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Abstract. A droplet deposited onto an orifice in the flat smooth plate can remain in a bistable state.
Such system —a droplet and a flat surface— behaves as a bistable capillary switch, which can be used
for threshold detection of some system’s properties, e.g., the difference in the pressure on both sides of
the plate. The droplet morphology changes abruptly at a certain value of the pressure difference and
shows hysteresis. The specific behavior of the system is a result of the geometrical constraints defining the
curvature of the liquid droplet at both sides of the surface. These constraints can be represented either by
pinning angles at both sides of the plate or by the pinning angle at one side and the contact angle at the
other. The dependence of details of the droplet morphology and energy on the difference in pressure at
both sides of the plate is calculated by means of the semi-analytical model and Surface Evolver simulations.

1 Introduction

A capillary switch is a bistable system of liquid/gas or
immiscible liquid/liquid interfaces with a trigger to toggle
back and forth between the two or more stable equilibrium
states [1]. To switch from one stable state to the other, the
energy barrier must be overcome. The energy barrier can
be tuned by the droplet and surrounding morphology. A
capillary system becomes a real switch only when toggling
is achieved [2]. The toggling trigger can be based on the
pressure difference [3], liquid surface tension, inertia force,
electric field (e.g., when the electrostatic potential acts to
oxidize the surfactant on the one part of the droplet sur-
face and to reduce it on the other part) [3], magnetic field
(applied to ferrofluids) [4,5], etc. The droplet properties
determining the behavior of the capillary switch include
the liquid’s physical properties (e.g., zeta potential, sur-
face tension and contact angles) [6,7]. A droplet realizing
the bistable switch shows the unusual bifurcation depen-
dence of the droplet morphology on its volume and hence
at a volume large enough the morphology vs. stimulant
dependence forms a hysteresis loop. The geometrical con-
straints of the morphology of the liquid surface usually
are reduced to the pinning angle of the orifice/pipe edges.
However, there are systems in which the motion possibil-
ities of the triple line can be switched from the free shift
on the solid surface to the immobilization on linear inho-
mogeneities (edges) as found for the vertically submerged
cylinder [8], the liquid between fiber and substrate [9] and
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in Wenzel or Cassie wetting regimes [10]. Moreover, the
viscous dissipation by the movement of the triple-contact
line, where a fluid/fluid interface meets a solid is also dis-
cussed; e.g., Lea [11] demonstrated a bistable switch in
geometries with the moving contact line, which is dissipa-
tive [12].

The main aim of the study is to answer the question
whether the morphology of the surface of the liquid drop,
constituting the capillary switch, depends on details of
the solid at the site at which the droplet is settled (flat
plate, outlet of tube). Namely, the surface morphologies
determined by the pinning angle and contact angle are
studied. Sections 2 and 3 contain the semi-analytical and
simulation approaches to the problem. In sect. 3, the in-
fluence of the gravitational field on the liquid morphology
is analyzed. The obtained results are discussed in terms
of adjusting and calibration of bistable switches based on
different constraints of droplet settlement in practical ap-
plications.

2 The effect of wettability details on the
droplet morphology —a semi-analytical
approach

In order to analyze the influence of geometry constraints
on the behavior of the capillary switch, let us consider
the simplified system in which a droplet is settled on the
orifice of radius R0 in the flat smooth plate with negligi-
bly small thickness. Additionally let us assume that the
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Fig. 1. The unstable symmetrical initial droplet morphology
at the zero pressure difference (a) and possible equilibrium
states of type 1A and 1B (controlled by the pinning angle φ
marked in red) and type 2A and 2B (controlled by the pinning
angle φ marked in red on one side of the plate and by the
contact angle θ marked in blue on the other side) (b). For
unification of values of contact and pinning angle it is assumed
that the horizontal shoulder of the pinning angle does not lie
on the surface but it overhangs the surface, thus the actual
pinning angle is π-φ.

droplet is small enough for the system to be in the pure
capillary regime (the Bond number Bo � 1 [13]). In such
case, both droplet surfaces form spherical caps of the mean
curvature radii equal to R1 and R2, respectively. If the gas
pressure is the same on both sides of the plate, both cap
radii take the same value (R1 = R2) as a result of the
Laplace law [14]. However, the symmetrical morphology
of two identical spherical caps (see fig. 1(a)) is metastable
and tends to one of the two equilibria states of smaller
surface/interface energy (fig. 1(b)) with the same proba-
bility. Thus, the system’s evolution shows bifurcation. The
initial symmetrical state as well as the resulting equilibria
states depend on the plate surfaces wettability and can
be governed by the pinning or contact angles as shown in
fig. 1.

Let us notice that the droplet morphology of type 1A
and 1B is determined by the pinning effect of the droplet
surface to the edge of the orifice. As a consequence, the
angles between the tangent to the liquid surface and solid
surface φ can vary in the way fulfilling the inequality

2π − θ ≤ φ ≤ θ. (1)

The corresponding angles between the surfaces in type 2A
and 2B can either take the value limited by inequality (1)
or should be strictly determined by the contact angle θ.

Changes in the pressure difference on both sides of the
plate can affect the curvature radii of both spherical caps
according to the Laplace law

p − p1 =
2γ

R1
, (2)

p − p2 =
2γ

R2
, (3)

where p1, p2 and p are pressures at both sides of the
plate and the internal pressure in the droplet, respectively.
Hence, the difference in pressures defines the difference in
curvature of both spherical caps

Δp = p1 − p2 = 2γ

(
1

R1
− 1

R2

)
. (4)

For the upper and lower pinned cups of type 1A or
1B constrains, the curvature radius can be related to the
orifice radius

R1 =
R0

sinφ1
=

AR

sin φ1
, (5)

R2 =
R0

sinφ2
=

AR

sin φ2
, (6)

where A is the aspect ratio equal to the ratio of R0 to
R = (3V/(4π))1/3 where V is the droplet volume.

In the case of type 2A constrain, eq. (5) is still valid
but, in eq. (6), the orifice radius should be replaced by the
radius of droplet bottom at the constant contact angle θ:

R2 =
Rtheta

sin θ
, (7)

where Rtheta is the radius of the triple line circle.
By combining eqs. (4)–(7), the pinning angle φ1 can

be related to Δp by

sinφ1

AR
=

sin φ2

AR
+

Δp

2γ
, (8)

for type 1 (when Δp changes, R0 = AR remains constant),
and

sinφ1

Rtheta
=

sin θ

AR
+

Δp

2γ
, (9)

for type 2 (when Δp changes, θ remains constant).
The sum of the volumes of both caps is equal to the

volume of the whole droplet V ,

V = V1 + V2, (10)

and the volume of a single spherical cap reads

Vx =
π

3

(
Rx

sinα

)3

F (α), (11)

where
F (α) = cos3 α − 3 cos α + 2, (12)

where Rx is the radius of the cup basis equal to AR
(pinned cup) or Rtheta (wetting cup) and α is the pinning
or contact angle.

The total volume of the droplet is equal to

V =
π(AR)3

3

[
1

sin3 φ1

F (φ1) +
1

(sin φ1 − ARΔp
2γ )3

×F

(
arcsin

(
sinφ1 −

ARΔp

2γ

)) ]
, (13)
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Fig. 2. The visualization of the droplet of morphology con-
trolled by contact angle (top) and pinning angle (bottom) (type
2A). Triangles used to calculate the pinning/contact angle α
are marked in red.

in the case of type 1 constraint, and

V =
π(AR)3

3

[
1

sin3 φ1

F (φ1) +
1

(sin φ1 − ARΔp
2γ )3

F (θ)

]
,

(14)
for type 2 constraint.

Analysis of eq. (8) indicates that the expression gov-
erning the variability of pinning angle is ΔpA/γ hence one
can expect that A and 1/γ will linearly influence the effect
of Δp. Let us also notice that, in the wide range of applied
Δp, one of the components of total volume of the droplet,
V1 or V2, can take negative values when the surface bends
in the direction opposite to that shown in fig. 1.

A comparison of eqs. (13) and (14) shows that they are
almost identical except for the difference in the argument
in the F function addressed to one of the cups, which
raises the suspicion that the behavior of systems of type
1 and 2 can differ.

Equations (13) and (14) can be treated as φ1 = f(Δp)
functions. However, the functions are implicit and can be
solved only by numerical methods. This solution leads also
to determination of all geometric parameters of droplet
morphology based on the equation set (2)–(9). However,
because of the high number of roots of eqs. (13) and (14), it
is quite difficult to calculate the parameters of interest and
in several cases the obtained results were doubtful. More-
over, the solution is limited to the non-gravity systems. In
such case, the approximate calculations made for systems
under gravity with the finite element method seem to give
less precise but more reliable results.

3 The capillary switch —the finite element
method simulation

This part of the study was performed by means of simu-
lations with the finite element method using the Surface
Evolver (SE) program [15,16]. The surface modeled by SE
is represented by a mesh network of triangles whose ver-
tices make the network nodes. The system studied was
a droplet settled on the plate of negligibly small thick-
ness (see fig. 2). The study was performed for the cup
edges forced to be pinned to the orifice edge (type 1A and
1B) and for the cup edges freely moving on the surface
(type 2A and 2B). In the latter case, the pinning effect
can be caused spontaneously by the system geometry.

Each simulation started with the two equilibrated cups
placed symmetrically at both sides of the plate around the
orifice at Δp = 0. Then the initial value of Δp was applied
and the droplet morphology was immediately switched to
the asymmetrical state of minimum energy, further mod-
ified by subsequent pressure changes.

In the course of simulation, Δp was changed step by
step by the value of 20Pa (or 5Pa when gravity was
switched on). Then the free energy of the modelled sys-
tem was minimized in defined steps including the proce-
dures of mesh refinement, vertex averaging, polishing up
the triangulation and the energy minimization by means
of the conjugated gradient descent method. The range of
Δp studied depended on the system parameters (up to
−103–103 Pa). The other parameters: the droplet volume
V = 1·10−9 m3, the liquid surface tension γ = 0.072 J/m2,
and liquid density ρ = 1 ·103 kg/m3 (H2O) were kept con-
stant. Separate simulations were performed for different
values of the droplet volume at the acceleration due to
gravity of 9.81m/s2, the contact angle θ = 120◦ and as-
pect ratio A = 0.3.

The values of the pinning/contact angle α were cal-
culated on the basis of inclination of the mesh triangles
representing the free liquid surface and being in contact
with the triple line to the plane of the solid surface (see
fig. 2), from the equation

α = arccos
(〈

z

ST

〉)
, (15)

where z and ST denote the vertical coordinate and the
length of the normal vector of each triangle used for cal-
culation of the surface slope near the triple line, marked
in red in fig. 2 (the length ST of SE representation of the
normal vector is not unitary but equals to the area of the
triangle).

The exemplary evolution of the contact/pinning angle
(denoted as α) on both sides of the plate in the course
of one and a half cycle of changes in Δp at zero gravity,
is shown in fig. 3. Both curves are symmetrical —when,
on the one side of the plate, only the variation in the size
of the cup is observed (at constant contact angle), on the
other side, changes in the shape of the cup occur with
varying the pinning angle. The unsymmetrical line in the
figure refers to the starting steps of simulation. Slightly in-
flated values of α presented in fig. 3 and the next drawings
are a result of the assumed method of calculation and are
related to the fact that the triangles used for the calcula-
tion of the liquid surface slope have finite size. The width
of the loops is limited by two critical pressure differences
switching the droplet morphology from one to the other
Δpcrit I and Δpcrit II.

The influence of the aspect ratio on the α variation
for the droplet located on a plate with the contact angle
θ = 120◦ in both types of pinning/wetting phenomena is
shown in fig. 4. All hysteresis curves presented are simi-
lar to that shown in fig. 3 and can be interpreted in the
same way, thus for simplicity only the dependencies of α1

(further referred as α) on Δp at the single side of the
plate are shown. As can be seen, the curves obtained for
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Fig. 3. The dependence of α of both cups on the pressure
difference (type 2, θ = 120◦). The α1 = f(Δp) dependence is
partly hidden by the following relationship α2 = f(Δp).

Fig. 4. Evolution of the pinning/contact angle α caused by
changes in pressure difference: (a) in the system where the
droplet is pinned to edge of the orifice (type 1) and (b) where
droplet partly wets the surface with the contact angle 120◦

(type 2). The lines between both parts of the figure connect
the points of morphology switching.

type 1 constraint slightly differ from that for type 2. The
difference concerns the α angle at the side of the plate at
which the liquid volume is currently larger: for half of the
cycle of pressure changes, the α angle for the type 1 con-
straint tries to reach a very high value of about α = 160◦,
whereas for the type 2 constraint, α = θ. For another half
of the cycle, the α angle is not constant but limited by
the pining requirements (inequality 1) and takes smaller
values. At the same time α2 = 160◦ (type 1) or α2 = θ
(type 2) on the other side of the plate. In the first case
(α ≈ 160◦), in the real experiment the spreading of the
droplet over the plate with θ = 120◦ should be observed
(type 2) instead of the increase in α to a very high value
(160◦). However, for selected geometries of the solid sur-
face when inequality (1) can be still fulfilled (on the edge
of the thin-walled tube instead of a flat plate), one can
expect the α = f(Δp) shown in fig. 4.

Fig. 5. Evolution of the pinning/contact angle α caused by
changes in pressure difference: (a) in the system where the
droplet is pinned to edge of the orifice (type 1) and (b) where
droplet partly wets the surface with the contact angle 60◦

(type 2). The lines between both parts of the figure connect
the morphology switching points.

The bistable switches based on the different con-
straints represented by type 1 and 2 work differently —the
maximum volume of the liquid droplet switched to the
equilibrium state (eq. (11)) is different in both cases, so
the detection method should be precisely adjusted to the
type of constraint. More important, however, is the fact
that the threshold pressures at which the droplet morphol-
ogy switches from one to the other (Δpcrit I and Δpcrit II)
in both types of constrains also differ from each other as
shown by the lines connecting points of switching mor-
phology in figs. 4(a) and (b). The range of Δp not causing
a jump in droplet morphology (the plateau region) is wider
in the type 1 constraint.

Figure 5 shows the influence of the aspect ratio on
the α variation for the droplet located on a plate with
the contact angle θ = 60◦. The number of available re-
sults is significantly smaller (especially for type 2 con-
straint) as a result of relatively poor convergence of cal-
culations. However, both curves families (for type 1 and
2 constraints) demonstrate analogous properties and indi-
cate the same problems with adjusting and calibrating of
bistable switches of both types.

4 The capillary switch under gravity

A large drop in the presence of gravity (for relatively large
Bond numbers (Bo > 1)), defined by the equation

Bo =
ρgV

2
3

γ
, (16)

is unstable, detaches itself from the plate and falls down
(e.g. for V = 30mm3, Bo = 1.316). The behavior of cap-
illary switches based on smaller droplets is dependent on
the droplet volume. Figure 6 shows the α angle hysteresis
loops obtained for two droplets of the volume V = 5 and
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Fig. 6. Evolution of the pinning/contact angle α caused by
changes in pressure difference in the system: (a) controlled by
pinning and contact angle, (b) controlled by pinning (θ = 120◦,
A = 0.3, g = 9.81 m/s2, the droplet volumes are indicated in
the figure). For comparison, the loops obtained in the absence
of gravitational field are also shown in gray.

20mm3 (Bo = 0.398 and 1.004, respectively). The depen-
dencies were obtained at the same aspect ratio A = 0.3.
As shown at V = 5mm3, the gravity practically does not
influence the shape of the loop of type 1 and lowers the
high critical switching pressure (Δpcrit II) of type 2. For a
volume very close to Bo = 1, both loops are apparently
affected —the regular decrease in both critical switching
pressures (Δpcrit I and Δpcrit II) is observed for type 1,
whereas the dependence for type 2 shows unstable behav-
ior of the droplet and its detachment from the plate.

5 Conclusions

The semi-analytical method as well as SE simulation were
used to study the behavior of the droplet settled on the ori-
fice in the flat plate at different constraints imposed on the
droplet edge —the immobile pinned edge (type 1) or the
freely moving triple line at constant contact angle (type
2). The methods indicate that droplets of both types be-
haves similarly —they abruptly switch their morphologies
at certain differences in pressure Δp at both sides of the
plate. However, the angle at the triple line α in the systems
of both types differs and the critical switching pressures
for all studied aspect ratio are different. Consequently, one
can state that the operation of the switch is highly depen-
dent on the precision of the orifice fabrication especially
on the sharpness of its edge. Rounded or damaged edges
can facilitate detachment of the cup edges and wetting of
the surface (equivalent to transition from type 1 to 2).

Capillary switches can work even at high wettability
of the surface for which the droplet constraint of type 2
are applicable.

The gravitation influences both critical switching pres-
sures Δpcrit and shifts the hysteresis loop along the pres-
sure difference axis.
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