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Abstract. Drosophila wing discs show a remarkable variability when subject to mechanical perturbation.
We developed a stretching bench that allows accurate measurements of instantaneous and time-dependent
material behaviour of the disc as a whole, while determining the exact three-dimensional structure of the
disc during stretching. Our experiments reveal force relaxation dynamics on timescales that are significant
for development, along with a surprisingly nonlinear force-displacement relationship. Concurrently our
imaging indicates that the disc is a highly heterogeneous tissue with a complex geometry. Using image-based
3D finite element modelling we are able to identify the contributions of size, shape and materials parameters
to the measured force-displacement relations. In particular, we find that simulating the stretching of a disc
with stiffness patterns in the extra-cellular matrix (ECM) recapitulates the experimentally found stretched
geometries. In our simulations, linear hyperelasticity explains the measured nonlinearity to a surprising
extent. To fully match the experimental force-displacement curves, we use an exponentially elastic material,
which, when coupled to material relaxation also explains time-dependent experiments. Our simulations
predict that as the disc develops, two counteracting effects, namely the discs foldedness and the hardening
of the ECM lead to force-relative displacement curves that are nearly conserved during development.

1 Introduction

The role of mechanical forces in developing tissues has
been attracting increased attention in recent years. This
is due to technical advancements both in experimental
techniques and computational methods. In this work, we
focus on unravelling the interplay of material properties
and complex shapes in living tissues.

Several approaches have been developed to measure
the material parameters of living tissues [1]. Those in-
clude local perturbation experiments, such as atomic force
microscopy [2], laser microsurgery [3–6], optical and mag-
netic tweezers [7,8], but also force inference methods [9–
11] and FRET sensors [12]. Those approaches are very
powerful to estimate local properties, but inherently re-
quire a certain previous knowledge of the tissue. Inferring
large-scale material properties from local measurements is
only feasible when the material is somewhat homogeneous.
A different strategy is to measure the mechanical proper-
ties at the tissue scale, for example by stretching the tissue
(see [13–17]). These measurements are still limited in the
case of complex geometrical structures, such as those of
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the wing disc, but, combined with computational mod-
elling, can be used to infer local mechanical properties.

The wing disc has been a paradigm to study the role of
mechanical feedback on growth. Especially 3rd instar discs
have been studied extensively [18–21]. The discs grow [22]
and change shape [23] to a surprising extent during 3rd
instar. Furthermore, 3rd instar discs can be dissected out
of the larvae, which has permitted a number of ex vivo
studies investigating the role of mechanical feedback [16,
24–30]. Yet, it is still unclear how the disc grows into the
folded geometry of late 3rd instar. A crucial role in tis-
sue shaping has been assigned to the extra-cellular matrix
(ECM), the structural scaffold onto which cells attach,
both in wing disc [31,32,23] and in other Drosophila tis-
sues [33]. Recently, though, whether the ECM regulates
growth through mechanical, rather than biochemical sig-
nals has been questioned [34], which calls for a direct ex-
perimental investigation of the mechanical properties of
the ECM, since genetic studies alone cannot completely
disentangle the roles of biochemistry, shape and mechan-
ical properties.

Here, we focus on understanding how tissue scale me-
chanical properties and wing disc shape affect the disc
response to large-scale mechanical perturbation. To do
so, we used the same device as in [17], similar to that
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of [24], which allows the ex vivo stretching of live 3rd in-
star wing discs. Subsequently, we developed computer sim-
ulations to predict what the disc composition would have
to be to reproduce the experimental force-displacement
relationships. In particular, our focus is on disentangling
the role of geometry and material properties. In a recent
publication, it was shown that the wing disc exhibits an
extreme strain-stiffening behaviour when stretched that
could be explained by combining linear materials and the
folded geometry of the disc in a 2D simulation of a cut
of the disc [17]. Here, we develop 3D finite element sim-
ulations on an image-based wing disc geometry and show
that linear materials can indeed account for a consider-
able, yet not sufficient amount of the nonlinearity when
taking the full three-dimensional geometry into account.
Our simulations, when exponential elasticity is assumed
recapitulate the instantaneous material response, and can
also account for time-dependent dynamics if force relax-
ation is included. Finally, we use simulations to predict
how the tissue scale dynamics vary as the disc grows and
folds up during 3rd instar. Our results call for a careful
characterization of wing disc geometries over time and for
mechanical perturbation experiments that address local
material properties.

2 Results

2.1 Stretching the wing disc highlights nonlinearity
and relaxation

The wing disc is an extremely soft living tissue. To mea-
sure its mechanical properties, it must be kept intact and
alive. The discs were dissected from late 3rd instar larvae
and inserted in a stretching bench (see [17] for a drawing
of the setup). The discs were submerged in wing medium
1 (WM1) [35]. The two dorso-ventral extremities of the
disc were attached to two glass slides (see fig. 1(g) for
nomenclature). The left was kept fixed, while the other one
was attached to a cantilever controlled through a purpose-
made software. The software was developed to stretch the
disc imposing a force and measuring a displacement, or
vice versa. In particular, force or displacement trajectories
were imposed that increased linearly, harmonically oscil-
lated, or were constant in time. Furthermore, the disc is
accessible to confocal imaging from the bottom, which al-
lowed the recording of 3D image stacks.

Figure 1(a) shows discs that are stretched following
different modes of operation of the device. The blue and
red dots are obtained controlling displacement of the disc,
while the yellow dots controlling the force the disc is sub-
ject to. The blue dots show a disc that is very slowly
stretched through imposing a linearly increasing displace-
ment. Slow stretching of the disc allowed imaging with
minimised disc vibration and we chose to extract the ge-
ometry of this disc (see below). The red and yellow dots
correspond to discs that were harmonically stretched: the
first elongation of a disc is shown by the leftmost dots —as
the discs are repeatedly stretched the displacement at a
given force value increases. The disc in yellow had already
been stretched before the experiment plot in the figure.

Therefore, it seems that the discs stress-stiffen as displace-
ment increases, and soften over time when stretched. We
will use computer simulations to disentangle those two
behaviour. Force relaxation is better addressed by fast
stretching and then holding of the disc at constant dis-
placement while looking at the force dampening over time
(fig. 1(b)).

Hence, discs show extremely nonlinear material be-
haviour and, on top of that a considerable amount of
variability, best visible when discs are stretched at the
same rate (2 μm/s, fig. 1(c)). Furthermore, the discs also
have a complex geometry (fig. 1(g)), seemingly made
of non-homogeneous materials. We used flies expressing
Trol::GFP and Lac::YFP, red and green, respectively, in
fig. 1(g), with the former being expressed in the ECM
and the latter at cell membranes through the disc [36,37].
An interesting aspect to note on the views from the top
(left) is that the sides of the hinge do not straighten up.
This suggests that they are not bearing a large part of
the stress. When visualising the central disc section (right
column), the disc is easily divided in three parts, from
left to right: pouch, hinge and notum. The depth of the
hinge folds has been shown to have a large impact on
force-displacement curves in numerical simulations [17].

Hence, to carefully study the impact of the folds, we
decided to create a very accurate initial geometry. To
do so, we segment the disc when attached but not yet
stretched, and derive a starting geometry to use in sim-
ulations (fig. 1(h)). We define four regions of the disc
whose foldedness we quantify, from left to right: pouch,
ventral fold (V-fold), dorsal fold (D-fold) and notum. Fold-
edness is calculated in the central slice of the disc, as
arclength divided by length of each region as bounded
by the points marked by crosses in fig. 1(h). Geometries
were created with MATLAB (MathWorks, Natwick, MA,
United States), using custom made routines and the tool-
box iso2mesh [38]. The custom made routines were used
to manually segment the attachment slides and the disc
on ≈ 15 anterior-posterior slices (one of those slices is
plot on the right side of fig. 1(g)). The disc structure was
reconstructed using an adapted version of the interpola-
tion routine in the MathWorks File Exchange entry in-
terpmask - interpolate (tween) logical masks [39]. The in-
terpolated structure was used to create a voxelised image,
whose voxels were assigned to distinct disc regions as fol-
lows (fig. 1(h)). The inside and outside of the disc were
defined using erosion. The inner part of the disc is taken
up by a single region. The outer geometry is assumed to
have a constant thickness of ≈ 3μm and is subdivided
in three regions: ECM on the basal side, apical side and
lateral sides. In this work we focus on varying the mate-
rial properties of the ECM with the respect to the rest of
the disc. iso2mesh was used to create initial geometries,
consisting of 1 to 3 million tetrahedral elements. The num-
ber of elements depends on the discretisation required to
properly mesh each region. Simulations were carried out
with the finite element framework FEBio [40]. Simulations
were run on the CPU cluster Hydra of the University of
Zurich.
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Fig. 1. (a) Force-displacement curves for 3 different discs: blue dots correspond to a disc that is slowly stretched to improve
quality of imaging and extracted geometry; red and yellow dots correspond to discs that are stretched in an oscillating fashion;
red dots correspond to a disc that is extracted from an earlier 3rd instar larva compared to the other two. (b) Holding a disc
at constant displacement shows force relaxation. (c) Force-displacement curves for 5 discs, all stretched at a rate of about
2 μm/s. (d)–(f) Force and displacement over time for the three discs of panel (a). (g) Images of a stretched disc for increasing
force-displacement (F -d) values (re-drawn from [17]). (h) Initial simulation geometry derived from the top image of panel (g).
Red crosses indicate the reference points used for the foldedness calculations for the four regions of the disc named herein (see
sect. 2.2).
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Fig. 2. (a) The ECM is modelled as a single region (purple) and attached to two slides (orange and magenta). (c) Force-
displacement curves are essentially straight. (b) The ECM is split in two parts: a central part (purple) and an outer one
(yellow). Only the purple one is harder than the rest of the disc. (d) Force-displacement curves show some nonlinearity. (e)
Foldedness of pouch and notum as a function of displacement. Square symbols (green and purple) indicate experimental values
obtained from fig. 1(g). Symbols are slightly shifted horizontally to avoid overlapping. (f) The principal stress (MPa) on the ECM
along the direction of stretching, viewed from the bottom during stretching. (g) Wing-disc cuts over increasing displacement
values, for EDISC = 0.5 kPa and EECM = 250 kPa (red curve in fig. 2(d)).

2.2 Simulating wing disc stretching with linear
materials explains some, but not all of the nonlinearity

We start by modelling all of the wing disc regions as Neo-
Hookean materials, which reduces to linear elasticity for
small strains, but supports large deformations (see [41,
42]). In FEBio the material is parametrised by E, Young’s
modulus, and ν, Poisson’s ratio [43]. We assume that the
entire structure is at rest when it is not stretched. We de-
fine EECM and EDISC to be Young’s moduli of the ECM
and of the rest of the structure, respectively (fig. 2(a)).
Poisson’s ratio is fixed as ν = 0.3 throughout.

Our first attempt consists of extending the 2D model
of [17] to 3D. We use material parameters corresponding
to the optimal parameter values found in [17] by numerical
simulations: EDISC = 5kPa, ν = 0.3, EECM/EDISC =
100. With 3D simulations, the force-displacement curve
corresponding to that scenario is straight, and reaches
much lower displacements than the disc (fig. 2(c)). Reduc-
ing EDISC the displacement values become comparable
but still the curves remain essentially straight (fig. 2(c)).
Hereafter, we choose EDISC = 0.5 kPa in order to match
the nearly horizontal force-displacement curve at low dis-
placements. We choose a smaller EDISC compared to the
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2D model, but care should be taken in comparing the val-
ues directly (see below). Similar results can be obtained
with EDISC = 1kPa. Examining the top views of the
disc under stretching it seems that the lateral disc sides
do not always visibly straighten out, especially the lower
side between d = 0μm and d = 100μm (fig. 1(g)). This
suggests that the lateral disc sides should not bear much
stress, and we wondered whether that is also the case in
our simulations. Figure 2(f) shows that stress accumulates
on the sides of the pouch, which ultimately prevents its
elongation.

This suggests that the ECM on the sides of the pouch
should be softer than the rest of the ECM. The same
ought to be true for the ECM on the sides of the hinge
—because it would otherwise prevent the flattening of
the folds observed experimentally. This would indicate
that [17] correctly modelled the central part of the disc and
also correctly raised the warning that 3D models would be
needed to properly take into account a geometry that is
more complicated than just replicating the central slice
over the width of the disc. Limiting oneself to the two-
dimensional case and thus purely planar stresses appar-
ently does not capture the entire picture in the compli-
cated three-dimensional structure of the wing disc.

We therefore designed a geometry where only the cen-
tral region of the ECM is harder than the rest of the disc
(fig. 2(b)). We define ESIDES to be Young’s modulus of
the lateral parts of the ECM (yellow in fig. 2(b)). Here,
force-displacement curves show a surprising amount of
nonlinearity (fig. 2(d)) considering that all of the involved
materials are actually linear. It is interesting to compare
this scenario with that above, in which the sides of the
disc, already straightened out, were bearing the force and
hence producing a linear force-displacement curve. Here,
even though the materials are still linear, a nonlinear
force-displacement curve is obtained, which may there-
fore be a consequence of the folded geometry, similar to
the results of [17], as well as the inhomogeneity of the
material. Indeed, geometry snapshots as force is increased
show that the ECM straightens out (purple in fig. 2(g)).
Quantifying the foldedness as a function of displacement
shows that the pouch flattens out at much lower values
of displacement when the ECM sides are soft (fig. 2(e)),
similar to what is found experimentally. Comparing the
most stretched geometry of fig. 2(g) with the experimen-
tal data of fig. 1(g), though, it seems that neither folds
flattening, nor notum elongation are as pronounced as in
the experiment.

2.3 ECM stiffness patterns predict wing disc
deformation

To test whether combining harder and softer ECM regions
would result in better matching geometries, we designed
additional geometries where either the ECM is softened
under the notum (light blue region in fig. 3(a)) or the
ECM is softened in the deepest part of the folds (light
blue region in fig. 3(b)) or both. Notably, we assumed
that the softer ECM regions are only marginally softer

than the rest of the ECM and still considerably harder
than the disc proper. When different from EECM , Young’s
moduli of the ECM under the notum and inside the folds
are denoted as ENOTUM , EFOLDS , respectively. For this
section we fix EDISC = 0.5 kPa and EECM = 250 kPa, as
that value of EECM gave the closest force-displacement
relationship at high displacements among those that we
tested (fig. 2(d)).

Figure 3(c) shows that when part of the ECM is soft-
ened, the discs reach higher displacements for any given
force, in a way that leads to reduced nonlinearity. We no-
tice, though, that the softening factors affect in one case
the relative elongation of the notum with the respect to
the rest of the disc (fig. 3(a)), in the other the extent to
which the folds flatten out (fig. 3(b)). If the foldedness
is measured as a function of displacement, softening the
notum also affects the foldedness of the D-fold, since the
corresponding increased notum elongation shifts the entire
curve to the right (fig. 3(e)). Plotting foldedness against
force in contrast, this effect is removed and the two pa-
rameters can be seen to affect the folding and the notum
elongation independently (fig. 3(b)). The effect is also vis-
ible when the V-fold is considered instead of the D-fold
(data not shown). The same is true for the effect on the
notum of softening the folds, but it is much less visible
due to the much smaller size of the softened regions in
this scenario.

Hence, we have shown that combining ECM regions
of different stiffness may serve to find the best match-
ing geometries, as indicated by comparing the foldedness
of the simulation to the experimental values. This soft-
ening does however reduce the nonlinearity of the curves
because of the decreased materials inhomogeneity overall.
In practice, this means that the time evolution of the ge-
ometry in simulations can be fine tuned to match both
the force-displacement curves and observed geometrical
deformations by a specific stiffness map of different ECM
regions.

2.4 Nonlinear material behaviour with relaxation fits
experiments

Since combining linear materials does not explain all of the
nonlinearity, we implement exponential elasticity to match
the force-displacement curves. More specifically, we use a
Holmes-Mow material [44,45]. In FEBio the Holmes-Mow
materials is parametrised by E, Young’s modulus, ν, Pois-
son’s ratio and β, the exponential stiffening coefficient [43].

Interestingly, fig. 4(a) shows that varying EECM and
the exponential stiffening parameter, β, the nonlinearity
of the force-displacement curve of the segmented disc can
be achieved. For this specific disc, β = 5 provides a rea-
sonable amount of nonlinearity. For some more nonlinear
discs (e.g., the disc in purple in fig. 1(a)) a higher β = 10
could be used to increase the nonlinearity of the curves.
Varying EECM affects not only the slope of the curve at
high force, but also the displacement value at which the
slope of the curve increases most. In absence of relaxation,
good agreement with experimental data is obtained by
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Fig. 3. (a), (b) Wing-disc cuts over increasing displacement values when different parts of the ECM are softened: under
the notum or inside the folds, light blue in (a) and (b), respectively. Parameter values: in both panels, EDISC = 0.5 kPa and
EECM = 250 kPa; in (a), EECM/ENOTUM = 5 and EECM/EFOLDS = 1 (yellow solid curve in (c)); in (b), EECM/ENOTUM = 1
and EECM/EFOLDS = 5 (blue dot-dashed curve in (c)). (c) Force-displacement curves as the ECM under the notum and/or
inside the folds is softened. (d), (e) foldedness of notum and dorsal fold drawn against displacement (d) and force (e). Square
symbols indicate experimental values obtained from fig. 1(g). Symbols are slightly shifted horizontally to avoid overlapping.



Eur. Phys. J. E (2019) 42: 47 Page 7 of 10

0 50 100 150 200
displacement ( m)

0

5

10

15

20

25

fo
rc

e 
(

N
)

100 kPa
250 kPa

EECM

1
5
10

β

EDISC = 0.5 kPa

(a)

d = 0 µm

d = 100 µm

d = 150 µm

(b)

0 50 100 150 200
displacement (  m)

0

5

10

15

20

25

fo
rc

e 
(

 N
)

1
5

EECM/E{N,F}

N.A.
5
5

βEECM

250 kPa
250 kPa
100 kPa

EDISC = 0.5 kPa

(c)

0 1 2 3 4 5
force (  N)

1

1.1

1.2

1.3

1.4
fo

ld
ed

ne
ss

EDISC = 0.5 kPa

1
5

EECM/E{N,F}

N.A.
5
5

βEECM

250 kPa
250 kPa
100 kPa

pouch

D-fold

(d)

0 200 400 600 800 1000
time (s)

0

5

10

15

fo
rc

e 
(

N
)

50 s
100 s
200 s

τ

EDISC = 0.5 kPa, EECM = 100 kPa, 

(e)

0 50 100 150 200
displacement ( m)

0

5

10

15

20

25

fo
rc

e 
(

N
)

100 s
∞

τ

750 kPa
300 kPa

EECM

N.A.
5

β

EDISC = 0.5 kPa

(f)

Fig. 4. (a) Force-displacement curves for varying ECM stiffness and exponential stiffening coefficient. (b) Wing-disc central
slice for increasing displacement values, with parameters EDISC = 0.5 kPa, EECM = 100 kPa, β = 5 (red solid curve in (a)).
(c) Force-displacement curves comparing linear and nonlinear materials with/without softer ECM under notum and folds.
(d) Foldedness of pouch and fold in linear and nonlinear materials with/without softer ECM under notum and folds. (e) Force
relaxation curves of discs held fixed at 150 μm displacement for varying relaxation timescale. (f) Force-displacement curves
that best match the slowly stretched disc, with nonlinear (red lines) and linear (blue lines) material behaviour. Relaxation-free
force-displacement curves are plot for comparison (dashed lines).



Page 8 of 10 Eur. Phys. J. E (2019) 42: 47

-0.2 0 0.2 0.4 0.6 0.8
normalised displacement

-5

0

5

10

15

20

25

fo
rc

e 
(

N
)

slow stretching
early 3rd instar
oscillatory stretching

(a)

-0.2 0 0.2 0.4 0.6 0.8
normalised displacement

-5

0

5

10

15

20

25

fo
rc

e 
(

N
)

segmented
flat ECM
folded ECM

geometry

nonlinear
linear

material

(b)

(c) (d)
Fig. 5. (a) Experimental force-displacement curves normalised by distance between attached extremities in central cut. (b) Nor-
malised force-displacement curves for varying initial geometries. Nonlinear material parameters: EECM = 100 kPa, β = 5 (cf.
fig. 4(a)). Linear material parameters: EECM = 250 kPa (cf. fig. 2(d)). (c) Computer-generated geometry with flattened ECM-
side. (d) Computer-generated geometry with increased basal folding.

EECM = 100 kPa. Also the geometry of stretched discs re-
sembles that of experimental data (fig. 4(b)), even though,
better matching could be obtained by softening specific ar-
eas. As in the linear case, softening the ECM under the no-
tum and folds leads to reduced nonlinearity of the curves
(fig. 4(c)) and to increased unfolding specifically in those
regions (fig. 4(d)). Indeed, a rough quantification of fold-
edness in experimental data gives a value of about 1.03 at
F = 5μN, which is in line with the scenarios with soft-
ener ECM inside the folds, however given the experimen-
tal uncertainty, the differences of these scenarios cannot
be properly resolved.

So far, we have disregarded the dynamics in time of
stretching and material behaviour. To figure out the rate
of material relaxation we consider a disc that is elon-
gated by 150μm in 10 seconds time and then held fixed
(fig. 1(b)). The force at time 10 s is ≈ 12μN, while at
time ≈ 1000 s it drops to ≈ 4μN. To implement mate-
rial relaxation we used the compressible viscoelastic im-
plementation of FEBio [43], where a discrete relaxation
spectrum is used, so that the relaxation function G reads
G(t) = 1+

∑N
i=1 gi exp(−t/τi) [46]. Throughout this study

we assume N = 1 and normalise gi so that Young’s modu-
lus of a purely elastic material and its viscoelastic equiva-
lent with τi = ∞ are equal. Hence, the relaxation function
reads G(t) = 1

1+g (1 + g exp(−t/τ)). We assume that only
the ECM is viscoelastic and choose EECM = 100 kPa to
match the near-instantaneous force and set the force to

decrease by at most 2/3 of its maximal value (i.e. g = 2).
Simulations predict the material relaxation of the disc
ECM to be close to 100 s (fig. 4(e)). It also seems that
adding a second, slower relaxation timescale would pro-
vide better fitting. To avoid adding more parameters and
in the interest of simplicity, we use g = 2 and τ = 100 s in
subsequent simulations.

The slowly stretched disc was stretched at a rate of
0.05μm/s. We implemented that stretching rate and the
relaxation timescale of ≈ 100 s found above. Figure 4(f)
shows that the force-displacement curve is very well
matched by a nonlinear material with EECM = 300 kPa.
Note that this is a different value to the best matching
one of fig. 4(a). This indicates that relaxation shifts dis-
placement value at which the slope of the curve increases
most. Furthermore, the strain-stiffening characteristic of
Holmes-Mow materials leads to force-displacement curves
that do not decrease in slope for high displacements when
relaxation is introduced (i.e. τ = ∞ vs. τ = 100 s). The
closest a linear material can get is well exemplified by
EECM = 750 kPa: the final displacement can be matched
but not enough nonlinearity is preserved with material
relaxation.

2.5 Predicting the source of intra-disc variability: size,
foldedness, material parameters

Having shown we can accurately reproduce specific exper-
iments we next focus on explaining the variability between
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different discs. In this context there are different aspects
to keep in mind. First of all, the discs more than double in
size during third instar [22]. In order to be able to compare
their force-displacement curves, displacements should be
normalised. Since the stress is largely borne by the cen-
tral part of the ECM, we choose the minimal distance
between attached disc extremities in the central slice as
normalising factor. We do not normalise force since it is
not known how the width of the hard ECM scales with
disc size. When force is plot against the relative displace-
ment, the curves are much closer to each other (fig. 5(a)).
Yet, they do not perfectly overlap. We explore two more
sources of variation.

Firstly, the discs are known to increase their foldedness
during third instar [23]. Since it is experimentally not fea-
sible to vary the foldedness of a disc while leaving its size
and material parameters unchanged, we designed two ge-
ometries that evaluate the impact of an ECM with more
or less pronounced folds (fig. 5(c), (d)). Interestingly, our
simulations predict that the foldedness severely affects the
force-displacement curves. Indeed, as foldedness increases,
the amount of displacement for a given force value in-
creases, and it does so increasing the difference between
the initial and final slope of the curve (fig. 5(b)).

Secondly, it is reasonable to assume that the ECM in-
creases in thickness and thus stiffness during 3rd instar,
since the collagen that makes up the ECM is continu-
ously secreted by the fat body adjacent the disc and in-
corporated in the ECM [32]. As already shown in fig. 4,
increasing the ECM stiffness leads to decreasing the dis-
placement at a given force value. This means that as the
discs grow, two effects counter-act each other. On the one
hand, stiffening the ECM shifts the nonlinearity in the
force-displacement curves to smaller displacements, since
in that case considerable stresses are already incurred in
the ECM at small displacements. On the other hand, in-
creased folding of the ECM shifts the nonlinearity to larger
displacements, corresponding to larger stretching because
of the unfolding of the deeper fold-depths.

3 Discussion

The wing disc during 3rd instar larval development has
attracted attention for the opportunity to study the role
of mechanical forces during its development. To study the
role of mechanics in shaping tissues, though, it is crucial to
understand the material properties and the composition of
the disc. To do this, we designed a stretching bench that
we use to extend the disc. The disc as a whole exhibits
nonlinear material behaviour at the tissue scale. Whether
this nonlinearity is caused by nonlinear material behaviour
or its folded geometry is unknown. The ECM on the basal
side of the disc is thought to be the main mechanical con-
tributor [17].

We set off to separate the contributions of material pa-
rameters and shape by designing an initial geometry from
an imaged disc. Firstly, our simulations predict that only
the ECM in the central region of the disc is hard. Other-
wise, the pouch and the folds would not be straightening

out. When the ECM is modelled as a linear hyperelastic
material, a considerable amount of nonlinearity emerges,
yet not enough to match the experimental curves. With
linear materials, though, it is already possible to closely
reproduce the unfolding of the ECM by assuming specific
stiffness patterns of the ECM.

To explain the rest of the nonlinearity, we turn to a
nonlinear material. In vitro experiments with ECM-like
collagen have indeed shown that the material exhibits
considerable strain-stiffening [47]. As a nonlinear ma-
terial, we chose an exponentially stiffening material,
Holmes-Mow. With this we can match the segmented
disc. Furthermore, when the material is modelled as ex-
ponentially elastic, also time-dependent force relaxation
dynamics can be closely reproduced. We modelled a
material behaviour that is independent of biochemical
pathways. In view of recent evidence showing what
pathways respond to stretching [30], it would be very
interesting to couple the local material behaviour to
biochemical dynamics in the wing disc.

Finally, we use our simulations to predict how the fea-
tures of the disc change during 3rd instar development.
The discs are known to increase in size [22] and folded-
ness [23] during 3rd instar, as well as in ECM stiffness [32].
Normalising force-displacement curves according to the
disc size, we are able to make predictions on the role of
foldedness and ECM stiffness during development. In par-
ticular, our simulations predict that foldedness and ECM
stiffness have opposite effects that balance out on force-
displacement curves.
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