2/ iy (¢

The memory kernels in these equations are given by
i (t) = limg o (q,t) /¢!~ which are well defined
for |l —I'| < 1. An explicit calculation of the memory
kernels is given in Refs. [32,37]. Here, we just point out
that to obtain the correct ¢ — 0 limit of the theory,
it is crucial that one recognizes that the @7.(¢q) are ele-
ments of an infinite-dimensional matrix algebra, since
the angular-mode indices [, € [—00, o0]. The inversion
of this matrix which is required to evaluate m?®(q,t)
has to be performed on this infinite-dimensional alge-
bra. Only afterward, an angular-momentum cutoff (as
required for numerical solutions of the equations) can
safely be introduced.

Equations (11) and (12) deserve some discussion. In
the low-density limit, all memory kernels 1, (¢) vanish,
and one is left with two coupled differential equations
that can be solved analytically. One recovers then the
familiar result of the MSD of a free ABP,

—D,t

6Dt_1>) (13)

(dropping s superscripts for simplicity). At finite host-
system density, for a passive tracer particle Eq. (11)

6r%(t) = 4Dyt (1 + Pe (1 +
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decouples from Eq. (12) as in this case éjﬂ’o(t) =
0 identically. There appears then a memory kernel
mé,(t) that is seen to have two contributions: one that
reduces to the MCT coupling coefficients in equilib-
rium, where any self-propulsion of the host-system par-
ticles only enters through the activity-enhanced relax-
ation of the collective density correlation functions.
This contribution effectively describes that the passive
tracer will experience a renormalized long-time diffu-
sion coefficient that decreases strongly with increasing
host-system density and is increased by the host-system
activity. There is a second contribution to 7mg,(t) that is
directly proportional to the host-particle self-propulsion
velocity vg, and this contribution is crucial to obtain
also a regime of superdiffusive motion in the MSD that
a passive tracer can experience due to interactions with
the persistent swimming of the host particles [32].

In the following, we will focus on the case of an active
tracer particle in a passive host system, to also con-
nect to recent experiments close to the glass transition
[12]. In this case, all three memory kernels appearing in
Egs. (11) and (12) remain relevant.

For our numerical solutions of ABP-MCT, we employ
an expression for the static structure factor S(k) of hard
disks that was derived using density-functional theory
(DFT) [38]. Since we consider tracer particles that are,
in terms of their direct interaction (but not necessarily
their self-propulsion) identical to the host particles, we
set ¢*(k) = ¢(k). The wave-number integrals are per-
formed on a regular grid with M = 128 grid points up
to a cutoff of gnaxo = 40. To reduce numerical effort,
an angular-mode cutoff L = 1, such that [,I’ € [-L, L],
was introduced. This allows for numerically stable solu-
tions of the ABP-MCT equations up to self-propulsion
velocities vg &~ 80/ D;. Details of the time-domain inte-
gration algorithm can be found in Ref. [39].

2.2 Integration through transients

The ABP-MCT with its focus on the transient corre-
lation functions is suited to evaluate non-equilibrium
transport coefficients following the I'TT approach. ITT
was pioneered in the context of shear-driven soft-matter
glasses by Fuchs and Cates [40,41]. A formal integra-
tion of the Smoluchowski equation yields for the non-
equilibrium stationary average of an observable A

<A>ncq _ <A>cq +/ dt/ <mp6q)eﬂlf t1A> 7
0 Peq eq

(14)

where (6Qpeq)/Peq = —vo Y_j BFk - N, writing ny, =
n(yy) as a shorthand.

This ITT formula allows to calculate the change in
the ensemble average of A that is caused by the change
in the probability distribution function in response to
the non-equilibrium driving term §€2. This makes it ide-
ally suited to address the interaction-renormalization of
transport coefficients; however, not the changes caused
on a single-particle level as for example the activity-
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induced extra stresses and pressure terms that occur
even if the distribution function remains flat [42,43].

We specifically evaluate Eq. (14) for the effective
swim velocity. The latter is defined by

v(¢) = vo + % <Z pE} - nk> : (15)

k=1

and equivalently v*(¢) for a tracer particle. Employing
the ITT formula for the second term, one obtains

v((/))/uozl—i‘;/o dt’ <§; F; n;e” 'Fy - nk>

eq

(16)

This equation was discussed in detail in the linear-
response approximation (where one replaces QF with
the passive-equilibrium time-evolution operator) by
Sharma and Brader [44]. Qualitatively, this equation
describes how interactions decrease the swim velocity:
the positive integral term causes v(¢)/vo < 1. However,
this form is not yet suited well for approximations at
high densities, because such approximations would eas-
ily violate the requirement that v(¢)/vg > 0 for symme-
try reasons. We thus perform a further exact reformula-
tion akin to the one employed in MCT when rewriting
the Mori-Zwanzig equations of motion to an irreducible
form: we set

QOF =Qf +> Frong)(Bu/N)(F;-n;,  (17)
kj

and use this splitting of the operator to perform a fur-
ther Dyson decomposition of exp[Q' t]; see Ref. [37] for
details, and also the supplemental material of Ref. [45]
for an analogous splitting in the context of particles
driven with a fixed force. Setting

C(t) = <Z F; - n;exp[Q  '|F; ~nk> . (18)
jk

a further reduced ITT expression results from Eq. (16):

— Yo
G w1

In this equation, ABP-MCT approximations for C(t)
can be safely applied, and they proceed in analogy to
those performed for the memory kernels M(q,t) and
M?(q,t) that govern the density-correlation functions,
by projecting the fluctuating forces onto density-pair
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modes. One gets

C(t) ~ 8% / dle VS (k)

Z (‘i)oo(k7 )Py (K, t)

U"=+£1

+®yo(k, ) Por (k:,t)) (20)

where the vertex VSV (k) is given by the equilibrium
direct correlation functions [37]. The ABP-MCT with
this approximation thus allows to calculate the effective
swim velocities of interacting ABP, and (by a suitable
extension of Eq. (20)) of an active tracer in an active
or passive bath.

2.3 Brownian dynamics simulations

The results of the theory are checked against ED-BD
simulation results. This method, described in detail for
the passive Brownian system in Ref. [46], and first
employed for ABP by Ni et al. [18], is essentially a
rejection-free Monte Carlo method to generate valid
configurations of hard-sphere (hard-disk) systems. The
method consists of segments of the length of a “Brown-
ian time step” 75, within each of which an event-driven
molecular dynamics simulation is performed to ensure
no-overlap conditions among the particles. For this,
random velocities are generated from random Gaussian
trial displacements such that in the case of a free parti-
cle, the correct diffusive motion is generated. To imple-
ment self-propulsion, the trial displacements are drawn
with an appropriate drift, again such as to ensure that
the known analytical results for the free ABP are repro-
duced.

We employed ED-BD simulations of N = 1000
slightly size-polydisperse hard disks. Within the param-
eter ranges and time scales that we study, no signs
of crystallization or motility-induced phase separation
were observed. After equilibration runs of suitable
length, the simulation gives access to the stationary-
averaged correlation functions that are the counter-
parts of the transient correlation functions obtained
from ABP-MCT, and likewise the MSD. Averages over
up to 200 independent starting configurations were
employed to improve statistics.

For the purpose of the present discussion, we ignore
the difference between stationary and transient MSD;
the good agreement between theory and simulation (see
below) justifies the assumption that for the parameter
range that we study here, the two quantities do not
differ qualitatively. A similar conclusion was drawn for
the case of transient and stationary averages in MCT
for sheared passive suspensions [47]. There are system-
atic differences that can be observed in the off-diagonal
elements of the correlation function matrices for times
shorter than the rotational persistence time 1/D,., as
discussed in Ref. [31].
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From the simulations, we also extract the average
swim velocities. While the ITT expressions mentioned
above are justified under the assumption of a smooth
pair potential, taking the hard-sphere limit only in the
final expression containing the static structure func-
tions, the appearance of the direct interaction forces in
Eq. (15) is problematic for the ED-BD scheme. Instead,
we obtain the swim velocity directly from the Monte
Carlo displacements:

11 Ar;(t
W= Y 2

ni(t) ) (21)

where n is an integer number corresponding to an aver-
age over a few Brownian time steps and N the corre-
sponding normalization term A = nvy. We found our
results to be insensitive to the exact choice of n. In
Eq. (21), Ar;(t) is the actual displacement that the ED-
BD algorithm assigns to particle ¢ in a single Brownian
time step. In the case of a free particle, Ar;(t) contains
a passive Brownian contribution that is uncorrelated
with the particle orientation, and a term o vo7Tpn;(t),
so that in the non-interacting limit v(¢) = v is guar-
anteed.

3 Results

3.1 Mean-squared displacements

A particularly interesting case of the dynamics is that of
a single ABP in a dense host system of passive particles.
This system has been studied experimentally recently
[12].

We have recently discussed the features of the MSD of
active and passive tracers in active and passive host sys-
tems in a comparison between ABP-MCT and ED-BD
simulations [32]. Overall, it was found that the theory
describes the simulation results qualitatively correctly.
After an empirical rescaling of the density and, in the
case of an active host system, the self-propulsion veloc-
ity by a global factor of O(1), the agreement is also
quantitative for not too large vy. In essence, the the-
ory predicts the slowing down of the dynamics due to
approaching glassy arrest at high density, and a rescal-
ing of the density accounts for a numerical error in the
predicted value of the glass-transition point (¢, ~ 0.8
in the simulation compared to ¢. ~ 0.7 in the the-
ory) that is remedied by matching densities in the com-
parison such that the relaxation times of the passive-
particle density-correlation functions agree at a typi-
cal wave number corresponding to nearest-neighbor dis-
tances (qo = 7). Close to the glass transition, this
amounts in first order to a linear mapping between
HMET ysed in the theory, and ¢PP used in the simu-
lation. Self-propulsion is seen to fluidize the system, so
that the transition to the “active glass” gets delayed to
higher densities [30]. ABP-MCT somewhat underesti-
mates the effectiveness of self propulsion as compared
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Fig. 1 Mean-squared displacement of an active tracer par-
ticle embedded in a host system of passive hard disks
at packing fraction ¢ as labeled, for tracer-self-propulsion
speeds vg as labeled, and for fixed reorientational diffusion
coefficient D; = 0.05 and with translational diffusion coef-
ficient Di = D; equal to that of the host system. Symbols
are results from Brownian dynamics simulations, and lines
are results from MCT after an adjustment of the packing
fraction in order to match the dynamics of the fully passive
system (see text)

to the simulations, but otherwise describes it qualita-
tively. By the same route of matching typical relaxation
times, a rescaling v)!¢T = 1.505P is empirically found
[37].

For the free particle, the MSD displays two cross-
overs at length scales associated to the persistence of
self-propulsion. From the analytical result, Eq. (11), one
readily infers these length scales and the associated time
scales,

4Ds 2D
Ty = /UTQt ) l, = vst ) (223)
0 0
2 S
m=ntPe) =t oo =Lt o
' " (221)

For ¢t ~ 7,, the short-time passive Brownian diffu-
sion (coefficient Dj) crosses over to a superdiffusive
regime that is indicative of persistent self-propelled
motion. For ¢ o~ 7, this persistence is lost, and the free
ABP crosses over to enhanced diffusion with coefficient
Dsft = D3 (1+ Pe®). Since at low densities these are the
only length- and time-scales relevant for the problem,
the Péclet number of the tracer, Pe’ is the only dimen-
sionless number to quantify activity in the long-time
limit.

At high densities, the dynamics of an active particle
is characterized by a competition of time and length
scales: particle interactions set a length scale of nearest-
neighbor cages, f.. For dr?(t) ~ 4¢2, the interactions
of the tracer with the host system cause sub-diffusive
motion that ultimately leads to dynamical arrest at
the glass-transition density. Close to and on the lig-
uid side of the glass transition, an increasing time scale
governed by the MCT memory kernels sets the time
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scale 7, on which the sub-diffusive regime ends. ABP-
MCT predicts that 7, diverges as the glass transition
is approached. The cage length scale (of order of 10%
of a particle diameter) interferes with the length scales
derived from the free-ABP motion. Thus, there emerges
a sequence of sub- and superdiffusive regimes in the
MSD that depends on the relative magnitudes of the
associated time scales, 7. = (2/D$, 7,, and T, as well
as the strongly density-dependent 7.

Figure 1 displays as an exemplary case the MSD for
an active tracer various self-propulsion velocities v§ <
8 D;/o in a passive bath at packing fractions approach-
ing the glass transition. To emphasize the effect of
active motion, we have chosen a relatively large persis-
tence time, letting D$ = 0.05 D; /0. With these param-
eters, we obtain for the case v = 8 D;/o the relevant
time scales as 7, ~ 8 x 107202 /Dy, 7, = 1/16 62/ Dy,
and 7, = (40 + 1/16) 02/ Dy, so that 7. < 7, < 7.

Correspondingly, the motion in the moderately dense
host system (¢ = 0.50 in Fig. 1) displays essentially
a cross-over from short-time diffusion to superdiffusive
persistent motion, and at ¢t ~ 7, a further cross-over
to enhanced diffusive motion. At these densities, the
caging influence from the host system is still too weak
to be noted dramatically, although a slight sublinear
growth in the MSD around t = 7. can be discerned.

As the host-system density is increased, 7, increases
strongly, and the sub-diffusive regime in the MSD
expands over a wider time window. The closer one
approaches the glass transition, the more the cross-
over to persistent superdiffusive motion is suppressed,
so that for the highest density shown in Fig. 1 (¢ =
0.77), superdiffusive motion is no longer evident and the
tracer activity essentially serves to provide an enhanced
long-time diffusion coefficient as compared to the pas-
sive tracer. Note that the enhancement no longer scales
with Pe®: for the parameters used in Fig. 1, the free
ABP would show an enhancement of a factor Pe® =
640 for v§ = 8D;/o; at ¢ = 0.77 the corresponding
enhancement is only about a factor 10.

The sub- and superdiffusive regimes in the MSD
and their evolution with time scales are more clearly
seen in the temporal evolution of the effective power-
law exponent of the MSD, obtained from «(t) =
dlogér®(t)/dlogt; these are shown in Fig. 2. One
clearly sees a decrease of a(t) to values below unity
around t = 7, reflecting in-cage sub-diffusive motion.
The values of «(t) start increasing toward value above
unity at t ~ 7,, and they decrease again toward unity
at t = 7,. In order to see truly “ballistic” motion, i.e.,
a(t) = 2, even in the free ABP case one would have to
separate 7, and 7, even further, for example, by further
decreasing D;.

It should be noted that the appearance of superdif-
fusion in the (stationary) MSD is a clear sign of non-
equilibrium dynamics in a system whose governing
equations of motion are Markovian-stochastic. ABP-
MCT comes at the price of being numerically demand-
ing, but in turn it enables to describe such dynam-
ics correctly; more common and simpler approaches
to the glassy dynamics of ABP often proceed by inte-
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Fig. 2 Effective exponents for the mean-squared dis-
placements shown in Fig. 1, obtained from af(t) =
dlog 6r*(t)/dlogt. Symbols are simulation data, lines
results from MCT. Solid black lines are the analytical result
for the free ABP. Vertical dashed and dash-dotted lines cor-
respond to the free-ABP time scales 7, and 7,, respectively

grating out the orientational degrees of freedom into
some effective Smoluchowski operator. It is not evident
that with such approximation made from the outset,
superdiffusive MSD can be correctly described. Even
in the high-density regime where superdiffusion is sup-
pressed, our approach suggests the dynamics to depend
on both vg and D,. as relevant parameters, while simpler
approaches typically map these onto a single combined
parameter.

3.2 Comparison to experiment

In order to compare the recent experimental data
of Lozano, Gomez-Solano, and Bechinger [12] with our
theory and simulations, we first perform a fit of the fully
passive experimental system. This allows to establish
a precise enough mapping of packing fractions given
in the experiment, and that used in simulation. Differ-
ences are expected due to slightly different interaction
potentials (experimental particles might not interact as
idealized hard spheres), and different size polydispersity
(the experimental system uses a binary mixture).

Figure 3 establishes the level of agreement that can
be achieved between experiment, simulation, and the-
ory for the passive dynamics. Here, simulation and the-
ory have been shifted by overall factors in time and
length; with these adjustments, all three sets of data
agree well with each other. There is a deviation notable
in the simulation results around ¢ = 1 whose precise
cause we do not know. Also, at times ¢ 2> 500, the
Brownian dynamics (BD) data at the highest packing
fractions deviate from the idealized arrest curves, most
probably due to equilibration issues in the simulation,
or due to the appearance of remnant activated relax-
ation processes (so-called hopping processes).

The rescaling in time scales serves to account for the
notable effect of hydrodynamic interactions present in
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Fig. 3 Mean-squared displacement of a passive tracer in
a passive host suspension, as obtained from a quasi-two-
dimensional experiment [12] (filled symbols), and from our
Brownian dynamics simulations (open symbols). Dashed
lines indicate our MCT results with the packing fraction
adjusted to best describe the simulation data, and after
rescaling particle sizes (see text). We find good agreement
also between simulation and experiment after a mapping of
experimental values for the packing fraction ¢exp to that
used in simulation, ¢gp, that is displayed in the inset

the experimental system. These cause a slowing down
already of the short-time passive diffusion that is absent
in the simulation and theory. From comparing exper-
imental data at different packing fractions, we esti-
mate that with increasing ¢, the experimental Dj(¢)
decreases by about a factor 5, in agreement with what
is expected from three-dimensional hard-sphere suspen-
sions [48].

The experimental system uses host particles of mean
diameter o ~ 5 um. From the good agreement between
MCT and ED-BD simulations for the passive hard-
disk system one expects /. ~ 0.080 ~ 0.4um to hold
for a system that reasonably well approximates hard-
disk behavior, for a tracer of roughly equal size to the
host-suspension particles. In the experiment, few Janus
particles were added as active tracers with a diame-
ter 0 ~ 6.3pum corresponding to that of the larger
particles of the host-suspension mixture. We do not
expect the cage-localization length of these particles to
be significantly smaller than the above estimate. There
remains thus a puzzling effect in the comparison shown
in Fig. 3: the experimental data show in-cage localiza-
tion around 672 < 10~'# pm?, which corresponds to a
localization length (5P ~ 0.05 um, about a factor of 7
smaller than what is estimated from theory and simu-
lation with the nominal hard-sphere sizes of the parti-
cles. The reason for this discrepancy remains unclear;
we proceed by adjusting in both simulation and theory
an effective diameter oo = o /7 of the particles that
accounts for this difference. With this adjustment, all
passive experimental data are described well. The short-
time diffusion coeflicient then is read off from Fig. 3
as D; ~ 0.008 um?/s for the lowest density shown in
experiment.
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Fig. 4 Mean-squared displacements of an active tracer
particle in the passive host system at various packing frac-
tions ¢ as indicated. Filled symbols are taken from Ref.
[12], and they represent the dynamics of a laser-driven Janus
particle at fixed laser intensity. Open symbols are Brownian-
dynamics simulation results for a hard-disk ABP in a system
of passive hard disks, with rotational diffusion coefficient D;
as determined from experiment, and self-propulsion veloc-
ity vy adjusted to best fit the experimental data. A black
dotted line indicates the free-particle solution

For the free Janus particle, Lozano et al. [12] report
a self-propulsion velocity of v ~ 1.0pum/s. Indeed,
a fit of the free-ABP MSD, Eq. (13), to the corre-
sponding experimental data yields good agreement with
vioe/ D = 109; this fit is shown in Fig. 4 as a black
dotted line.

Our numerical algorithms to solve the ABP-MCT
equations of motion are unfortunately unstable at such
large self-propulsion velocities. For this reason, we
restrict the further comparison to the experimental
data to that with ED-BD simulation results.

A remarkable effect reported in experiment [12] is
that the reorientational dynamics of the tracer par-
ticle is strongly enhanced as the host-system density
approaches the glass transition and then again is sup-
pressed in the glass. This density dependence of D}
was attributed to hydrodynamic coupling of the active
tracer to the host system via the solvent, and therefore,
it is by definition absent in the ABP model system. We
model this effect “by hand,” adjusting in the simula-
tions D; to the values reported in experiment.

After this adjustment, the long-time diffusive regime
in the experimental MSD can be described from our
simulations only after also adjusting the self-propulsion
velocity v§ as a function of density. The quality of
agreement between experiment and simulation is then
very good, as displayed in Fig. 4. However, the values
required for v§ in the simulation show a curious non-
monotonic behavior with increasing packing fraction.

The adjusted self-propulsion speed of the tracer drops
by a factor of 10 at the highest densities studied, i.e.,
from about 1pum/s to 0.1 wm/s. This can be rational-
ized by the expectation that due to deflections from the
host-system particles, the self-propulsion mechanism of
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the tracer in the experiment becomes less effective at
fixed energy input with increasing density. This can
refer possibly to the laser-energy deposition onto the
cap of the Janus particle being less efficient, but also
to the fact that the Janus particle requires a region of
reversible solvent-phase-separation induced by heating
the cap and close to it; the presence of other parti-
cles could well perturb this fluid pattern to make self-
propulsion less strong. Interestingly, the adjusted v§ in
the simulation display a maximum at ¢ = 0.76. It is
not evident where such a non-monotonic effectiveness
of the experimental driving would come from.

This peculiarity aside, both the experiment and the
simulation data indicate an interesting effect in the
glass: although the host system is, over the time scales
that we can access, effectively arrested, the MSD of the
active tracer continues to increase beyond the corre-
sponding caging length scale. This could indicate a delo-
calization transition of a strongly driven active tracer.
Such delocalization is known for passive but externally
driven particles in a glass; a setup referred to as active
microrheology [49]. It is not a priori evident whether
the same physical mechanisms applies in both cases:
the externally driven tracer is infinitely persistent in its
motion if the external force is kept constant, while the
ABP has only finite persistence time. Even the limit
D; — 0 might not commute with the limit ¢ — oo
taken to decide whether the tracer becomes ultimately
delocalized.

3.3 Stokes—Einstein relation

A prominent relation to link the tracer motion to
dynamical features of the host system that has been
discussed in the context of the glass transition is the
generalized Stokes—Einstein (SE) relation. Named after
the famous result for the diffusion coefficient D of a
large colloidal particle moving in a continuum fluid of
viscosity n, Dn ~ kT /o, the SE relation in the context
of glassy dynamics refers to the fact that in the fluid
regime described by MCT, both the tracer-diffusion
coefficient and the host-fluid viscosity are governed by
the same cage relaxation processes, and hence show
the same control-parameter dependence asymptotically,
even if the tracer is of the same type as the particles
comprising the host system (and not infinitely larger as
in the original SE relation).

MCT explains the appearance of a SE relation in this
sense; but it is also considered one of the theory’s great-
est failures to not predict the violation of the SE rela-
tion that is observed in computer simulation for densi-
ties very close to or above the MCT transition point.
Such violations are seen as indicative of relaxation pro-
cesses “beyond” MCT.

The SE relation is also the basis of the technique
of passive microrheology that aims to assess the rheo-
logical properties of the host suspension by monitoring
the displacement dynamics of an embedded tracer par-
ticle. Microrheology has advantages over conventional
rheology when providing a sufficient amount of host-
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Fig. 5 Check of a generalized Stokes—Einstein relation
between the active tracer long-time self-diffusion coefficient
DtL and the structural relaxation time 7, of the active host
system. The product DI, is shown for various simulations
with different D, and at different packing fractions (sym-
bols and colors as labeled), and for MCT with D, =1 = D;
(line; for a state close to the glass transition) as a function
of Péclet number Pe = v%/QD,.Dt

suspension fluid is not feasible, and this makes it an
interesting technique in particular in the context of
biofluids.

It is therefore interesting to check the applicability
of the generalized SE relation in the active system. In
the spirit of the theory, we extract from our computer
simulations the quantity DI, were DF is the long-
time self-diffusion coefficient of an active tracer in an
active host suspension whose structural relaxation time
(as measured through the density correlation functions
at finite ¢ close to the main peak of the static struc-
ture factor) is 7,. Figure 5 shows the result for vari-
ous densities, in simulations with different persistence
times 1/D? = 1/D,, as a function of Péclet number. We
observe that in the strongly active system, the product
D, increases by more than an order of magnitude, and
there is also a non-trivial D,- and density dependence.
Results from ABP-MCT are also shown (lines in Fig. 5);
for these we have evaluated the ITT expression for the
linear-response viscosity of the active host system [37]
to calculate Dfn. In the comparison with simulation,
we have made use of the fact that the Green-Kubo
integral that determines the viscosity 7 is, close to the
glass transition, dominated by a constant (the plateau
value of the dynamical correlation function in the cage
regime) times the structural relaxation time 7, so that
a constant rescaling can be performed to match the
“proper” DEn to the more common DE7, obtained in
the simulation. In the comparison we have also included
a rescaling of the numerical value of vy used in the the-
ory, )T = 1.508P; this accounts for a known underes-
timation of the strength of the self-propulsion forces in
the MCT vertex quantifying the collective relaxation of
density fluctuations and has been establishes in detail
in comparison to simulations of the density correlation
functions [31]. The ABP-MCT curve for D, = 1 then
qualitatively agrees with the simulation data; in par-
ticular, the theory captures the increase of DI, with
increasing Pe.
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Fig. 6 Effective swim velocity v(¢) of interacting active
Brownian particles, in units of the bare self-propulsion
velocity vo = 2 of a single ABP, at packing fraction ¢. Sym-
bols are from BD computer simulations. A line indicates
parameter-free results from MCT. The inset shows the same
data, but with the density in the MCT calculations adjusted
to provide a good description of the relaxation time of the
passive system

This result emphasizes that the appearance of a gen-
eralized SE relation in MCT is not trivial. While the
fact that both 1/D and 7 asymptotically follow the
same power law close to the glass transition in the
theory ensures that the product Dn approaches a con-
stant; however, the fact that this product results in an
order of magnitude that is comparable with simulation
and moreover indicates a reasonable “effective hydro-
dynamic radius” of the tracer particle, is in a sense a
numerical coincidence.

Qualitatively, the increase with Pe that is seen in
Fig. 5 can be rationalized: as the tracer particle becomes
more active, it will find it easier to diffuse and hence
it will appear effectively “smaller” as long as the col-
lective speeding up of the host-system relaxation is less
strong. Also, increasing the persistence length of the
tracer particle leads to more effective diffusion as mea-
sured through the generalized SE relation.

3.4 Swim velocities

As a genuinely non-equilibrium transport coefficient,
the effective swim velocity v(¢) of ABP plays a signifi-
cant role. It describes the density-renormalized propul-
sion, recognizing the fact that the bare self-propulsion
velocity vg of a free ABP is reduced due to interactions
with the host-system particles. We next asses the ITT
formula Eq. (19) with the specific ABP-MCT closure,
Eq. (20), in comparison with computer simulation.
Figure 6 shows the results from computer simulation
and from ABP-MCT for the density-dependent swim
velocity in a fully active system at a range of packing
fractions spanning from the dilute system to the glass
transition. As expected, the swim velocity in the BD
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simulations is seen to decrease monotonically as inter-
actions become more important with increasing density.
At the glass transition, long-range motion of the parti-
cles ceases, and this implies that also the swim velocity
decays to zero.

As has been noted in similar simulations of soft-core
systems before [15,44] the swim velocity almost fol-
lows a linear decrease with increasing density, although
closer inspection shows that in particular at high den-
sities there are some deviations from a linear law. The
linear law is also what has been assumed in continuum
models to study MIPS [33].

The ABP-MCT results at first sight are quite differ-
ent. The theory correctly predicts a monotonic decay
with increasing density, and the fact that the swim
velocity approaches zero at the glass transition. But the
quantitative agreement with simulations is not optimal.
One should, however, note that in this direct compar-
ison, no adjustment of parameters in the theory has
been made; in particular, as discussed above in connec-
tion with the MSD, one should expect that the theory
results need to be compared to simulations at a slightly
different packing fraction in order to account for the
known numerical error of MCT in prediction the value
of the glass-transition point ¢.. In fact, it is instructive
to readjust the packing-fraction axis such that the pas-
sive MCT for each value of ¢pp, quantitatively matches
the relaxation time of the density correlation functions.
While close to ¢, this results in a linear shift of pack-
ing fractions, outside the asymptotic regime, quadratic
terms in ¢ypceT(dBD) are needed.

Letting aside the question of how to justify such map-
ping in detail, it allows us to disentangle two very differ-
ent effects: one of the quality of the MCT factorization
in describing the cage effect, and another one of the
quality of the ITT application joint with ABP-MCT in
the formula for the swim velocity. Indeed, after adjust-
ing the theory to match the passive relaxation dynam-
ics, also the swim velocities are in rather good quantita-
tive agreement with our simulations, as demonstrated
in the inset of Fig. 6.

A qualitatively similar finding also holds for the
case of a single ABP tracer particle that is embedded
in a passive host suspension, shown in Fig. 7. Here,
the theory predicts—after the mapping of densities
described above—the simulation results quantitatively
up to swimming speeds of around v§ = 8; higher values
are currently out of reach for the numerical algorithm
solving the MCT equations of motion. For the active
bath, a velocity of vy = 8 results in a qualitatively
similar curve for v(¢), but here, somewhat stronger
deviations are seen between theory and simulations at
medium densities.

The striking observation is that without parameter
adjustment, ABP-MCT predicts the swim velocity to
decay initially quadratically with increasing density,
not linearly. This is a feature of the way the MCT
approximation is constructed: the fluctuating inter-
action forces are expressed through terms that are
quadratic in the fluctuating densities. At low ¢, this is
not adequate. As a result, already for the fully passive
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Fig. 7 Effective swim velocity v of a single ABP tracer in
a passive host suspension of packing fraction ¢, in units of
the tracer’s bare self-propulsion velocity v = 8. Symbols
are computer simulation results, lines are from MCT. The
inset shows the same comparison with a density axis that
is adjusted from fitting MCT to the passive host system’s
relaxation dynamics

system MCT predicts a wrong density dependence of
the relaxation times of the density-correlation functions
in the low-density regime; this is of course not usually
discussed because MCT is explicitly made for high den-
sities. But it is interesting to note that the reduced ITT
formula for the swim velocity, Eq. (19), even with its
MCT-like closure seems to introduce no further qualita-
tive errors: if we insert the results from ABP-MCT with
packing fractions ¢M“T chosen such that the dynam-
ics of the passive system is well reproduced at any
PP the results for the swim velocity are in reason-
able agreement. This is observed in the insets of Figs. 6
and 7 where such a density mapping was applied. (It
differs from the usually applied linear shift in packing
fraction when comparing MCT to simulation by taking
into account also leading-order quadratic terms [50].)
In essence, the calculation of the swim velocity inher-
its the deficiency of MCT in the low-density regime,
i.e., it is mainly the incorrect density dependence of the
low-density relaxation dynamics of density fluctuations
that also leads to prima facie incorrect descriptions of
the swim velocities.

4 Conclusion

We have reviewed the development of the mode-
coupling theory for active Brownian particles to describe
the mean-squared displacements of an active tracer in
a glass-forming host system. The theory was shown to
compare favorably to computer-simulation results for
the hard-disk system, at moderate Péclet numbers (up
to Pe =~ 640). It describes the sequence of sub- and
superdiffusive motion observed in the MSD of ABP
embedded in a dense host system and rationalizes it as
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arising from a competition of the time scales of nearest-
neighbor caging with those of persistent motion.

A direct comparison between ABP-MCT and current
experimental data on the self-propelled tracer motion of
Janus particles in a glass-forming colloidal suspension
was unfortunately not possible. Numerical instabilities
in solving the ABP-MCT equations of motion prevent
us from addressing the regime of extremely strong self-
propulsion. (From the experimental data, one estimates
Pe® > 10% at intermediate densities.) It remains to be
seen whether improved numerical schemes and/or com-
putational efforts to increase the angular-mode cutoff
employed in the numerics will remedy this situation.

However, we have been able to directly compare
ED-BD simulations for active-tracer motion in a host
suspension of passive hard disks with experiment. It
appears that in experiment, both the rotational dif-
fusion and the self-propulsion velocity of the active
tracer depend sensitively on the vicinity to the host-
suspension glass transition. These effects are not
included in the common ABP model of self-propelled
particles and complicate the analysis. The strong
change in rotational diffusion was noted in experiment
directly [12] and attributed to viscoelastic coupling
with the host system. If true, this would necessitate an
approach where the orientational motion of the ABP
tracer couples to the collective density fluctuations of
the host system; the development of a fully microscopic
theory for this situation needs to be left for future work.

For the regime that is accessible within the theory,
non-equilibrium transport coefficients such as the long-
time tracer-diffusion coefficient and the effective swim
velocity are predicted. One result is the deviation from
the commonly assumed Stokes—Einstein relation with
increasing Pe; it shows that in extracting quantitative
information on the host-system viscosity from the long-
time diffusivity of a tracer in active fluids, one needs to
be careful.

Our comparison with simulation for the swim veloci-
ties demonstrates that a decisive factor in predicting
these correctly is the correct modeling of the struc-
tural relaxation time of the density fluctuation dynam-
ics already in the passive host system. MCT is in quan-
titative error here, and in particular at low densities
it does not yield the correct leading-order variation
with packing fraction. This error is often overlooked,
because usual comparisons of MCT with simulation or
experiment focus on the vicinity of the glass transition,
for which the theory was designed. It becomes appar-
ent when calculating for example the density-dependent
swim velocity of ABP with the theory: while at high
densities, the approach of v(¢) to zero as ¢ — ¢, is cor-
rectly captured, the overall shape of the v(¢)-vs-¢ curve
is quite different from the almost linear variation that
one finds in simulation. We have demonstrated here
that this difference does not indicate a failure of the
ABP-extension of MCT per se, but rather that ABP-
MCT inherits a deficiency from the original MCT that
one needs to account for.

The results shown in Figs. 6 and 7 nevertheless con-
firm a peculiar approach inherent to MCT to such
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generalized Green—Kubo relations: while the original
expression derived using ITT, Eq. (16) describes the
reduction of the swim velocity due to interactions by a
subtractive mobility term, at high densities an approach
that translates the Green—Kubo expression into an
additive friction term, Eq. (19). In particular, it allows
to explain that the effective swim velocity appears to
vanish at the glass transition, as also observed in our
ED-BD simulations.

Keeping this in mind, our recent extension of ABP-
MCT to include various types of tracer particles is read-
ily generalized to binary mixtures of active and pas-
sive particles [37]. This should then provide a promis-
ing microscopic theory to address the question how the
addition of a few active particles to a passive suspen-
sion speeds up the dynamics, or how interacting pas-
sive tracers experience enhanced diffusion due to being
embedded in an active fluid.
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