Skip to main content
Log in

Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

It has been accepted that low-frequency vibrational modes are causally correlated to fundamental plastic rearrangement events in amorphous solids, irrespective of the structural details. But the mode-event relationship is far from clear. In this work, we carry out case studies using atomistic simulations of a three-dimensional Cu50Zr50 model glass under athermal, quasistatic shear. We focus on the first four plastic events, and carefully trace the spatiotemporal evolution of the associated low-frequency normal modes with applied shear strain. We reveal that these low-frequency modes get highly entangled with each other, from which the critical mode emerges spontaneously to predict a shear transformation event. But the detailed emergence picture is event by event and shear-protocol dependent, even for the first plastic event. This demonstrates that the instability of a plastic event is a result of extremely complex multiple-path choice or competition, and there is a strong, elastic interaction among neighboring instability events. At last, the generality of the present findings is shown to be applicable to covalent-bonded glasses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and Kinetics of Slip (Pergamon Press, New York, Oxford, 1975)

  2. X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464, 877 (2010)

    ADS  Google Scholar 

  3. H. Song, D. Dimiduk, S. Papanikolaou, Phys. Rev. Lett. 122, 178001 (2019)

    ADS  Google Scholar 

  4. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)

    ADS  Google Scholar 

  5. Y.Z. Lu, M.Q. Jiang, X. Lu, Z.X. Qin, Y.J. Huang, J. Shen, Phys. Rev. Appl. 9, 014023 (2018)

    ADS  Google Scholar 

  6. S. Patinet, D. Vandembroucq, M.L. Falk, Phys. Rev. Lett. 117, 045501 (2016)

    ADS  Google Scholar 

  7. Z. Schwartzman-Nowik, E. Lerner, E. Bouchbinder, Phys. Rev. E 99, 060601 (2019)

    ADS  Google Scholar 

  8. E.D. Cubuk et al., Phys. Rev. Lett. 114, 108001 (2015)

    ADS  Google Scholar 

  9. X. Yang, R. Liu, M. Yang, W.-H. Wang, K. Chen, Phys. Rev. Lett. 116, 2388003 (2016)

    Google Scholar 

  10. J. Zylberg, E. Lerner, Y. Bar-Sinai, E. Bouchbinder, Proc. Natl. Acad. Sci. U.S.A. 114, 7289 (2017)

    ADS  Google Scholar 

  11. R. Shi, P. Xiao, R. Yang, Y. Bai, Int. J. Solids Struct. 191-192, 363 (2020)

    Google Scholar 

  12. D.L. Malandro, D.J. Lacks, Phys. Rev. Lett. 81, 5576 (1998)

    ADS  Google Scholar 

  13. C. Maloney, A. Lemaitre, Phys. Rev. Lett. 93, 195501 (2004)

    ADS  Google Scholar 

  14. C.E. Maloney, A. Lemaitre, Phys. Rev. E 74, 016118 (2006)

    ADS  Google Scholar 

  15. M. Tsamados, A. Tanguy, C. Goldenberg, J.-L. Barrat, Phys. Rev. E 80, 026112 (2009)

    ADS  Google Scholar 

  16. S. Karmakar, A. Lemaitre, E. Lerner, I. Procaccia, Phys. Rev. Lett. 104, 215502 (2010)

    ADS  Google Scholar 

  17. R. Dasgupta, S. Karmakar, I. Procaccia, Phys. Rev. Lett. 108, 075701 (2012)

    ADS  Google Scholar 

  18. J. Rottler, S.S. Schoenholz, A.J. Liu, Phys. Rev. E 89, 042304 (2014)

    ADS  Google Scholar 

  19. M. Ovaska, A. Lehtinen, M.J. Alava, L. Laurson, S. Zapperi, Phys. Rev. Lett. 119, 265501 (2017)

    ADS  Google Scholar 

  20. C.-C. Vu, D. Amitrano, O. Ple, J. Weiss, Phys. Rev. Lett. 122, 015502 (2019)

    ADS  Google Scholar 

  21. J. Ding, Y.-Q. Cheng, H. Sheng, M. Asta, R.O. Ritchie, E. Ma, Nat. Commun. 7, 13733 (2016)

    ADS  Google Scholar 

  22. N. Xu, V. Vitelli, A.J. Liu, S.R. Nagel, EPL 90, 56001 (2010)

    ADS  Google Scholar 

  23. M.L. Manning, A.J. Liu, Phys. Rev. Lett. 107, 108302 (2011)

    ADS  Google Scholar 

  24. J. Ding, S. Patinet, M.L. Falk, Y.Q. Cheng, E. Ma, Proc. Natl. Acad. Sci. U.S.A. 111, 14052 (2014)

    ADS  Google Scholar 

  25. H. Tong, N. Xu, Phys. Rev. E 90, 010401 (2014)

    ADS  Google Scholar 

  26. H. Tong, H. Hu, P. Tan, N. Xu, H. Tanaka, Phys. Rev. Lett. 122, 215502 (2019)

    ADS  Google Scholar 

  27. B. Xu, M.L. Falk, J.F. Li, L.T. Kong, Phys. Rev. Lett. 120, 125503 (2018)

    ADS  Google Scholar 

  28. J. Yang, Y.-J. Wang, E. Ma, A. Zaccone, L.H. Dai, M.Q. Jiang, Phys. Rev. Lett. 122, 015501 (2019)

    ADS  Google Scholar 

  29. D. Wei, J. Yang, M.Q. Jiang, B.-C. Wei, Y.-J. Wang, L.-H. Dai, Phys. Rev. B 99, 014115 (2019)

    ADS  Google Scholar 

  30. D. Wei et al., J. Chem. Phys. 150, 114502 (2019)

    ADS  Google Scholar 

  31. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, P. Popel, Philos. Mag. 89, 967 (2009)

    ADS  Google Scholar 

  32. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Nat. Commun. 5, 3275 (2014)

    Google Scholar 

  33. P. Cao, M.P. Short, S. Yip, Proc. Natl. Acad. Sci. U.S.A. 116, 18790 (2019)

    ADS  Google Scholar 

  34. B. Shang, P. Guan, J.-L. Barrat, Proc. Natl. Acad. Sci. U.S.A. 117, 86 (2019)

    ADS  Google Scholar 

  35. J.D. Eshelby, Proc. R. Soc. London, A 241, 376 (1957)

    ADS  MathSciNet  Google Scholar 

  36. E. Lerner, G. Düring, E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016)

    ADS  Google Scholar 

  37. H. Mizuno, H. Shiba, A. Ikeda, Proc. Natl. Acad. Sci. U.S.A. 114, E9767 (2017)

    ADS  Google Scholar 

  38. L. Wang, A. Ninarello, P. Guan, L. Berthier, G. Szamel, E. Flenner, Nat. Commun. 10, 26 (2019)

    ADS  Google Scholar 

  39. A. Tanguy, B. Mantisi, M. Tsamados, EPL 90, 16004 (2010)

    ADS  Google Scholar 

  40. S.-X. Peng et al., J. Chem. Phys. 150, 111104 (2019)

    ADS  Google Scholar 

  41. E.D. Cubuk et al., Science 358, 1033 (2017)

    ADS  Google Scholar 

  42. A. Nicolas, E.E. Ferrero, K. Martens, J.-L. Barrat, Rev. Mod. Phys. 90, 045006 (2018)

    ADS  Google Scholar 

  43. D.F. Castellanos, M. Zaiser, Phys. Rev. Lett. 121, 125501 (2018)

    ADS  Google Scholar 

  44. L. Gartner, E. Lerner, Phys. Rev. E 93, 011001(R) (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Q. Jiang.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to the Topical Issue “Disordered, Non-Equilibrium Systems: From Supercooled Liquids to Amorphous Solids” edited by Marco Baity Jesi, Yuliang Jin, Elijah Flenner, Marisa A. Frechero, Gustavo A. Appignanesi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Duan, J., Wang, Y.J. et al. Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes. Eur. Phys. J. E 43, 56 (2020). https://doi.org/10.1140/epje/i2020-11983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11983-6

Keywords

Navigation