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Abstract The surface distribution of flagella in peritrichous bacterial cells has been traditionally assumed
to be random. Recently, the presence of a regular grid-like pattern of basal bodies has been suggested.
Experimentally, the manipulation of the anchoring points of flagella in the cell membrane is difficult, and
thus, elucidation of the consequences of a particular pattern on bacterial locomotion is challenging. We
analyze the bundle formation process and swimming properties of Bacillus subtilis-like cells considering
random, helical, and ring-like arrangements of flagella by means of mesoscale hydrodynamics simulations.
Helical and ring patterns preferentially yield configurations with a single bundle, whereas configurations
with no clear bundles are most likely for random anchoring. For any type of pattern, there is an almost
equally low probability to form V-shaped bundle configurations with at least two bundles. Variation of the
flagellum length yields a clear preference for a single major bundle in helical and ring patterns as soon
as the flagellum length exceeds the body length. The average swimming speed of cells with a single or
two bundles is rather similar, and approximately 50% larger than that of cells of other types of flagellar
organization. Considering the various anchoring patterns, rings yield the smallest average swimming speed
independent of the type of bundle, followed by helical arrangements, and largest speeds are observed for
random anchoring. Hence, a regular pattern provides no advantage in terms of swimming speed compared
to random anchoring of flagella, but yields more likely single-bundle configurations.

1 Introduction

The majority of motile bacterial species are propelled
by flagella [1], which protrude from their cell body and
are driven by rotary motors [2–4]. The number of flag-
ella and their arrangement differs widely among bacte-
rial species, ranging from a single flagellum (monotric-
hous bacteria) to many flagella distributed all over the
body (peritrichous bacteria) [5–7]. Well-studied exam-
ples of peritrichous bacteria are Escherichia coli, Bacil-
lus subtilis, Salmonella enterica, and Proteus mirabilis.
The biological advantage in some species to produce
more than one flagellum is still not clear, and might
have more implications apart from improving the swim-
ming motility [8,9]. Interestingly, the cell size and num-
ber of flagella of peritrichous bacteria can depend on
their mode of locomotion. Individual (planktonic) cells
exhibit the so-called swimming motility [2,6,10–12],
where the various flagella self-organize into bundles
by (typically) counterclockwise rotation of the motors.
Surface-associated bacteria display another mode of
motility denoted as swarming, where they migrate
collectively over surfaces while forming stable, highly
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motile aggregates [6,10–15]. Swarming bacteria show
a strikingly different motile behavior than swimming
cells. They are densely packed and exhibit large-scale
turbulent-like streaming motions [13]. Various bacteria
undergo substantial morphological changes while tran-
siting from a planktonic to a swarmer cell, as they
become more elongated by suppression of cell divi-
sion and their number of flagella significantly increases
[5,6,11,16–18]. So far, it is unclear why swarming
requires multiple flagella or significantly elongated cells
[6,8,9]. Even more, the interactions between the large
number of flagella within and between swarmer cells are
unresolved, although experiments suggest that interwo-
ven flagellar bundles between neighboring cells can be
formed [16,17]. This would require formation of several
flagellar bundles within a cell, which should point away
from the cell body.

A major unresolved issue is the arrangement of the
flagella on a peritrichous cell’s surface, and whether
this plays a role in its propulsion. Despite the large
number of flagellated bacteria [1], only a few flagellar
surface distribution patterns seem to exist [19]. The dis-
tribution of flagella on the body surface of peritrichous
bacteria has been traditionally assumed to be random
[6,20,21], although some studies suggest an organized
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surface arrangement, for instance, in positions inherited
from those of the ancestor cell in E. coli [22], or in a
grid-like fashion in B. subtilis [7].

Studies on B. subtilis, a non-pathogenic Gram-
positive bacterium species living in ubiquitous environ-
ments ranging from soils and plant roots to the gas-
trointestinal tract of animals [23], reveal the existence
of several flagellar bundles [24,25]. Vegetative B. sub-
tilis cells are capable to switch from the planktonic
state in a three-dimensional fluid to a swarming pheno-
type and form a biofilm [14,15]. Flagella growing from
basal bodies, whose positions remain fixed in both the
planktonic and the swarming state, power active move-
ment in both locomotion modes [21,26]. Contrary to P.
mirabilis or E. coli, B. subtilis cells show minor differ-
ences in body length between swimming and swarming
cells [8]. Due to their ability to adapt to a wide range
of environments, the genome of different strains of B.
subtilis shows a large diversity [23] and has been sub-
sequently classified into subspecies due to the presence
of strand-specific genes [27].

In this article, we present mesoscale hydrodynamics
simulation results of B. subtilis-like cells to illustrate
the role of flagellar arrangement patterns on the for-
mation of flagellar bundles and the bacterium swim-
ming properties. Flagellar arrangement has received lit-
tle attention so far, but insight into pattern-specific
properties may help to understand not only locomotion
of individual cells, but may also shed light onto the col-
lective behavior of swarmers, specifically possible inter-
cell flagellum–flagellum interactions due to particular
bundle arrangements.

We employ a mechano-elastic non-tumbling bac-
terium model that accounts for near-field hydrody-
namics, i.e., provides a length-scale resolution smaller
than the bacterium diameter [3,28–30]. The embedding
fluid is modeled by the multiparticle collision dynam-
ics (MPC) approach, a particle-based mesoscale fluid
model which captures hydrodynamic interactions and
thermal fluctuations [31,32]. Fluid-mediated interac-
tions have been proven to be fundamental for flagellum-
flagellum synchronization [33–37] and bundle formation
[37,38] in microswimmers. MPC has been successfully
employed to simulate cell swimming [3,28–30,39,40],
the synchronization of flagella in sperm [41] and in cilia
arrays [42], and bundle formation in bacteria [3,37,38].

Our simulations reveal a strong influence of the
anchoring pattern on the formation of bundles. Specif-
ically ring patterns (grid) yield a clear preference for
single bundles, whereas random anchoring often results
in configurations without well-defined bundles or pecu-
liarly swimming cells. The swimming speed is higher
for single- and two-bundle configurations, independent
of the anchoring pattern. Remarkably, random anchor-
ing yields the largest average swimming speed, inde-
pendent of the number of formed bundles. Hence, our
simulations reveal no advantage of a regular anchoring
pattern in terms of swimming speed compared to ran-
dom anchoring.

The paper is structured as follows. In Sect. 2, the
bacterium and the MPC fluid model are presented. Sec-

tion 3 provides results for the obtained flagellar orga-
nizations of the various anchoring patterns. In Sect. 4,
the cell dynamics is discussed. Finally, Sect. 5 provides
conclusions and a summary of our findings.

2 Bacterium simulation approach

2.1 Bacterium model

The mechano-elastic bacterium model of Refs. [3,28–
30], adapted to B. subtilis-like cells, is applied, where
a cell is composed of a spherocylindrical body and
attached semiflexible helical filaments (Fig. 1). The
whole cell is constructed by discrete points (beads) of
mass M connected by harmonic springs with the bond
potential

Ub =
1
2
Kb(r − l0)2, (1)

where r is the distance between a respective bead pair,
l0 the rest length, and Kb the spring constant.

2.1.1 Model of the body

The body is comprised of rings of 30 beads arranged
on the circumference of a circle of diameter db, with a
ring spacing of 0.5a (along the cylinder center line)—a
is the length unit related to the MPC fluid described in
Sect. 2.2—and a bead in the center of the circle. Each
of the spherical caps consists of 9 rings of decreasing
diameter, with 4 rings toward the pole with the smaller
bead numbers 15, 15, 5, and 1, respectively. The cylin-
drical shape is maintained by strong bonds along the
ring circumference between next, next-nearest, the 5th,
10th, 15th, 20th, and 25th bead, a bond with the central
particle, as well as bonds to the next and next-nearest
beads of neighboring rings. The length of the body, lb,
is adjusted via the number of rings in the cylindrical
part.

Fig. 1 Model of a bacterial cell with 14 flagella anchored
randomly on the cell body. The body consists of a cylinder
with spherical caps, and a flagellum is composed of overlap-
ping octahedral units
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2.1.2 Flagellum model

Each flagellum is modeled as a helical wormlike chain
[43–45] adjusted for a suitable implementation in a
MPC fluid [28]. A flagellum is composed of Ns over-
lapping octahedron-like segments, where each isolated
segment consists of 6 beads linked by 12 bonds along the
edges with rest length l0 = a/

√
2, and three bonds along

the diagonals with l0 = a (Fig. 1). In a flagellum, back-
bone beads of subsequent segments are fused into one to
form a linear chain. This model is suitable for describing
the intrinsic twist of the helix backbone and facilitates
the coupling to the forces exerted by the MPC fluid
and vice versa [28]. The nth segment can be charac-
terized by the backbone bond-vector b3

n = rn+1 − rn

(n = 1, . . . , Ns), with rn the position of the back-
bone particle n, and the (nearly) orthogonal vectors
b1

n = rn1 − rn3 and b2
n = rn2 − rn4 (Fig. 1). Orthonor-

mal triads {e1
n,e2

n,e3
n} are introduced as eγ

n = bγ
n/|bγ

n|
(γ ∈ {1, 2, 3}). The transport of the triad {e1

n,e2
n,e3

n}
to the consecutive segment {e1

n+1,e
2
n+1,e

3
n+1} defines

the local elastic deformation of the flagellum [43,46].
This transport consists of both a rotation of the plane
formed by e1

n and e2
n around e3

n by a twist angle φn and
a rotation of this twisted triad by a bending angle θn

around the unit vector nn =
(
e3

n × e3
n+1

)
/|e3

n × e3
n+1|.

The harmonic elastic deformation energy Uel of the heli-
cal wormlike backbone chain [43–45] is then given by

Uel =
1
2

3∑

α=1

Kα
el

Ns−1∑

n=1

(
Ωα

n − Ωα
e

)
, (2)

where K1
el = K2

el characterize the bending energy, K3
el

the twist energy, and Ωn =
∑

α Ωα
neα

n = θnnn + φne3
n

is the strain vector. The parameters Ωα
e define the equi-

librium geometry of the model flagellum and are chosen
to recover the shape of a left-handed flagellum in the
normal state [47]. Counterclockwise rotation of a flag-
ellum is achieved by a motor torque T decomposed in
a force couple F and −F applied to the particles 12
and 14 of the first triad. As a consequence, the bac-
terium is force free. An opposite torque −T is applied
to the body to ensure that the bacterium is also torque
free. The hook is not described explicitly in this model
[48]. Each flagellum is directly anchored at the body
by choosing a body particle as its first contour parti-
cle (n = 1). The anchoring position of each flagellum to
the body is determined according to the chosen pattern
and will be described in more detail in Sect. 2.4. Steric
interactions between flagella and between a flagellum
and the cell body are captured by the purely repulsive
harmonic potential

U f/b
ex =

Kex

2
(
rf/b − rf/bex

)2 (3)

for rf/b < r
f/b
ex , and U

f/b
ex = 0 for rf/b ≥ r

f/b
ex . The

superscript f and b refer to flagellum–flagellum and
flagellum–body interactions, respectively. Kex is the

strength of the repulsive potential, rfex the closest dis-
tance between two contour bond segments of differ-
ent flagella [49], and rbex that between a flagellum seg-
ment and the body-center line. We set rfex = 0.25a and
rb
ex = (db + a)/2.

2.2 Fluid model: multiparticle collision dynamics
(MPC)

In MPC, the fluid is represented by point particles
of mass m, whose dynamics proceeds in alternating
steps—streaming and collision—updating the particle
positions ri and velocities vi (i = 1, . . . , N), respec-
tively [31,32,50]. In the streaming step, the MPC fluid
particles move ballistically during a collision time h and
their positions are updated as

ri(t + h) = ri(t) + hvi(t). (4)

Coupling and momentum exchange between particles
takes place in the collision step. Here, the particles are
sorted into the cells of a cubic lattice of mesh size a,
which defines the local interaction environment. The
velocities of the fluid particles after the collision in a
cell, vi(t + h), are given by [51,52]

vi(t + h) = vcm(t) + R(α)vi,cm(t) − ri,cm

×
[

mI−1
∑

j∈cell

rj,cm×(vj,cm − R(α)vj,cm)

]

,

(5)

within the angular-momentum-conserving stochastic-
rotation-dynamics variant of MPC (MPC-SRD+a) [51,
52]. In this equation, R(α) represents the rotation
matrix of the relative velocity of the ith particle,
vi,cm(t+h) = vi(t+h)−vcm(t+h), after streaming with
respect to the center-of-mass velocity of the cell, vcm,
by a fixed angle α around a randomly oriented axis [53].
The orientation of the axis is chosen independently for
every cell and collision step. I is the moment-of-inertia
tensor of the particles in the cell center-of-mass refer-
ence frame, and ri,cm(t + h) = ri(t + h) − rcm(t + h)
is the position of the ith particle with respect to the
center-of-mass position, rcm, of the particles in the
cell. Discretization of space in collision cells breaks
Galilean invariance, which is restored by a random shift
of the collision lattice at every collision step [54]. In
order to maintain a constant temperature, the cell-
level Maxwell–Boltzmann-scaling canonical thermostat
(MBS) is applied [53]. The MPC algorithm is highly
parallel, therefore we employ a graphics processor unit
(GPU)-based version for a high performance gain [55].

2.2.1 Coupling the bacterium and MPC fluid

The coupling of the bacterium and the MPC fluid parti-
cles is established in the MPC collision step, where bac-
terial beads are treated similar to MPC particles and
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their velocities are also rotated according to Eq. (5).
The center-of-mass velocity of a collision cell is then

vcm =
1

mNc + MN c
c

⎛

⎝
Nc∑

i=1

mvi +
Nc

c∑

k=1

Mvc
k

⎞

⎠ , (6)

where Nc is the number of MPC particles, N c
c the num-

ber of bacterial cell beads in the particular collision cell,
and vc

k is the velocity of a bacterial bead. With this cou-
pling, we ensure the momentum transfer between the
bacterial body, flagella, and the fluid. Fluid particles
freely penetrate the body surface. However, the colli-
sional coupling suffices to drag the fluid particles inside
the body along when it moves. We even satisfactorily
achieve no-slip boundary conditions by this coupling as
demonstrated for a sedimenting spherical colloid [56].

2.3 Parameters

Simulation parameters The three elastic constants are
chosen as K1

el = K2
el = K3

el = 5 × 104 kBT , where
kB is the Boltzmann constant and T the tempera-
ture. This yields a bending stiffness of 2 × 10−23 N
m2, which is consistent with the experimental range of
10−24−10−21 N m2 [28,43,47,57,58]. The torque mod-
ulus for the rotation of the flagella is set to |T | =
350 kBT = 1450 pN nm [28,29], smaller than the stall
torque of the rotary motor of flagella in E. coli, which
is approximately 4500 pN nm [59]. The strength of the
bond potential, Kb, and the excluded–volume interac-
tion, Kex, are chosen as Kb = Kex = 104kBT/a2.

The length, mass, and energy unit are chosen as to
the length of a collision cell, a, the mass of a MPC parti-
cle, m, and the thermal energy, kBT . We mean number
of particles in a collision cell is set to 〈Nc〉 = 10, the
rotation angle to α = 130◦, and the collision time to
h = 0.05

√
ma2/(kBT ). These parameters yield a fluid

viscosity of η = 7.2
√

mkbT/a2. Newton’s equations of
motion for the bacterial beads of mass M = 5m are
integrated by the velocity-Verlet algorithm with the
time step Δt = 0.002

√
ma2/(kBT ). Periodic bound-

ary conditions are applied with a cubic simulation box
of side length LB = 200a3. We perform 106 MPC steps
for every realization. By this time, stationary bundles
and a stationary swimming state are assumed.

Bacterial shape parameters The spectrum of B. subtilis
morphologies is wide, owing to their ubiquity and large
genomic diversity [23]. In particular, the ranges of body
length and the number of flagella are wide. Moreover,
prokaryotic flagella are far from being static objects,
but are rather dynamic [60]. Several length-control and
assembly models for the extracellular part of a flag-
ellum have been suggested, but the underlying mech-
anism is still unclear [61]. The filament length is also
affected by damage, especially when the swimming bac-
terium is exposed to external stresses, e.g., due to con-
finement. Flagella broken by mechanical shearing (e.g.,
during sample preparation) are able to regrow in similar

Gram-negative species such as E. coli [60] and S. enter-
ica [62,63]. Other stresses can provoke irreversible dam-
age to the flagella [64]. For our B. subtilis-like model
bacterium, the cylindrical part of the body consists
of 103 circles of diameter db = 9a with 101 central
particles, and 18 rings for the two semi-spherical end
caps, which yields the body length lb = 62a. The thick-
ness of a flagellum is determined by the range of the
excluded–volume interactions between the flagella, i.e.,
rfex = 0.25a. With the relation a ≈ 0.1µm [28], these
parameters correspond to the values listed in Table 1,
well within experimentally determined ranges. B. sub-
tilis cells of 4µm length synthesize up to 20 basal bodies
[7,65].

2.4 Flagellar surface distribution patterns

We study three different anchoring patterns for the flag-
ella: random, helical, and on rings (Fig. 2). No flagella
are placed in the cap region.

(i) Random anchoring—For the random anchoring, an
arbitrary bead of the cylindrical part of the body
is selected. We consider 50 independent realizations
for each of the six flagellum lengths.

(ii) Helix—The points along a helix are given by

ri = (rb cos ϕi, rb sin ϕi, iΔh)T (7)

in Cartesian coordinates, with the cell body oriented
along the z-axis of the Cartesian reference frame,
and the body radius rb = db/2. The angle ϕi =
2πΔ(i − 1)/30 (i ∈ {1, Nf}), is the angle between
the possible 30 anchoring points along a bead circle
measured from a starting value We consider realiza-
tions with an odd number of body beads between
subsequent anchoring sites, i.e., Δ = 3, . . . , 29) and
the values Δh/a = 6 and 7. The first anchoring
point is placed on the 3rd ring of a cell’s cylindrical
body part.

(iii) Rings—The most symmetric arrangement with the
combination of 4–3–3–4 flagella placed on four rings
is fore-aft symmetric with respect to the body’s
main axis [7]. Specifically, the distances Δz = 32,
27, and 21 beads between the rings along the cylin-
der axis are considered. In addition, other combina-
tions are studied, with a relative phase shift of the
anchoring points on the various rings with respect
to each other.

In every case, the flagellum lengths Lf/a = 50, 55, 60,
65, 70, and 75 are considered.

3 Flagellar bundling

Initially, flagella are anchored on the cell body accord-
ing to the patterns described in Sect. 2.4 and the param-
eters of Table 1, with the individual flagella oriented
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Table 1 Parameters for B. subtilis-like bacterial cells applied in the simulations and from experiments for the body length,
lb, diameter, db, the number of flagella, Nf , and their average length, 〈Lf 〉

Simulations Exp. range Refs.

lb 6.2 µm 4.0–6.5 µm [5,66–68]
db 0.9 µm 1.0 ± 0.1 µm [21,67,68]
Nf 14 5–25 [5,19,66,67]
〈Lf 〉 5–7.5 µm � 8.5 µm [67]

The provided experimental values are taken from the listed references

Fig. 2 Sketch of flagellar anchoring patterns of peritric-
hous bacterial cell bodies: (left) random, (middle) helical,
and (right) rings. Anchoring points are indicated as red dots.
In B. subtilis, flagella are discouraged to grow at the poles,
and the surface density of flagella is fore-aft symmetric [7]

perpendicular to the cell–body surface, i.e., pointing
radially outward. By applying independent counter-
clockwise torques, T , the flagella start rotating, syn-
chronize their rotation, and eventually form a bundle
[37]. We define a bundle as composed of at least two
flagella, which overlap by several backbone segments
(> 2) and do not simply touch or cross.

3.1 Probability distribution of number of bundles

The emergent bundle configurations are classified into
three categories: a single main bundle (1B) (Fig. 3a),
two bundles (2B) of V-shaped structure (Fig. 3b, c)—
in analogy of experimental findings [25]—, and “other”

as illustrated in Fig. 3d–f. Under the term “other,” we
collect realizations, where no bundle is formed, which
means cells with individual flagella only, or multiple
occurrences of structures with two intertwined flag-
ella. In addition and more frequently, “other” realiza-
tions comprise structures, where bundles appear with
an angle close to 90◦ between the body and the bun-
dle axes (Fig. 3d, e), i.e., the bundle points radially
outward from the cylindrical body. The classification
is certainly not unique and some of the configurations
may change with time. Even more, various of the appar-
ent “odd” bundle arrangements yield reasonably well-
swimming cells. An example is shown in Fig. 3d for
random anchoring. The cell moves while the body spins
around a minor cylinder axis.

Figure 4 displays the average probability of single-,
two-bundle, and “other” configurations for the con-
sidered anchoring patterns and all realizations. Evi-
dently, the probability of a particular configuration
depends on the anchoring pattern. “Other” structures
are most likely for random anchoring, whereas for ring-
like arrangements single bundles are most probable.
A closer consideration of the latter structures shows
that there are less flagella involved in the main bundle

Fig. 3 Classification and examples of bundle configura-
tions. a Single bundle for helical anchoring. b Two rather
symmetric V-shaped bundles for random anchoring. c Two
asymmetric V-shaped bundles for helical anchoring. Cells
(b) and (c) swim rather well. d “Other” configuration with

three bundles pointing almost normally outward from the
cell body for helical anchoring. e “Other” configuration with
three bundles for random anchoring. f “Other” configura-
tion of a hardly swimming cell with a single rudimentary
bundle for flagellar anchoring on rings

123



17 Page 6 of 12 Eur. Phys. J. E (2021) 44 :17

Random Helix Rings
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Fr

eq
ue

nc
y

Other
1 Bundle
2 Bundles

Other
1 Bundle
2 Bundles

Fig. 4 Relative occurrence of single-, two-bundle, and
“other” configurations for the various anchoring schemes
(random, helix, ring). Averages are presented for all consid-
ered flagellar lengths and anchoring patterns as described
in Sect. 2.4

compared to other anchoring patterns, and they belong
essentially to one ring at the rear of the cell. V-shaped
structures of two bundles are nearly equally probable
for all patterns, but are least likely for all patterns.
Structures with more than two bundles in a V-shape
configuration [25] are hardly observed in simulations
within this model and the chosen parameter ranges. In
general, we observe multiple bundles with two or more
flagella most often wrapped around the cell body.

3.2 Probability distribution of number of bundles:
length dependence

The probability of forming a particular bundle depends
on the flagellum length Lf , as shown in Fig. 5. The
probability of “other” configurations is highest for
shorter flagella and decreases with increasing Lf . On
the contrary, cells equipped with flagella much longer
than the body length form typically a single main bun-
dle. Two bundles are most likely for short flagella and
their probability decreases with increasing flagellum
length.

The occurrence of the various configurations depends
strongly on the anchoring pattern. For random anchor-
ing, the rate for “others” drops slightly with increasing
Lf , but is significant for all lengths. The two-bundle
probability drops with increasing flagellar length to a
rather small value. As a consequence, the likelihood for
a single bundle increases and approaches a nearly con-
stant value for Lf/a � 60. A similar trend is obtained
for the helical pattern, however, with a stronger drop
of the probability of “other” configurations, but a small
reminiscent probability for two bundles and a high
probability for a single bundle. The most pronounced
length dependence follows for ring patterns, where the
“other” and two-bundle probability drops to zero with
increasing Lf , and only cells forming a single main bun-
dle are present. For rings, a major change occurs when
the flagellum length exceeds the body length, i.e., for
Lf � 6µm. Here, bundles are preferentially formed at
the rear part of the cell body—rear in the sense of the

0.0
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1.0
Random Oth. 1B 2B

0.0

0.5

1.0

P
ro

ba
bi

lit
y Helix

5.0 5.5 6.0 6.5 7.0 7.5
Lf/μm

0.0

0.5

1.0
Rings

Fig. 5 Dependence of the bundle probability (1B, 2B,
“others”) on the flagellum length for (top) random, (mid-
dle) helical, and (bottom) ring-like arrangements of flagella.
The lines are guides for the eye

0 30 60 90
Ω/deg

0.0

2.5

5.0

7.5

P
(Ω

)
×1

02

Others
1 Bundle

2 Bundles

Fig. 6 Distribution function, P (Ω), of the wobbling angle,
Ω, for single-, two-bundle, and “other” configurations. The
area under the individual curves is unity

finally formed bundle at this part, which is governed
by the counterclockwise rotation of the flagella—and
include mainly flagella from the ring at the rear part.

3.3 Wobbling angle

Flagellar bundles are typically inclined with the cell–
body cylinder axis (Fig. 3), which implies cell wobbling,
i.e., precession of the cell–body major axis around the
swimming direction [30,47,70–73]. Figure 6 shows the
dependence of the wobbling angle, Ω, on the swim-
mer configuration, where Ω follows from the product
〈eb · es〉 = cos Ω of the unit vectors of the body main
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Fig. 7 Box plot of the dependence of the average wobbling
angle on the anchoring pattern for single-, two-bundle, and
“other” configurations [69]. Bullets represent the individ-
ual realizations. The lines indicate averages over the various
lengths. The gray and green boxes for a particular length
are shifted with respect to the red one for better visibility

axis, eb, and the swimming direction, es. The average is
taken over a cell’s trajectory. The probability distribu-
tion functions for single- and two-bundle configurations
are rather similar, whereas that for “other” configura-
tions is shifted to larger Ω. Noteworthy, the distribu-
tion of “other” configurations exhibits a long tail with
rather large angles. The mean values Ω̄ for the vari-
ous anchoring patterns are Ω̄ = 21o (1B, 2B) and 42o

(“other”). The single-bundle and two-bundle configura-
tions yield the same average, whereas Ω̄ of “other” is
about twice larger. This indicates a strong inclination
of the propulsion direction with the body axis.

Figure 7 displays the dependence of the wobbling
angle on the flagellum length for the various anchor-
ing patterns. There is only a weak dependence of Ω
on Lf for all bundles and anchoring patterns. However,
the variance of Ω for “other” configurations is typically
significantly larger than that of single- and two-bundle
configurations.

The wobbling angles of the considered long cell with
a rather large number of flagella are larger than those
of the E. coli cells considered experimentally [72,73]
and in simulations [30]. The shorter cell body of E.
coli favors bundle formation at the rear part of the cell
and a more parallel alignment of cell body and flag-
ellar bundle, and correspondingly weak wobbling [29].
Specifically for short flagella, this is not the case for
the longer cells and bundles are correspondingly more
oblique with respect to the body main axis, implying
larger wobbling angles.
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Fig. 8 a Probability distribution, P (ω), of the wobbling
frequency, ω, for single-, two-bundle, and “other” configu-
rations. The distribution functions are normalized such that
the area is unity. b Scatter plot of the wobbling frequency
and the wobbling angle. The different symbols and colors
indicate the various anchoring patterns and number of bun-
dles, respectively. In particular, cyan symbols correspond to
backward swimming realizations. The dashed lines indicate
average values

3.4 Wobbling frequency

The distribution function of the wobbling frequency
ω = 2π/τ , where τ is the time for a full rotation of the
cell body around the swimming direction during pre-
cession, is displayed in Fig. 8a. Single- and two-bundle
configurations exhibit a rather broad distribution of fre-
quencies, whereas P (ω) of “other” configurations shows
a narrow peak in the vicinity of ω/

√
ma2/(kBT ) ≈

6 × 10−4 with a long tail toward larger ω.
The distribution function of the two-bundle config-

urations is rather coarse, because the number of such
configurations is small. Here, more realizations are nec-
essary to achieve a smooth function.

The mean values ω̄ for the various anchoring patterns
are ω̄/

√
ma2/(kBT ) ≈ 9×10−4 (“other”) and 1.4×10−3

(1B, 2B). The single- and two-bundle swimmers show
a 1.5 times higher ω, which is related to their smaller
wobbling angle as reflected in Fig. 8b.

Figure 8b indicates a strong dependence of the wob-
bling frequency on the wobbling angle. In general,
ω decreases with increasing Ω, with little difference
between single- and two-bundle configurations. Consis-
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Fig. 9 a Probability distribution, P (v), of the magni-
tude of the swimming speed, v, for single-, two-bundle,
and “other” configurations. All configurations are included,
independent of the anchoring pattern and the length of the
flagella. A distribution function is normalized such that the
area is unity. b Scatter plot of the swimming speed and
the wobbling angle. The different symbols and colors indi-
cate the various anchoring patterns and number of bun-
dles, respectively. In particular, cyan symbols correspond to
backward swimming realizations. The dashed lines indicate
average values

tent with Figs. 6 and 8a, “other” configurations show
larger Ω and lower frequencies. Noteworthy, we find var-
ious bundle arrangements, where cells swim backward,
independent of the anchoring pattern (cyan symbols in
Fig. 8b), where backward means in the direction of a
bundle at the rear part of a cell. So far, we don’t have
a satisfactory explanation of the phenomenon, but the
effect should be related to the wrapping around the cell
body.

4 Cell dynamics

4.1 Swimming speed

The distribution function, P (v), of the swimming
speed, v, is displayed in Fig. 9a, where v is calculated
from the fairly linear displacement of a cell’s center-
of-mass after stationary swimming is assumed, where
the displacement can reach several body lengths; explic-

0

1

2

3
Random

0

1

2

3

v
×
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m
/k

B
T Helix

5.0 5.5 6.0 6.5 7.0 7.5
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1
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3
Rings Other 1B 2B

Fig. 10 Box plot of the dependence of the swimming
speed on the anchoring pattern for single-, two-bundle, and
“other” configurations [69]. Bullets represent the individ-
ual realizations. The lines indicate averages over the various
lengths. The gray and green boxes for a particular length
are shifted with respect to the red one for better visibility

itly, v is the ratio of that displacement and the corre-
sponding time interval. Note that a few no-swimming
realizations are disregarded in this analysis. Since the
cells swim ballistically on average (Fig. 12), the dis-
placement grows essentially linearly with time. The
swimming speed depends moderately on the kind of
emerging bundle (Fig. 9a). The “other” configurations
exhibit a broad peak with a maximum at v/

√
kBT/m ≈

5.5 × 10−4 and a long tail toward larger velocities. The
distribution function for single-bundle configurations is
more symmetric, but similarly broad. The probability
distribution of two-bundle configurations is very broad
and shows several groups; the latter is most likely a
consequence of the rare appearance of such configura-
tions. Correspondingly, the average swimming speed,
v̄/

√
kBT/m ≈ 1.3×10−3, is largest for two-bundle con-

figurations and reduces to v̄/
√

kBT/m ≈ 1.1 × 10−3

and 8 × 10−4 for single-bundle and “other” configura-
tions, respectively. Hence, cells with two-bundles swim
approximately 60% faster than cells with “other” con-
figurations, but show little dependence on the anchoring
pattern.

As shown in Fig. 9b, the swimming speed decreases
with increasing wobbling angle, in particular for single-
and two-bundle configurations. Overall, the backward
swimming realizations show the smallest average swim-
ming speed.
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Fig. 11 Trajectories of the body center of mass for the
flagellar arrangements displayed in Fig. 3. Initially, all cells
are localized at “Start.” The “oscillation” amplitudes, which
are significantly smaller than the body length, reflect the
extent of wobbling

4.2 Swimming speed as function of flagellum length

In general, we find a weak dependence of the swimming
speed on the flagellum length, as displayed in Fig. 10.
Cells with shorter flagella (Lf < 5.5µm) swim slower
by trend, which is most pronounced for helical and ring
arrangements, and “other” and single-bundle configura-
tions. With increasing flagellar length, the effect disap-
pears and the swimming speed becomes independent of
Lf . We assume that a stronger (frictional) interaction
of the short flagella with the cell body leads to a less
effective propulsion and, hence, to a smaller swimming
speed.

Unexpectedly, the swimming speed for the ring pat-
tern is slowest. At a first glance, we could have expected
that the flagella of the rear ring would form a bun-
dle nearly aligned with the cell body resulting in effi-
cient propulsion. However, this seems not to lead to effi-
cient swimming or is counteracted by the interactions
of other flagella with the body. In general, the largest
swimming speeds for single-, two-bundle, and “other”
configurations are achieved for random anchoring.

4.3 Mean-squared displacement of the cell body

The different extent of bundling leads to a significant
disparity in the cell dynamics. This is reflected in the
trajectories displayed in Fig. 11. The cell with the sym-
metric two bundles shows the smoothest, most straight
trajectory, and the largest displacement. Similarly, the
cell with the single major bundle swims rather straight
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Fig. 12 Mean-square displacement of the center of mass
of the cell body for the various anchoring patterns and bun-
dle configurations. Inset: mean-square displacements for the
particular structures presented in Fig. 3

and fast. Cells with “other” configurations swim along
helical-like trajectories, which can show rather large
amplitudes reflecting the extent of wobbling.

Figure 12 presents the mean-square displacement
(MSD) of the cell–body center of mass for the vari-
ous anchoring patterns and bundle configurations. The
time interval of bundle formation at the beginning of
the simulation is excluded from the analysis. MSDs
are calculated from stationary states, where only fur-
ther minor bundle adjustments occur. For short times,
t/

√
ma2/(kBT ) ≈ 102, most of the cells exhibit a very

similar ballistic motion. The plateau-like regimes for
longer times are a consequence of the cells’ wobbling
motion; here, the MSD corresponds to about half a
period of the oscillations as, e.g., visible in Fig. 11. For
even longer times, again a (nearly) ballistic motion is
obtained [3], but with a wider range of MSDs, reflect-
ing the disparity of swimming speeds of the different
bundle configurations and anchoring patterns. Similar
to the swimming speed displayed in Figs. 9 and 10, the
MSD is largest for two-bundle configurations for each
of the anchoring patterns. Most remarkably, however,
is the fact that random anchoring in any case yields
the largest MSD. Overall, the majority of the consid-
ered realizations exhibit swimming at longer times, i.e.,
they move ballistically. An exception is “other” configu-
rations for ring anchoring (gray dotted line). Here, the
MSD is not increasing quadratically with t for times
t/

√
ma2/(kBT ) > 2 × 104, reflecting their reduced

swimming abilities. On much longer time scales, longer
than the inverse of the rotational diffusion coefficient
of a cell, the MSD will crossover to an active diffusive
motion. However, rotational diffusion of even the cell
body around its minor axis is very slow and, hence, the
diffusive regime will be hardly reached in our simula-
tions. The inset of Fig. 12 shows MSDs for the confor-
mations displayed in Figs. 3 and 11. The disparity of
the various curves emphasizes the strong dependence
of the cell’s swimming ability on the particular flagellar
organization.
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5 Summary and conclusions

We have performed intensive simulations to study bun-
dle formation and the swimming speed of B. subtilis-
like bacteria with various flagellar anchoring patterns,
namely random, helical, and anchoring on rings. The
various flagellar arrangements reveal distinct differences
in terms of the formation of flagellar bundles and the
swimming speed. By our definition of a bundle con-
sisting of at least two flagella, we find preferentially
cell conformations with single and two bundles of V-
shape. In addition, there are cell configurations with
many individual flagella and/or further bundled flag-
ella, which we classify as “other.” In experiments, up to
four bundles for B. subtilis have been reported [25]. We
can think of several reasons for the discrepancy with
our simulations. First, the flagellum length and num-
ber in experiment and simulations could be different.
Second, the flagella in experiments are not of uniform
length; length dispersion, specifically, the presence of
very long or short flagella may promote formation of
multiple bundles. Third, the flagella in biological sys-
tems grow with time, i.e., the flagellar length varies with
time. The effect of polydispersity in flagellum length on
flagellar bundling is unclear and remains to be eluci-
dated. Fourth, identification of a bundle, rather than
individual flagella or groups of nearby (non-bundled)
flagella, might be difficult in an experiment. In addition,
we characterize peculiar structures as “other,” where a
cell even with several bundles may hardly swim, swim
backward, or might even spin around a minor axis with
bundles essentially normal to the cell–body major axis.
Naturally, the number of bundles and their orientation
with respect to the cell body can change with time,
an aspect not taken into account in the present study,
where the bundling state has been classified after a cell
reached a stationary swimming sate.

In terms of anchoring patterns, ring arrangements
show a preference for single bundles, in particular when
the flagellum length exceeds the body length. In cells
with randomly anchored flagella, the probability of
“other” configurations slightly dominates over single-
bundle configurations. In any case, the likelihood for
V-shaped bundles is significantly smaller.

Single- and two-bundle configurations imply similar
average wobbling angles, which are significantly smaller
than that of “other” configurations. The latter is a con-
sequence of the often rather oblique orientation of the
flagella with respect to the body axis, independent of
the anchoring pattern. This leads to lower wobbling fre-
quencies of the “other” configurations. Most important,
the swimming speed of “other” configurations is also
smaller than those of single-and two-bundle configu-
rations. The largest swimming speed follows for two-
bundle configurations. Interestingly, the highest aver-
age swimming speeds are obtained for random anchor-
ing, for all bundle structures. The relation between the
swimming speed and the wobbling angle (Fig. 9b) is in
qualitative agreement with experimental results [25]. In
both studies, v decreases with increasing Ω. However,

the most probable wobbling angle is smaller in experi-
ments compared to our value. This is, at least partially,
related to the pronounced V-shape structures in experi-
ments. As pointed out, a V-shape bundle arrangements
exhibit small wobbling angles in simulations.

Our studies strongly suggest that there is no advan-
tage of a regular flagellum anchoring pattern in terms of
swimming speed. In contrast, random anchoring allows
to form single- and two-bundle configurations resulting
in faster cell swimming than regular anchoring patterns.
This faster motion seems to be related (to some extent)
to a larger wobbling angle, which suggests that a nar-
row distribution of flagella close to the cell body is of
disadvantage for swimming by a more pronounced fric-
tional interaction between flagella and cell body.
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