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Abstract. We derive approximate mean field equations for the fluid flow between elastic solids with ran-
domly rough surfaces including interfacial fluid slip and shear thinning. We present numerical results for
the fluid flow and friction factors for realistic systems, in particular, we consider the case of an elastic
cylinder with random surface roughness in relative sliding contact with a flat rigid (low-energy) counter-
surface. We present experimental data for the sliding friction between rubber stoppers and glass barrels
lubricated with baked-on silicone oil. We find that the frictional shear stress acting in the rubber asperity
contact regions is nearly velocity independent for velocities in the 10–1000 μm/s range, and very small
τf ≈ 0.04 MPa, while for bare glass in silicone oil τf is much larger and velocity dependent.

1 Introduction

Lubricated sliding friction is an important but very com-
plex topic. The sliding contact of elastic solids with
smooth surfaces in viscous fluids with simple rheology is
a well-understood problem [1]. However, real solids have
surface roughness on many length scales and most fluids
exhibit complex rheology when confined at narrow sepa-
ration between solid surfaces. Recently, theories, based on
the multiscale description of the contact dynamics, have
been developed for the sliding dynamics between solids
with random roughness on many length scales in fluids
with simple shear-thinning rheology [2–5].

In most applications it is assumed that the fluid at
the surface of a solid “stick” or adhere to the solid so
that the fluid and solid velocities coincide on the solid
walls. However, if the lateral (atomic) corrugation of the
interaction potential between the solid atoms and the fluid
molecules is small enough slip can occur at the interface.
This has been observed in many experiments by Krim
et al. [6–8] for the sliding of inert gas atoms on metal
and graphene surfaces. It is also expected for fluids which
exhibit a very large contact angle on the solid (strongly
hydrophobic systems). Another very important case are
polymer fluids such as silicone oils on smooth inert solids.
This can be understood from a very simple argument due
to de Gennes [9]: If a fluid slips relative to a flat solid
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wall, there will be a frictional shear stress acting on the
solid wall which, if the corrugated interaction potential is
small enough and the temperature high enough, will be
proportional to the slip velocity [10,11]

τv = Cv. (1)

The friction factor C will depend on the number of poly-
mer bed units in contact with the solid wall, but this num-
ber is (approximately) independent of the polymer chain
length. On the other hand, the viscosity of the polymer
fluid increases with increasing chain length. In particular,
for silicone oil it is possible to change the chain length,
and hence the fluid viscosity, over a huge range. If a fluid
is sheared (velocity v0) between two solid walls at the sep-
aration d, the shear stress τ = η(v0 − v)/d, where v0 is
the velocity of the upper solid surface relative to the lower
solid surface (see fig. 1). Here we have assumed that the
fluid “sticks” to the upper solid wall. Using that τ = τv

gives the slip velocity on the lower solid surface (z = 0):

v =
v0

1 + Cd/η
. (2)

Since C does not depend on the chain length it follows
that for long enough chain length Cd/η < 1 and the fluid
will slip on the lower solid wall with a velocity of order
the velocity of the upper solid wall. The quantity l = η/C
is denoted the slip length. If d � l the slip of the fluid
at the solid wall can be neglected resulting in an effective
“stick” boundary condition.
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Fig. 1. A fluid sheared between two flat parallel solid walls.
The fluid slips relative to the lower solid wall but is assumed to
stick to the upper solid wall. The slip length l is the distance
below the lower solid surface where the fluid velocity would
vanish when extrapolated linearly to negative z.

We note that the frictional shear stress τv will have the
simple form (1) only if the lateral corrugation of the in-
teraction potential between the solid wall atoms and the
fluid molecules is small enough so that thermal fluctu-
ations can rapidly transfer molecular segments over the
lateral energy barriers. This is typically the case when the
interaction potential between the fluid molecules and the
solid wall is very weak, and when the fluid molecules form
incommensurate-like structures on the solid walls. If this
is not the case, the fluid may still slip relative to a solid
wall if the viscous shear stress is large enough to overcome
the static or pinning shear stress necessary for the initia-
tion of fluid slip relative to the solid wall. In this case the
slip length l will depend on the shear velocity v0 so that
l ≈ 0 when the fluid shear stress is below some critical
value, ηv0/d < τc. In fact, computer simulations of sliding
of adsorbed layers [10, 11], and experiments for shearing
of fluids [12–20], have shown that there may exist several
dynamical transitions where the relation τv(v), and hence
the slip length, changes abruptly with increasing slip ve-
locity v. Thus in general we may consider the factor C
in (1) to depend on the slip velocity, C = C(v), so the
slip length l = η/C(v) will depend on the slip velocity. In
addition, for most fluids the viscosity η will depend on the
shear rate, so the slip length will depend on the shear rate
(and hence the slip velocity) also via the viscosity η term.

In this paper we study the influence of wall fluid slip
on the velocity dependence of the friction coefficient, the
so called Stribeck curve. We extend the wet contact me-
chanics theory developed elsewhere [2, 3] to include the
slip length, and present numerical results for different
slip lengths for realistic systems. We consider the case of
an elastic cylinder with random surface roughness sliding
against a flat rigid (low-energy) counter-surface. This is
representative, e.g., of the case of a rubber cylinder slid-
ing against a glass surface with baked-on silicone oil, in a
shear-thinning fluid such as silicone oil. We show how the
fluid flow and friction factors are affected by the interfacial
slip. We also present experimental results for the friction
force between the rubber stopper and the glass barrel in
syringes, where silicone oil is used as lubricant. The glass
barrel has “baked-on” silicone oil and we find that there
is fluid slip at the interface between the baked-on film and
the silicone oil.

2 Polymer fluid slip at interfaces

Most model studies of fluid slip at interfaces have used
high-viscosity silicone oils (Polydimethylsiloxan (PDMS)
polymer melts). Silicone oils are remarkable fluids with
very low surface tension (γ ≈ 0.02 J/m2), and with vis-
cosity which can be varied over a huge range, e.g., from
≈ 6 × 10−4 Pa s (less than that of water) to ≈ 104 Pa s
(1000 times higher than the viscosity of honey) by increas-
ing the chain length. Because of its low surface tension,
silicone oils wet most surfaces and are excellent lubricant
fluids. Silicone oils undergo shear thinning above a critical
shear rate which decreases with increasing chain length.
The shear thinning involves stretching (aligning) the chain
molecules along the shear direction.

In a recent study Henot et al. [21] have presented ex-
perimental results for high-viscosity silicone oil in con-
tact with a surface of fused silica covered by end-grafted
short PDMS chains, with a molecular weight well below
the molecular weight between entanglements. They found
that the slip length is proportional to the fluid viscos-
ity as predicted by l = η/C. This is the expected result
when the interaction between the PDMS chains and the
solid wall is so weak that the shear stress depends linearly
on the slip velocity as in (1). This linear relation is not
obeyed if the solid wall is covered by long-chain PDMS
molecules which can entangle with the PDMS molecules
in the fluid, see fig. 2(a). In this case one observes a transi-
tion to a disentangled interface at high enough shear rate
(similar to shear thinning). Entanglement can be avoided
if the PDMS chains are bounded parallel to the solid wall
(see fig. 2(b)), as may be the case for baked-on silicone
oil (see below). Another design consists of grafted chain
molecules which (energetically) “hate” the molecules in
the lubricant fluid so that a phase separation occurs at
the sliding interface (see fig. 2(c)) [22].

For PDMS melt against a glass surface coated with a
grafted layer of short PDMS chains, Henot et al. found
C ≈ 108 Pa s/m. Thus for silicone oil with viscosity η =
1Pa s we get a slip length l ≈ 10 nm. Another way to
passivate glass surfaces is with baked-on silicone oil (see
sect. 5). For glass with baked-on silicone oil the PDMS
molecules probably bind to the glass surface with the
chains partly oriented parallel to the surface. This may
result in a friction factor C which may be even smaller
than for the end-grafted layer used by Henot et al., result-
ing in a slip length even larger than 10 nm. Hence, slip at
the baked-on silicon oil film may have a large influence on
the sliding friction, and could result in a much lower slid-
ing friction force than calculated using the stick boundary
condition.

3 Fluid flow factors with slip

The Navier-Stokes equations are the basis for fluid dynam-
ics [23]. The fluid flow between narrowly spaced solid walls
can usually be described by the Reynolds equations [1]
which can be derived from the Navier-Stokes equations
assuming that the gap u(x, y) between the solids varies
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Fig. 2. The interaction between a fluid consisting of long-chain
molecules, and a solid surface with adsorbed chain molecules.
(a) The adsorbed molecules are of the same type as in the fluid
and attached to the wall in one or a few locations, and the
rest of the chain are interdiffused with the bulk fluid. (b) The
adsorbed chain molecules are of the same type as in the fluid
but bound at many locations with the molecule confined tightly
to the solid wall (like a snake on the ground). (c) The adsorbed
chain molecules (pink) are attached to the wall in one or a
few location but energetically do not like the fluid molecules.
In this case a phase separation occurs and a well-defined slip
plane occurs between the solid and the polymer fluid.

slowly with the lateral (x, y)-coordinates. Here we are in-
terested in fluid flow between solids with macroscopically
curved surfaces with roughness occurring at length scales
much smaller than the radius of curvature R of the macro-
scopic solids. In this case one can eliminate the surface
roughness and obtain effective equations where only the
macroscopic variation in the surface profile is explicitly
considered (see fig. 3) [2,3,24,25]. The effective equations
differ from the Reynolds equation by two functions of the
(locally averaged) surface separation ū(x, y), usually de-
noted as pressure and shear flow factors, φp(ū) and φs(ū),
respectively. In a similar way the frictional shear stress
will depend on three functions φf(ū), φfp(ū) and φfs(ū).
In ref. [25] we derived approximate expressions for the
fluid and friction factors assuming “stick” boundary con-
ditions. Here we will present a simple (approximate) way
to include fluid slip in the theory.

3.1 Fluid flow current

Assuming surface roughness with small root mean square
(rms) slope, the fluid momentum equation simplifies to

η
∂2v
∂z2

= ∇p.

Fig. 3. (a) Elastic block with surface roughness (green) sliding
on a flat surface (black). (b) If the macroscopic curvature R of
the surfaces of the solids is everywhere much larger than the
wavelength λ of the most long-wavelength (relevant) surface
roughness component, one may “integrate out” (eliminate) the
surface roughness and obtain effective fluid flow equations for
smooth surfaces. The effective fluid flow equations contain two
functions of the average interfacial separation ū(x, y) which
describe the influence of the surface roughness on the fluid
flow.

Let us introduce a coordinate system xyz with the xy
plane on the surface of the lower solid and with the z-axis
pointing towards the upper solid (see fig. 3(a)). Hence the
fluid velocity field

v =
1
2η

(
z2 + az + b

)
∇p + (c + dz)v0.

The boundary condition v = 0 for z = u(x) gives

v =
1
2η

(
z2 − u2 + a(z − u)

)
∇p + d(z − u)v0.

Next assume that the fluid shear stress acting on the sub-
strate

σzx = C[v0 − v(z = 0)].

Using that

σzx = −η
∂v
∂z

we get

a = − u2

u + l
, d = − 1

u + l

so that

v =
1
2η

(
z2 − u2 z + l

u + l

)
∇p +

u − z

u + l
v0. (3)
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The slip length l = η/C. The fluid flow current

J =
∫ u

0

dz v = − u3

12η

u + 4l

u + l
∇p +

1
2

u2

u + l
v0. (4)

Here we make the approximation and replace (u+4l)/(u+
1) with (ū + 4l)/(ū + 1), where ū = 〈u〉 is the ensemble
averaged interfacial separation. Performing a similar ap-
proximation for u/(u + l) we get

J =
∫ u

0

dz v = − u3

12η

ū + 4l

ū + l
∇p +

1
2
u

ū

ū + l
v0. (5)

We assume a separation of length scales where the surface
roughness occurs on length scales much smaller than the
macroscopic curvature radius of the bodies. In this case
we can integrate out the short-range surface roughness
and obtain an effective flow current, which only depends
on the macroscopic shape of the pressure and interfacial
separation. To do this we first write (5) as

J = − u3

12η∗∇p +
1
2
uv∗

0, (6)

where

η∗ =
ū + l

ū + 4l
η, (7)

v∗
0 =

ū

ū + l
v0. (8)

Note that η∗ and v∗
0 can be treated as constants when

integrating out the short-wavelength roughness. Hence we
can follow the procedure described elsewhere (see ref. [25])
and obtain

J̄ = − ū3φp

12η∗ ∇p̄ +
1
2
ūv∗

0 +
1
2
hrmsφsv∗

0, (9)

where the pressure flow factor φp and the shear flow factor
φs depend on the interfacial separation ū.

Using the definitions (7) and (8) we get

J̄ = −
ū3φ′

p

12η
∇p̄ +

1
2
ūv0 +

1
2
hrmsφ

′
sv0, (10)

where

φ′
p =

ū + 4l

ū + l
φp, (11)

φ′
s =

ū

ū + l

(
φs −

l

hrms

)
, (12)

where φp and φs are given in ref. [25].

3.2 Frictional shear stress

The fluid frictional shear stress on the surface z = 0 is

σzx = −η
∂v
∂z

=
1
2

u2

u + l
∇p +

η

u + l
v0. (13)

Thus

〈σzx〉 =
1
2

〈
u2

u + l
∇p

〉
+

〈
η

u + l

〉
v0. (14)

We write the ensemble averaged fluid shear stress as

〈σzx〉 = (φ′
f + φ′

fs)
η0v0

ū
+

1
2
φ′

fpū∇p̄. (15)

With this definition the friction factor

φ′
f =

ū

η0

〈
η

u + l

〉
. (16)

The friction factors φ′
fs and φ′

fp can be determined ap-
proximately as in ref. [2]. Assume that the contact area
percolates for the average interfacial separation ūc. When
the contact area percolates (i.e., for ū < ūc) the flow cur-
rent must vanish, J = 0, so that from (4)

〈
u2

u + l
∇p

〉
= 6

〈
ηu

(u + 4l)(u + l)

〉
v0 ≈

6
ū

ū + 4l

〈
η

u + l

〉
v0 = 6φ′

f

η∗
0

ū
v∗

0. (17)

Let us now assume ū � hrms and let us approximate

〈
u2

u + l
∇p

〉
≈ ū

ū + l
〈u∇p〉 .

For ū � hrms we can use the result for 〈u∇p〉 derived in
ref. [2]. We get

〈
u2

u + l
∇p

〉
≈ ū4

(ū + l)(ū2 + 3h2
rmsD)

∇p̄

+
6

(ū + l)ū2
h2

rmsDη∗
0v

∗
0. (18)

We can smoothly interpolate between the result (17)
and (18) using

〈
u2

u + l
∇p

〉
≈ ū3(ū − ūc)θ(ū − ūc)

(̄ū + l)(ū2 + 3h2
rmsD)

∇p̄

+
6η∗

0v
∗
0

ū/φ′
f +θ(ū−ūc)(ū−ūc)ū(ū+l)h−2

rmsD−1
.

(19)

Thus

φ′
fs =

3ū2/(ū + 4l)
ū/φ′

f + θ(ū − ūc)(ū − ūc)ū(ū + l)h−2
rmsD−1

(20)

and

φ′
fp =

ū2(ū − ūc)θ(ū − ūc)
(̄ū + l)(ū2 + 3h2

rmsD)
=

ū

ū + l
φfp. (21)
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Fig. 4. The power spectrum used in the theory calculations.
The dashed line has the slope −4 corresponding to the Hurst
exponent H = 1.

4 Numerical results

We consider the sliding of an elastic cylinder on a rigid
lubricated flat surface. The flat (rigid) surface is assumed
perfectly smooth, while the elastic cylinder has random
roughness with the surface roughness power spectra shown
in fig. 4. The surface roughness power spectrum is similar,
but with larger rms roughness (by a factor of ∼ 3), than
that typically found for the rib of a syringe rubber stop-
per (see sect. 5.1). We use this larger surface roughness
in this study since the smaller roughness results in some
numerical convergence problems (see sect. 5.2).

The lubricant fluid in the following calculations is as-
sumed to be a silicone oil with the small shear-rate vis-
cosities η0 = 1, 10 and 100Pa s. Silicone oils are known to
shear thin at large enough shear rate γ̇, and here we will
use

η =
η0

1 + (η0/η1)(γ̇/γ̇0)α
(22)

with γ̇0 = 1 s−1, η1 = 1.5 × 104 Pa s and α = 0.77, which
gives good agreement with measured viscosity data for
PDMS silicone oil [26, 27]. Below we assume η0 = 1Pa s
unless otherwise stated.

4.1 Fluid flow factors and friction factors

Using the equations above, we have calculated the pressure
and shear flow factors φ′

p and φ′
s, and the friction factors

φ′
f , φ′

fp and φ′
fs. In particular, the flow and friction factors

given by (11), (12), (16), (20) and (21) depend on the
average interfacial separation ū which was derived in [28].
The friction factors φ′

f and φ′
fs depend also on the quantity

〈
η

u + l

〉
=

∫ ∞

0

du
η

u + l
P (u)

where P (u) is the probability distribution of interfacial
separations. This function was derived in ref. [29] (see
also [30]).
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Fig. 5. Pressure and shear flow factors for the surface with
the power spectrum given in fig. 4.

In what follows we will, for simplicity, denote the flow
and friction factors given by (11), (12), (16), (20) and (21)
without the prime, i.e. by φ instead of φ′.

With the power spectrum given in fig. 4, we show re-
sults for the slip length l = 0 (red), l = 10nm (green),
l = 20nm (blue) and l = 30nm (pink) in figs. 5 and 6.
Note that in the present case the slip has only a very small
influence on the fluid pressure and shear flow factors. This
imply that the dependence of the average interfacial sep-
aration, the fluid and solid (normal) contact pressures,
and the area of (asperity) contact on the sliding speed are
nearly independent of the slip boundary condition. How-
ever, the fluid slip has a drastic influence on the friction
factors φf and φfs (see fig. 6(a) and (b)), and hence on the
friction force. This can be easily understood as follows.
Let us first consider φf when the slip length l = 0. In this
case, if we consider for simplicity a Newtonian fluid

φf = ū

〈
1
u

〉
,

where 〈. . .〉 stands for ensemble averaging, which in most
cases can be replaced by averaging over the interfacial
surface area. Consider the simplest case where the surface
separation takes only two values, say u1 and u2 each in half
of the total surface area (see fig. 7). In this case ū = 〈u〉 =
(u1 +u2)/2, while 〈u−1〉 = (1/u1 +1/u2)/2. Thus, if u1 �
u2 we get φf ≈ u2/u1 � 1. That is, φf is dominated by
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the surface area where the surface separation is very small,
typically of order nanometer. Now consider the influence
of the slip. In this case (assuming again a Newtonian fluid)

φf = ū

〈
1

u + l

〉
.

For the case studied above, assuming u1 + l � u2 + l, we
get φf ≈ u2/(u1 + l). Now if l is of order u1 or larger,
we obtain a large reduction in φf when slip occurs. Note
that φfs depends on φf so the same argument applies to
φfs.

u1u2

Fig. 7. The function ū〈u−1〉 is dominated by the contribution
from the region where the interfacial separation u is smallest
(here u = u1).

4.2 Stribeck curve

We consider the sliding of an elastic cylinder on a rigid
lubricated flat surface. Young’s elastic modulus of the
cylinder is E0 = 2.5MPa and its radius of curvature is
R = 0.4mm. The cylinder is squeezed against the flat sur-
face with a force per unit length FN/L = 200N/m. This
results in a Hertz contact area of width w = 0.35mm.
The maximum contact pressure is 0.73MPa and the aver-
age contact pressure is 0.57MPa.

The elastic cylinder has random surface roughness
with the surface roughness power spectrum given in fig. 4.
The cylinder is sliding with a constant speed v0 in the
x-direction (with the cylinder axis along the y-direction)
on a perfectly flat and lubricated surface. If we consider
the system in a reference frame where the cylinder is sta-
tionary, the fluid flow current satisfies dJx/dx = 0 or
Jx = v0u

∗/2 where u∗ is a constant. Using (10) we get

dp̄

dx
=

6ηv0

ū3φp(ū)
(ū + hrmsφs(ū) − u∗) . (23)

The expression for the friction force (which depends on
φf(ū), φfp(ū) and φfs(ū)) is given by (15); see also refs. [2]
and [3].

Hereinafter we will denote the (locally averaged) fluid
pressure p̄ as pfluid(x, t). When solving for the fluid flow
between macroscopic surfaces with roughness, in a mean-
field type of treatment one writes the local nominal pres-
sure (i.e., the pressure locally averaged over surface area
with linear dimension of order the wavelength λ0 of the
longest surface roughness component) as

p(x, t) = pfluid(x, t) + pcon(x, t),

where pfluid and pcon are the locally averaged nominal
fluid pressure and solid wall-wall contact pressure, re-
spectively. The fluid pressure satisfies (23), while the
contact pressure pcon can be related to the interfacial
separation ū(x, t) using the contact mechanics theory
of Persson (see refs. [2, 28–31]). In particular, for large
enough average surface separation it can be shown that
pcon ≈ βE exp(−ū/u0), where β and u0 can be calcu-
lated from the surface roughness power spectrum. We have
solved (23) together with the equation for the macroscopic
elastic deformations of the solids in response to the pres-
sure p(x, t). For more details see refs. [2, 31].

Figure 8 shows the smallest interfacial surface separa-
tion ūmin as a function of the sliding speed (log-log scale).
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of the sliding speed (log-log scale) for the (low strain-rate) fluid
viscosity η0 = 1, 10 and 100 Pa s.

In the calculations we have assumed no slip but, as pointed
out above, the average interfacial separation depends very
weakly on the slip boundary conditions so the results in
fig. 8 are nearly the same for finite slip. For large sliding
speeds hydrodynamic lubrication prevails, and here the
average surface separation increases with increasing slid-
ing speed because of the increase in the fluid pressure. As
the sliding speed is reduced one enters into the boundary
lubrication region where the external load is carried by
the asperity contact regions. For η0 = 1Pa s this occurs
already for v ≈ 10−5 m/s but for the fluids with higher
viscosity, the boundary lubrication region occurs for lower
velocities than considered in our study.

Figure 9 shows the kinetic friction coefficient as a
function of the logarithm of the sliding velocity for the
viscosity and slip length (a) η0 = 1Pa s, l = 10nm,
(b) η0 = 10Pa s, l = 100 nm, and (c) η0 = 100Pa s,
l = 1000 nm. The green lines are for l = 0. Here we have
assumed that the frictional shear stress in the rubber as-
perity contact regions is velocity independent and equal
to τf = 0.04MPa, as found for a rubber stopper on a glass
surface with baked-on silicone oil (see sect. 5.2).

Figure 10 shows the kinetic friction coefficient as a
function of the logarithm of the sliding velocity for the
slip length l = 0, 20 nm, 100 nm and 150 nm and with
η0 = 0.35Pa s. Note that the friction coefficient is in-
dependent of the velocity for v < 10−5 m/s. This is the
boundary lubrication region where the fluid hydrodynamic
pressure is too small to affect the friction force. For the
slip l = 0 there is a local maximum in μk(v) at v ≈ 2 cm/s.
This is due to shearing the lubrication film in the region
where the average surface separation is very small and re-
flects the large magnitude of the friction factors φf and
φfs. Since the contribution from shearing the lubrication
film in the region where the interfacial separation is very
small is strongly reduced when the slip-length l becomes
large enough, this explains why this peak disappears when
the slip length increases. This frictional shear flow peak
(for l = 0) has been observed in lubricated sliding fric-
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Fig. 9. The kinetic friction coefficient as a function of the
logarithm of the sliding velocity. Results are shown for the
viscosity and slip length (a) η0 = 1 Pa s, l = 10nm, (b) η0 =
10 Pa s, l = 100 nm, and (c) η0 = 100 Pa s, l = 1000 nm. The
green lines are for l = 0. We have used τf = 0.04 MPa.

tion experiments with glycerol as lubricant [2, 32]. Note
that glycerol is a Newtonian fluid up to large shear rates,
which probably obeys the stick boundary conditions on
the solid walls, i.e. l ≈ 0.

Figure 9 shows that the friction curve μ(v) without
slip (green curves) is shifted to smaller velocities as the
viscosity increases. This is due to the increase in the fric-
tional shear stress and the fluid pressure as the viscosity
increases at a fixed sliding speed. The red curves includes
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Fig. 10. The kinetic friction coefficient as a function of the
logarithm of the sliding velocity. Results are shown for the
slip lengths l = 0, 20 nm, 100 nm and 150 nm, and using η0 =
0.35 Pa s and τf = 0.04 MPa.

slip, and we have assumed that the slip length is propor-
tional to the viscosity as expected in the simplest theory
description where l = η/C (see sect. 1). The increase in
l with increasing viscosity is the reason of the increased
reduction in the frictional shear flow peak with increasing
fluid viscosity.

5 Sliding friction on glass surfaces with
baked-on silicone oil

Many applications require silica glass surfaces to exhibit
very low friction (and low adhesion) against rubber. This
can be realized by covering the glass surfaces with an inert
coating. One important method is end-grafted short poly-
dimethylsiloxan (PDMS) chains. Another very important
method is baked-on siliconisation.

The siliconization of pharmaceutical glass primary
containers such as syringes is either performed by spray-
ing the silicone oil onto the inner surface of the container
or by coating the glass with water-based silicone emulsion
that is then baked on at high temperature. The use of
the emulsion combined with the baking process allows ob-
taining a uniform and low friction silicone layer by using a
reduced amount of lubricant with respect to the spraying
process with only silicone oil.

Baked-on siliconisation involves the application of sili-
cone oil (usually as an emulsion) on a glass surface, which
then is baked on to the glass surface at a temperature of
approximately 300 ◦C for 10–30 minutes inside a heating
channel. The DOW CORNING� 365 siliconization emul-
sion, containing 35% of polydimethylsiloxane (PDMS), is
often used in the baked-on siliconization process.

In the baked-on process, hydrogen and covalent bonds
form between the glass surface and the polydimethylsilox-
ane chains (see fig. 11). This results in a very inert and
hydrophobic coating, where the bonds are so strong that
the attached polydimethylsiloxane chains cannot be re-
moved with solvent [33].

Fig. 11. Baked-on siliconisation involves the application of
silicone oil (usually as an emulsion) on a glass surface, which
then is baked on to the glass surface at a specific temperature
and for a specific time period. In the baked-on process, hydro-
gen and covalent bonds form between the glass surface and the
polydimethylsiloxane chains. This results in a very inert and
hydrophobic coating, where the bonds are so strong that the
attached polydimethylsiloxane chains cannot be removed with
solvent.

The inert and stable nature of the baked-on silicone
layer was shown in adhesion experiments [34]. Here a glass
ball with baked-on silicone oil was moved into contact with
a rubber sample (with a nominal flat surface) in a bath of
silicone oil (viscosity η = 0.35Pa s). The ball was removed
slowly (vz ≈ 6μm/s) after different waiting time periods.
The pull-off (adhesion) force was found to be independent
of the contact time for up to ≈ 1 month contact time.

For the case of a clean glass ball the pull-off force was
found to be much larger and to increase with increasing
contact time. We interpret this as due to the squeeze-out
of the silicone oil from the rubber-glass asperity contact
regions, followed by bond formation between the rubber
and the glass ball.

When prefilled syringes are stored for long time (which
could be several years) the silicone oil is slowly squeezed
out from the rubber-glass asperity contact regions. For
glass surfaces without baked-on oil this may result in a
very large breakloose friction force [35–37]. To lower the
breakloose and sliding friction, glass barrels are often cov-
ered with baked-on silicone oil.

It is clear from the discussion above that during sliding
on glass surfaces with baked-on silicon oil, slip may occur
at the interface, which could result in a much lower slid-
ing friction force than calculated using the stick boundary
condition.

5.1 Experimental: material and methods

Sample preparation

In the experiments shown below, syringes are siliconized
by using the baked-on method. To mimic conditions repre-
sentatives of typical industrial processes, the silicone emul-
sion (35% Dow Corning 365 Medical Fluid) is sprayed on
the internal glass surface by using a pilot-scale siliconiza-
tion unit (Bausch + Ströbel). Samples were then heated
up to T = 300 ◦C for 20 minutes according to the stan-
dard industrial procedure. After baking, the containers are
filled with water and closed with a rubber plunger stopper.
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Fig. 12. Power spectrum of the rubber rib region of a rubber
stopper. The dashed line has a slope equal to −3.6 correspond-
ing to the Hurst exponent H = 0.8.

Measurement of the gliding force

The measurement of the friction force of primary contain-
ers is performed in compression mode by using a Zwick
bench Z5.0 (Zwick-Roell). The container is positioned in
the sample holder, with the rubber plunger stopper up-
ward. A plunger rod connected to a 50N loading cell
is gently placed in contact with the plunger stopper of
the container then moved downward at constant speed.
To generate a Stribeck curve, gliding tests were carried
out at different speeds in the range from 1.2mm/min to
60mm/min. Ten containers per speed were tested. Dur-
ing testing the force as a function of displacement is regis-
tered. Data are then analyzed to get the breakloose force
value (not discussed in this paper), that is the force needed
to start the movement of the rubber stopper and the glid-
ing force, the force needed to expel the liquid from the
container. Since the containers were needle free, no hy-
drodynamic force needs to be taken into account and the
measured gliding force corresponds to the frictional force
between the rubber stopper and the glass surface.

Surface roughness power spectrum

We focus on the friction force between a rubber stopper
and a glass barrel lubricated by baked-on silicone oil. The
glass barrel surface can be considered as perfectly smooth
but the ribs of the rubber stopper, which are in contact
with the glass surface, have a surface roughness which we
have studied using an optical method, atomic force mi-
croscopy (AFM) and an engineering stylus instrument.
From the measured surface topography we have calcu-
lated the surface roughness power spectrum C(q) shown
in fig. 12. The power spectrum is defined as

C(q) =
1

(2π)2

∫
d2x 〈h(x)h(0)〉eiq·x,

where h(x) is the height profile and 〈. . .〉 stands for en-
semble averaging. We have assumed 〈h(x)〉 = 0. For a
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Fig. 13. Pressure and shear flow factors.

randomly rough surface, all (statistically averaged) infor-
mation about the surface roughness is contained in the
C(q)-function. Thus, for example, the root-mean-square
(rms) roughness and the rms slope are given as integrals
of C(q). In the present case the rms roughness is 0.64 μm
and the rms slope 1.24.

Fluid viscosity

The lubricant fluid in the following calculations is assumed
to be a silicone oil with the small shear-rate viscosity η0 =
0.35Pa s. Silicone oils are known to shear thin at large
enough shear rate, and here we will use (22) with γ̇0 =
1 s−1, η1 = 1.5 × 104 Pa s and α = 0.77, which gives a
viscosity in good agreement with the measured data for
PDMS silicone oil.

5.2 Numerical results and comparison with
experiments

Fluid flow and friction factors

Using the equations presented in sect. 3 we have calculated
the pressure and shear flow factors φp and φs, and the fric-
tion factors φf , φfp and φfs. In figs. 13 and 14 we show the
results for the slip length l = 0 (red), l = 10nm (green)
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Fig. 14. Friction factors. The friction factors φf(ū) and φfs(ū)
are for the sliding speed v = 0.1 mm/s, while φfp(ū) is inde-
pendent of v.

and l = 20nm (blue). The slip has only a rather small in-
fluence on the pressure and shear flow factors φp and φs,
which implies that the average interfacial separation, the
asperity contact area, and the fluid and contact pressure
distributions, are only weakly affected by the slip. How-
ever, the slip has a drastic influence on the friction factors
φf and φfs (see fig. 14(a) and (b)), and hence on the fric-
tion force. The physical reason for this was discussed in
sect. 4.1.

Comparison with experiment

We consider the sliding of an elastic cylinder on a rigid
lubricated flat surface. The Young elastic modulus of the
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Fig. 15. The smallest interfacial separation ūmin as a function
of the sliding speed (log-log scale).

cylinder is E0 = 2.5MPa and its radius of curvature is R =
0.4mm. The cylinder is squeezed against the flat surface
with a force per unit length FN/L = 200N/m. This results
in a Hertzian contact area of width w = 0.35mm. The
maximum contact pressure is 0.73MPa and the average
contact pressure is 0.57MPa. The flat (rigid) surface is
assumed perfectly smooth while the elastic cylinder has
random roughness. The surface roughness power spectrum
of the cylinder surface is given in fig. 12. In appendix A we
show optical pictures when the rubber stopper is squeezed
against a flat glass surface.

Consider now the elastic cylinder sliding with a con-
stant speed v0 in the x-direction (with the cylinder axis
along the y-direction) on a perfectly flat and lubricated
surface. We consider the system in a reference frame where
the cylinder is not moving. The fluid pressure p̄(x) is given
by (23) (see also ref. [2]). The expression for the friction
force (which depends on φf(ū), φfp(ū) and φfs(ū)) is given
in sect. 3 (see also ref. [2]).

Figure 15 shows the smallest interfacial surface sep-
aration ūmin as a function of the sliding speed (log-log
scale). For large sliding speed the hydrodynamic lubrica-
tion prevails, but the boundary lubrication region (where
ū(x, y) is independent of the velocity), is not observed in
the studied velocity range.

Because of the small (average) surface separation at
low sliding speed (≈ 10 nm, at the lowest sliding speed
10−6 m/s) the mixed lubrication calculations becomes
hard to converge for small velocities. In particular, there
is a velocity region (dotted curve segment in fig. 15), from
≈ 10−4 m/s to ≈ 10−3 m/s, where the simulations does
not converge. However, this velocity region is small enough
that we can smoothly interpolate to obtain the Stribeck
curve also in this velocity interval.

Figure 16 shows the kinetic friction coefficient as a
function of the logarithm of the sliding velocity for the
rubber stopper in a glass barrel with baked-on silicone
oil. The solid lines are the theory predictions for the slip
lengths l = 0, 10 nm and 20 nm. In the calculation we
have assumed that in the rubber-glass asperity contact
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Fig. 16. The kinetic friction coefficient as a function of the
logarithm of the sliding velocity for a rubber stopper in a glass
barrel with baked-on silicone oil. The solid lines are the theory
predictions for the slip lengths l = 0, 10 nm and 20 nm, and
using τf = 0.04 MPa. The pink and green squares are measured
data from two different set of syringes. The + symbols are the
measured data with ± standard deviation.

regions a (velocity independent) frictional shear stress
τf = 0.04MPa acts. The pink and green squares are mea-
sured data from two different set of syringes. Note the
good agreement between theory and experiment assum-
ing the slip length l = 20nm, and that the friction co-
efficient varies rather weakly with the sliding speed for
v < 10−4 m/s. We note that even if τf = 0 the calcu-
lated friction coefficient without slip (l = 0) would be too
large for v > 10−4 m/s, i.e., it is impossible to explain
the observed results assuming the no-slip fluid boundary
condition.

We have also studied the kinetic friction for the case
of not baked-on silicone oil [38]. In this case the friction
at low sliding speed is much larger than for the baked-on
oil film, and the frictional shear stress in the area of real
contact is strongly velocity dependent (it decreases with
increasing velocity in the velocity interval 10–1000μm/s),
as expected from theory if some adhesive process, e.g.,
involving chain interdiffusion, operates in the area of real
contact in the studied sliding velocity range.

6 Summary and conclusion

In studies of fluid flow between solids it is usually assumed
that there is no slip between the fluid and solid walls. How-
ever in some applications, e.g., involving polymer fluids
such as silicone oils, this assumption no longer holds. Here
we have derived basic equations for the fluid flow between
elastic solids with randomly rough surfaces including in-
terfacial fluid slip. We have presented numerical results
for realistic systems. In particular, we have considered an
elastic cylinder with random surface roughness sliding on
a flat rigid (low-energy) counter-surface (e.g., a glass sur-
face with baked-on silicone oil) in a shear-thinning fluid

such as silicone oil. The fluid slip, if large enough, will re-
move the frictional shear flow peak which otherwise would
occur in the Stribeck curve in the mixed lubrication tran-
sition region.

We have also measured the kinetic friction force when
(syringe) rubber ribs are sliding on glass surfaces lubri-
cated with baked-on silicone oil. The experimental results
can only be explained if slip occurs between the lubri-
cant fluid and the baked-on oil film. Good agreement be-
tween the theory predictions and experimental data is
obtained assuming a velocity-independent frictional shear
stress in the area or real contact, and that the slip length
is l ≈ 20 nm.
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Appendix A. Dry contact

The area of real contact and the average interfacial separa-
tion are two quantities of great importance for lubricated
sliding friction. Here we consider these quantities for dry
(no lubricant) stationary contact. It is crucial to under-
stand that unless the squeezing pressure is so large that
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Fig. 17. The relative contact area A/A0 and the logarithm of
the average separation between the surfaces as a function of
the applied pressure.

the contact is nearly complete, the average interfacial sep-
aration is mainly determined by the long-wavelength part
of the surface roughness. On the other hand, the area of
real contact depends on all surface roughness components,
with the short-wavelength part which is particularly im-
portant. In fact, for randomly rough surfaces the contact
area is determined by the surface rms slope. Figure 17(a)
shows the relative contact area A/A0 as a function of the
squeezing pressure. Note that the relative contact area
when p ≈ 1MPa is A/A0 ≈ 0.3.

The average surface separation is determined mainly
by the long-wavelength roughness. In fig. 17(b) we show
the average surface separation as a function of the applied
pressure. The average surface separation has a big influ-
ence on mixed lubrication (and fluid squeeze-out).

Finally, we show the optical picture of the contact be-
tween a rubber stopper and a smooth glass surface. Fig-
ure 18 shows the contact as the load decreases from (a)
FN = 10N, (b) 6.7N and (c) 3.3N. Note that at this
low magnification it appears as if there is perfect contact
within the nominal contact region. However, increasing
the magnification shows that there is incomplete contact
within the nominal contact region. This is illustrated in
fig. 19 which shows the contact at two higher magnifi-
cations. The normal load acting is FN = 10N, and the

Fig. 18. Optical pictures of the contact between a rubber
stopper and a flat glass surface at the normal load (a) FN =
10 N, (b) 6.7 N and (c) 3.3 N. The width of the rubber stopper
is about 12 mm.

nominal contact pressure in the nominal contact area is
about p ≈ 1MPa. The pictures indicate a relative contact
area A/A0 ≈ 0.5 consistent with our theory calculations.
However, it is not possible from optical pictures like fig. 19
to accurately define the area of contact as it depends on
the gray-scale cut-off used to separate contact from non-
contact. In addition, optical pictures never have atomic
resolution, but rather the highest resolution is of order the
wavelength of light (typically ∼ 1μm). As the magnifica-
tion increases the (apparent) area of contact continuously
decreases.
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Fig. 19. Magnified view of the contact between a rubber stop-
per and a flat glass surface at the normal load FN = 10 N.
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