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Abstract. Extreme deformations of the DNA double helix attracted a lot of attention during the past
decades. Particularly, the determination of the persistence length of DNA with extreme local disruptions,
or kinks, has become a crucial problem in the studies of many important biological processes. In this paper
we review an approach to calculate the persistence length of the double helix by taking into account the
formation of kinks of arbitrary configuration. The reviewed approach improves the Kratky-Porod model
to determine the type and nature of kinks that occur in the double helix, by measuring a reduction of the
persistence length of the kinkable DNA.

1 Introduction

Many biological functions are intimately connected to the
conformational deformability of DNA which can essen-
tially influence its genetic activity. Numerous physical ex-
periments and computer simulations of DNA have demon-
strated its noticeable flexibility, particularly, certain pro-
teins can cause a formation of the localised extreme bends
(kinks) in the DNA structure [1]. Furthermore, the for-
mation of extreme bends in the DNA structure could be
caused by a wide variety of biological processes, such as
intercalation of small molecules [2], DNA conformational
changes [3], packaging [4] and others.

The interest in the extreme bending of the double he-
lix was initiated by Crick and Klug who investigated the
mechanism of folding of DNA in chromatin, the chromo-
somal material of the cell nucleus. They first suggested
that DNA is folded due to the formation of kinks in the
double helix [5], and later such defects were found within
experiments with a packaged DNA and DNA-protein com-
plexes [4,6–8]. The recent view on the problem of strong
bending and kink formation in the double helix was re-
freshed by Cloutier and Widom who found that the short
DNA fragments of 94 base pairs cyclise much more easily
than one would expect from the theory [9]. This crucial re-
sult caused intense discussion on the cyclisation of DNA.
A possible explanation for the observed phenomenon was
that localised distortions (kinks) in the DNA fragment
lead to the formation of a sharp bend and an increase
the probability of looping [10,11]. Later, numerous com-
putational experiments with DNA minicircles revealed the
presence of various types of kinks [1,12–14].
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Idealised models of chain molecules are suitable tools
commonly used to describe configurations of the DNA
chain [15] and accordingly its deformations. Particularly,
the Kratky-Porod model (and its continuous version —the
worm-like chain, WLC) [16] is considered as a basic me-
chanical model of DNA which can well describe a wide
range of its mechanical properties [17]. This model con-
siders a coil of a smoothly curved strand, the direction of
curvature at any point of the strand being random [18,
19]. The Kratky-Porod chain carries several configura-
tional parameters, which characterise the flexibility of the
DNA coil in solution and can be measured in a hydro-
dynamic experiment. Particularly, the stiffness of DNA is
determined by the persistence length A, which is a mea-
sure of distance over which the DNA chain “remembers”
the direction of the first segment. Hence, the directional
correlation of two segments decreases exponentially with
a typical length A while increasing the contour length sep-
arating them [15,18,20]. However, it should be noted that
the chains of the contour length equal to A do not neces-
sarily have a rigid rod-like behaviour [21].

The Kratky-Porod model assumes that the energy cost
of bending is a quadratic function of the bending an-
gle [17]. Therefore, the Kratky-Porod model is expected to
describe only the smooth deformations of the double helix
with relatively small changes between the bonds. In this
way, this model should be improved to include the config-
urations of the double helix with kinks of various nature,
since corresponding approaches are still not completely de-
veloped. Over the past decades several ways for a renor-
malisation of the persistence length were proposed [22,
23]. Furthermore, Wiggins and colleagues proposed an ex-
tension of the WLC model —the kinkable WLC model
(KWLC), which includes sharp kinks characterised by a
probability of such a kink occurring per unit length [24].
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However, these approaches consider the kinks to be of one
type only, which is rather idealised. In [25] the Kratky-
Porod chain was extended to a chain which can undergo
the formation of kinks of different length and configura-
tion.

The paper is organised as follows. In sect. 2 we review
the classification of kinks used in literature and proposed
by Lankaš et al. [12] and generalise it to the case of kinks
with a more complicated structure. Then we review the
approach presented in [25], particularly discussing the way
to distinguish normal and kinked states of a helix step
and considering several configurational parameters that
describe the flexibility of DNA. In sect. 3 we analyse the
obtained approach and compare it with the approach for
the bending of DNA by multivalent cations proposed by
Rouzina and Bloomfield [26]. Last but not least we present
the summary and outlook in sect. 4.

2 Kinks in the Kratky-Porod model

Sharp structural changes of the double helix could cause
the breaking of base-stacking interactions and hydrogen
bonds. Particularly, the main property of kinks is that
their formation is specified by the break of the stacking
between consecutive base pairs. Moreover, different biolog-
ical processes cause kinks of different structure and hence
different changes of stacking. In this way, kinks in the
double helix can be classified by their influence on base-
stacking interactions.

Computer simulations of the minicircles of 94 base
pairs detected two basic groups of kinks with different
structures leading to the strong bends towards the ma-
jor groove [12,27,28]. As shown schematically in fig. 1, a
type-1 kink is caused by unstacking a single helix step,
whereas a type-2 kink involves two helix steps where the
central pair is claimed to be broken. However, we extend
the definition of a type-2 kink by using the more general
case of a modified central base pair to include more factors
which could cause the formation of such kinks.

A type-1 kink is an extreme local deformation in one
helix step which looks like a kink proposed by Crick and
Klug [5,29]. Originally Crick and Klug described a sharp
kink of 98◦ involving two base pairs with disrupted stack-
ing that causes a strong bend of the double helix [5].
Kinks as extreme as Crick-Klug kinks are rather ide-
alised, however the studies of the nicked double helix
showed that the formation of similar kinks in the sites of
single-stranded breaks is energetically favorable [30,31].
The molecular dynamics simulations of the series of DNA
minicircles also showed the formation of type-1 kinks in
some cases, particularly for the minicircles containing 64–
66 base pairs [13,14].

Furthermore, similar damages of the DNA structure
can be caused by intercalation of small molecules into the
double helix, for example due to the sequence-dependent
binding of a protein to DNA [3,2,6–8]. In particular,
the studies of the binding of Δ-[Ru(phen)3]2+ [32] and
[Ru(TAP)2(dppz)]2+ [33] complexes to DNA showed that

Fig. 1. Diagrammatic representation of the two types of kinks
in the double helix: 1) type 1 —loss of stacking in one helix
step (involving two intact base pairs); 2) type 2 —changing of
stacking in two helix steps (involving a modified central base
pair and two intact outer base pairs).

the intercalating ligands act as wedges in the minor
groove, thereby inducing type-1 kinks in the double helix.

Type 2 represents a kink with the changed stacking in-
duced by a modification of a base pair. Such kinks are dis-
tributed over two base-pair steps in this case, with a mod-
ified central base pair and maintained outer base pairs [1,
12,29], as shown in fig. 1. Such a structure is treated as
more probable to appear in the double helix than kinks
of type 1 [1]. For example, computer simulations of DNA
oligomers of 15 base pairs detected the presence of type-2
kinks only [29]. In the simulations of the DNA minicircles
containing 65 and 110 base pairs almost all detected kinks
had a type-2 structure except for the case of relaxed 65
base-pair minicircle which experienced also a type-1 kink
between d(GC) base pairs [14].

An opened base pair should provide high local flex-
ibility [17], therefore it is a natural candidate to cause
the formation of a kink holding the structure of a type-2
kink. The occurrence of the partially opened (preopened)
configuratios of a base pair with possible binding of a wa-
ter molecule to it [34,35] could be a reason to induce a
type-2 kink in the double helix as well. Besides, the dis-
covery of the formation of Hoogsteen base pairs in a linear
DNA with a finite probability, which could provide high
local flexibility as well [17,36], reveals another candidate
to cause a type-2 kink.

Consequently, in the literature one distinguishes two
types of kinks with specified configurations. However, the
geometry of kinks is not known for all the structural
changes in the double helix. In particular, B–A transfor-
mations [37–39], binding of the TBP to TATA-box [40,41]
and the presence of A-tracts and GGCC-tracts [42–44]
could cause the formation of kinks holding a more compli-
cated structure than type-1 and type-2 kinks have. For ex-
ample, TBP induces a strong composite bend over 8 base
pairs of TATA-box which includes sharp bends (kinks) by
52◦ and 39◦ at the first and last base pairs, and smoother
bend at 90◦ within 6 central base pairs [45,46]. There-
fore, we can extend the notion of a kink and take into
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Fig. 2. Diagrammatic representation of the particular confor-
mational kink distributed over 4 intact base pairs in the double
helix.
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Fig. 3. Top: two possible states of a monomeric element, a
normal one (with the bending angle δ) and a kinked one (with
the bending angle θ + δ). Bottom: the minima of the double
well represent two states of a monomeric element.

account the formation of smoother kinks which involve
four or more maintained base pairs with changed stack-
ing [47]. The distribution of the bending angles inside such
kinks is arbitrary. In that way, we will further consider
kinks distributed over n ≥ 3 helix steps with conforma-
tional changes and refer to such kinks as conformational.
Figure 2 shows a particular smooth conformational kink
which involves four base pairs (so 3 helix steps).

Summing up, we will further use the following classifi-
cation of kinks in the double helix:

– type-1 kink, involving n = 1 helix step,
– type-2 kink, involving n = 2 helix steps,
– conformational kink, involving n ≥ 3 helix steps.

Each kink in the double helix is determined by its total
angle θ and the phenomenological probability W of this
kink occurring. Indeed, this probability corresponds to the
concentration of kinks in the double helix and can depend
on several parameters, e.g. bending energy E, spring con-
stant k, etc. Particularly, in the KWLC model W = 2ke−E

for kinks of type 1 [24].
As we mentioned above, the bending energy E in the

Kratky-Porod model depends quadratically on the small
bending angle δ. Since we aim to take into account the
formation of kinks involving extreme angles, we turn to a
double-well potential [25,48], which represents two possi-
ble states of a monomeric element, a normal and a kinked
one, as shown in fig. 3. The monomeric element in the

r1

ri

b

rN

r

δ
Fig. 4. Schematic representation of a Kratky-Porod chain.

normal state is bent at the small angle δ due to the ther-
mal fluctuations just as in the Kratky-Porod model. The
kinked state of a monomeric element describes the pres-
ence of a kink with a certain angle θ. Therefore, we can
represent the total bending angle δ̃ of a monomeric ele-
ment in a kinked state as the sum of a kink angle (θ) and
a small deviation (δ) [25]:

δ̃ = θ ± δ,

cos δ̃ = cos θ cos δ ∓ sin θ sin δ ≈ cos θ cos δ. (1)

In turn, we can accordingly modify the definitions of
the persistence length and other configurational parame-
ters of DNA to include the effect of kinks and their in-
fluence on the state of the DNA coil. The Kratky-Porod
model defines the persistence length of a macromolecular
chain as a limit of the average value of the scalar product
of the first segment unit vector r1 and the vector r, which
is the sum of the segment vectors ri (see fig. 4) [18,21],

A0 = lim
N→∞

〈
r1

b
·

N∑
i=1

ri

〉
= b lim

N→∞

N−1∑
i=0

〈cos δ〉i, (2)

where b is the length of each segment and N is the num-
ber of segments. Taking the limit N → ∞ and using the
formula for a geometric progression we can obtain the fol-
lowing expression for the persistence length:

A0 =
b

1 − 〈cos δ〉 . (3)

Such a definition of the persistence length represents a
chain with segments that are all in the normal state.

Let us start with type-1 kinks, which involve only a
single segment. According to the definition of the persis-
tence length (2) a contribution of the i-th segment in a
normal state is represented by the 〈cos δ〉i term in the se-
ries. On the other hand, if there is a probability W1 of
the type-1 kink formation on the first segment, then it
should produce a contribution W1 cos θ〈cos δ〉 in a kinked
state and a contribution (1−W1)〈cos δ〉 in a normal state
to the series (2). Accordingly, the total contribution to
the persistence length produced by the first segment is
(1−W1(1−cos θ))〈cos δ〉 in this case. If it is assumed that
each segment of the chain can undergo the formation of
a type-1 kink with a probability W1, then the contribu-
tions of each segment to the persistence length should be
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modified in the following way [25]:

〈cos δ〉 → (1 − W1(1 − cos θ))〈cos δ〉,
〈cos δ〉2 → (1 − W1(1 − cos θ))2〈cos δ〉2,

. . .

〈cos δ〉i → (1 − W1(1 − cos θ))i〈cos δ〉i,
. . . (4)

and, collecting the modified contributions of all segments,
the persistence length of the chain with type-1 kinks can
be calculated as

A1 =
b

1 − (1 − W1(1 − cos θ))〈cos δ〉 . (5)

In this way, the presence of kinks in the DNA macro-
molecule decreases the persistence length (and hence the
stiffness of the macromolecule) due to the new term
W1(1−cos θ)〈cos δ〉 depending on the angle of the kink and
the probability of its formation. Furthermore, the maxi-
mal decrease of the persistence length would be observed
in the case of θ = 180◦ due to the term 2W1〈cos δ〉.

A type-2 kink is distributed over two base-pair steps.
Both segments are kinked by an equal angle, θ/2, so the
total kink angle is θ. Therefore, if there is a probability
W2 of a type-2 kink formation on the first two segments,
they should produce a contribution

W2

(
cos

θ

2
〈cos δ〉 + cos2

θ

2
〈cos δ〉2

)

in a kinked state and a contribution

(1 − W2)
(
〈cos δ〉 + 〈cos δ〉2

)
in a normal state to the series (2). Hence, the total con-
tribution to the persistence length produced by the first
two segments is

(
1 − W2

(
1 − cos

θ

2

))
〈cos δ〉

+
(

1 − W2

(
1 − cos2

θ

2

))
〈cos δ〉2

in this case. If it is assumed that each segment of the
chain can undergo the formation of a type-2 kink with a
probability W2, then the contributions of each segment to
the persistence length should be modified in the following
way [25]:

〈cos δ〉 + 〈cos δ〉2 →(
1 − W2

(
1 − cos

θ

2

))
〈cos δ〉

+
(

1 − W2

(
1 − cos2

θ

2

))
〈cos δ〉2,

〈cos δ〉3 + 〈cos δ〉4 →(
1 − W2

(
1 − cos2

θ

2

))(
1 − W2

(
1 − cos

θ

2

))
〈cos δ〉3

+
(

1 − W2

(
1 − cos2

θ

2

))2

〈cos δ〉4,

. . .

〈cos δ〉2i + 〈cos δ〉2i+1 →(
1 − W2

(
1−cos2

θ

2

))i(
1 − W2

(
1−cos

θ

2

))
〈cos δ〉2i

+
(

1 − W2

(
1 − cos2

θ

2

))i+1

〈cos δ〉2i+1,

. . . (6)

Summing up all the contributions, we obtain the following
expression for the persistence length of a chain with type-2
kinks,

A2 =
b · F2(W2, θ)

1 − (1 − W2(1 − cos2 θ
2 ))〈cos δ〉2

, (7)

where F2(W2, θ) = 1 + (1 − W2(1 − cos θ
2 ))〈cos δ〉 charac-

terises the two segments involved by a kink of type 2. In
this way, it can be seen that kinks of type 2 should de-
crease the stiffness of the macromolecule more smoothly
in contrast to kinks of type 1.

In the previous section it was assumed that the so-
called conformational kinks, involving a more complicated
structure than kinks of types 1 and 2, could also exist. In
this way, the obtained approach can be generalised by fo-
cusing on the kinks with an arbitrary distribution of angles
θ1, θ2, . . . , θn inside the kink and involving n ≥ 3 base-pair
steps. The probability of the formation of a conformational
kink (Wn) should be introduced, and the contribution of
n chain segments undergoing a conformational kink can
be changed in the same way as for the kinks of types 1
and 2 [25]:

〈cos δ〉 + 〈cos δ〉2 + . . . + 〈cos δ〉n →
(1 − Wn(1 − cos θ1))〈cos δ〉
+(1 − Wn(1 − cos θ1 · cos θ2))〈cos δ〉2 + . . .

+ (1 − Wn (1 − cos θ1 · cos θ2 · . . . · cos θn)) 〈cos δ〉n =
n∑

j=1

(
1 − Wn

(
1 −

j∏
k=1

cos θk

))
〈cos δ〉j ,

〈cos δ〉n+1 + 〈cos δ〉n+2 + . . . + 〈cos δ〉2n →(
1 − Wn

(
1 −

n∏
k=1

cos θk

))

·
n∑

j=1

(
1 − Wn

(
1 −

j∏
k=1

cos θk

))
〈cos δ〉j ,

. . .
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〈cos δ〉in+1 + 〈cos δ〉in+2 + . . . + 〈cos δ〉(i+1)n →(
1 − Wn

(
1 −

n∏
k=1

cos θk

))i

·
n∑

j=1

(
1 − Wn

(
1 −

j∏
k=1

cos θk

))
〈cos δ〉j ,

. . . (8)

Accordingly, the persistence length of a chain with such
kinks can be defined as

An =
b · Fn(Wn, {θk})

1 − (1 − Wn(1 −
∏n

k=1 cos θk))〈cos δ〉n , (9)

where

Fn(Wn, {θk})=1 +
n−1∑
i=1

(
1−Wn

(
1−

i∏
k=1

cos θk

))
〈cos δ〉i

characterises segments of the chain modified by the con-
formational kink, and θk is the angle between the k-th and
(k + 1)-th base pair.

Coil size and gyration radius of the DNA chain are the
simplest parameters which characterise its spatial dimen-
sions and can describe the properties of the double helix
in solution. In the case of a kinked DNA these parame-
ters can be calculated exactly. It is only necessary to re-
place the persistence length of the undisturbed DNA with
that of the kinked DNA in the corresponding expressions.
Thus, the coil size of a chain with kinks of the chosen type
can be defined as

〈Rn〉2 = [〈R〉2]A→An
= 2A2

n

(
L

An
− 1 + e−L/An

)
, (10)

where An is the persistence length of the chain with kinks
of a chosen type and L is its contour length. In the same
way, the gyration radius can be defined as

〈Gn〉2 = [〈G〉2]A→An
=

LAn

3
−A2

n +
2A3

n

L
− 2A4

n

L2

(
1 − e−L/An

)
. (11)

Consequently, the coil size and the gyration radius experi-
ence the same renormalisation due to the presence of kinks
and hold the same expressions as the ones of the KWLC
model [24]. On the other hand, the persistence length is
calculated differently than the KWLC model does, since
the formation of kinks of different types is taken into ac-
count.

3 Bending of DNA by multivalent cations

In the preceding section we obtained an approach for the
Kratky-Porod model that describes the persistence length
of chains with kinks characterised by two parameters, kink
angle (θ) and kink formation probability (W ). Let us begin

a discussion of the results by calculating the persistence
length of chains with three types of kinks: type 1, type 2
and conformational kinks distributed over 3 helix steps.
We assume that all the segments inside a conformational
kink have equal bending angles θk = θ/3. Furthermore,
we take A0 = 500 Å as the persistence length of an unper-
turbed double helix and b = 3.4 Å as the length of a chain
segment.

We focus on the bending of DNA by multivalent
cations as a good candidate for applying the obtained
model. As shown by Rouzina and Bloomfield, the per-
sistence length can be dramatically reduced due to the
presence of small multivalent cations in solution [26].
They proposed to extend the Kratky-Porod model to take
into account the bending induced by cations: each cation
causes a bend of a small angle βi, that is actually statisti-
cally independent of the bending in the absence of cations.
Thus, they define the persistence length in the following
form:

ARB =
A0

1 + Wi〈β2
i 〉/〈β2

0〉
, (12)

where A0 = 500 Å, Wi is the probability of bending and
(〈β2

0〉)1/2 = 6.7◦. On the other hand, Rouzina and Bloom-
field suggested to also consider the bends induced by ca-
tions as distributed over 6 steps due to the proposed elec-
trostatic bending mechanism [26,49]. Generally speaking,
we can imagine such bends as conformational kinks with
n = 6 and θk = θ/6, where θ is the angle of the whole
kink.

The probability of the formation of a bend is suggested
to be proportional to the number of cations bound per
base pair Θz, so Wi = Wi0 · Θz, where the fractional oc-
cupancy Θz can be estimated by solving the equation [26,
50]

zΘz

2
=

[Lz+]
[Na+]z

nz−1
s

(
1 − zΘz

2

)z

, (13)

where z is a charge, ns is the concentration of the cation
on the DNA surface, [Lz+] and [Na+] are bulk concen-
trations of the ligand and Na+, respectively. Rouzina and
Bloomfield assumed that every bound cation produces an
equivalent bend, and hence Wi0 = 2/z.

In this way, we can compare results for kinks and
Rouzina-Bloomfield bends with the experimental data
obtained for Mg2+, CoHex 3+, Spermidine3+ and Sper-
mine4+ (see fig. 5). We assume that each bound cation
causes an equivalent bend and we use the same formula to
obtain the number of cations per base pair. Furthermore,
we choose ns = 1M and the same angles for kinks of type
1 and type 2 as Rouzina and Bloomfield do for bends,
5.5◦ for Mg2+, 11.5◦ for CoHex 3+, 4.0◦ for Spermidine3+

and 7.1◦ for Spermine4+ [26]. For conformational kinks
distributed over 6 steps we assume the same parameters.

In fig. 5, we compare the results for the persistence
length of DNA with kinks of type 1 (solid curves), type 2
(short-dashed curves) and conformational kinks distribu-
ted over 6 steps (long-dashed curves) against the Rouzina-
Bloomfield persistence length (dotted curves) and exper-
imental points. According to the obtained results the re-
duction of the persistence length by Rouzina-Bloomfield



Page 6 of 8 Eur. Phys. J. E (2018) 41: 114

Fig. 5. The reduction of the persistence length A is caused by
the presence of multivalent cations. The experimental points
are reproduced from the paper by Rouzina and Bloomfield [26]
and represent the presence of the following multivalent cations:
diamonds, Mg2+ [51]; empty circles, CoHex3+ [49,52]; filled
circles, CoHex3+ [51]; squares, Spermidine3+ [49,52]; trian-
gles, Spermine4+ [51]. The curves represent relative persistence
lengths of B-DNA in solution with corresponding cations. Solid
curves correspond to kinks of type 1, short-dashed curves cor-
respond to kinks of type 2, long-dashed curves correspond to
conformational kinks distributed over 6 base pairs and dot-
ted curves correspond to the Rouzina-Bloomfield persistence
length ARB/A0.

bends is highly compatible with a corresponding reduction
caused by kinks of type 1. However, this fact is not sur-
prising since ARB can be obtained from A1 using a Tay-
lor expansion in powers of the kink angle. As we expect,
kinks of type 1 cause a dramatic decrease of the persis-
tence length. Particularly, our approach predicts that the
persistence length decreases by 60–70% for high concen-
trations of CoHex 3+, 35–40% for Spermine4+, 30–35% for
Mg2+ and 20% for Spermidine3+. Moreover, predictions
for kinks of type 1 are compatible with the experimental
data in the range of high concentrations of the ligand, es-
pecially for the CoHex 3+ solutions. On the other hand, if
we assume the presence of kinks of type 2 caused by mul-
tivalent cations, we will observe a much smaller decrease
of the persistence length, such as 25–35% for CoHex 3+ in
particular. Conformational kinks distributed over 6 steps
do not decrease the persistence length sufficiently for all
considered multivalent cations.

Consequently, if we assume the same parameters of
kinks as Rouzina and Bloomfield use for bends and com-
pare the obtained results with the experimental data, we
can see that the decrease of the persistence length due
to the presence of multivalent cations can be adequately
described by type-1 kinks, at least for relatively high con-
centrations of the ligand. Type-2 kinks and especially con-
formational kinks distributed over 6 steps with such pa-
rameters do not cause the same decrease of the persistence
length as observed experimentally. Therefore, we can con-
clude that the bending of DNA can be adequately de-
scribed with type-1 kinks only and not by conformational

Fig. 6. Reduction of the persistence length A due to con-
formational kinks distributed over 6 steps with the changed
parameters caused by the presence of multivalent cations. The
experimental points are reproduced from the paper by Rouzina
and Bloomfield [26] and represent the presence of the follow-
ing multivalent cations: diamonds, Mg2+ [51]; empty circles,
CoHex3+ [49,52]; filled circles, CoHex3+ [51]; squares, Sper-
midine3+ [49,52]; triangles, Spermine4+ [51]. The curves rep-
resent relative persistences length of B-DNA in solution with
corresponding cations.

kinks distributed over 6 steps if we assume that the values
of the kink angle and the formation probability are equal
to those in [26].

However, we can change the parameters of a kink to
make the approach consistent in the case of kinks of other
types. For example, presented in fig. 6 are the results of
the persistence length of DNA with conformational kinks
distributed over 6 steps. However, we assume that the an-
gle of each kink is increased now and choose 33◦ for Mg2+,
69◦ for CoHex 3+, 24◦ for Spermidine3+ and 42.6◦ for Sper-
mine4+. We can see that the kinks modified in such a
way can also adequately describe the decrease of the per-
sistence length in the presence of multivalent cations. In
this way, we have to conclude that experimental results
can be explained using not only kinks of type 1 (that are
used in the Rouzina-Bloomfield model in fact) but kinks
of other types as well, particularly conformational kinks
over 6 steps with the angles fixed in fig. 6. Therefore, more
experimental data is needed. In particular, it is necessary
to measure the angles of kinks that occur in the double
helix due to the action of multivalent cations to identify
their type and configuration adequately. Hence, when the
angle and formation probability of a kink are known, it
is possible to predict its type and the value of decrease
of the persistence length caused by the presence of such
kinks.

4 Summary and outlook

In this paper we have reviewed a simple approach for the
Kratky-Porod model presented in [25], which allows the
calculation of the persistence length of the DNA double
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helix with kinks of a certain type occurring in its struc-
ture. This approach focuses on two basic types of kinks
proposed and observed in the computer simulations by
Lankaš and colleagues [1,12], and kinks with more com-
plex structure called conformational kinks. In that way,
corresponding configurational parameters of DNA includ-
ing the persistence length can be measured and compared
with the predictions of the model. Our approach uses two
parameters, the total kink angle (θ) and the probability of
kink formation (W ). Consequently, it describes the flex-
ibility of a DNA chain with kinks of an arbitrary intrin-
sic structure and length n, contrasting with the KWLC
model, which describes the kinks of type 1 only [24].

The analysis of the approach showed that the possibil-
ity of the formation of kinks in the double helix dramat-
ically reduces its persistence length. In particular, it un-
dergoes the strongest decrease due to type-1 kinks. On the
other hand, changes in the nature of kinks (herewith, its
geometry and type) can decrease the persistence length as
well as increase, in comparison with the persistence length
of the double helix with type-1 kinks. Thus, it is possible
to determine the concentration of kinks in the DNA chain
and their nature by an analysis of the predicted configu-
rational parameters.

Bending of DNA by multivalent cations provides a
good example to apply the discussed approach for prac-
tical computations of the persistence length. Particularly,
the model developed by Rouzina and Bloomfield [26] per-
fectly agrees with our approach in the case of type-1 kinks,
such as single-stranded breaks. However, the decrease of
the persistence length in the case of the presence of multi-
valent cations can be described not only by single-stranded
breaks, but also by the kinks with another intrinsic struc-
ture. For example, results for the persistence length of
the double helix with conformational kinks distributed
over 6 base pairs are also compatible with results of the
Rouzina-Bloomfield framework. But the parameters of a
kink, in particular the bending angle, are much higher
and provide a stronger bending of the double helix in this
case. Therefore, an experiment to determine the nature of
the occurred kinks, their angles and intrinsic structure is
strongly needed.

Furthermore, there is an important challenge to extend
the proposed approach to more complicated configurations
of the DNA macromolecule, e.g. with kinks of different
types in its structure. In particular, configurations of the
DNA double helix containing both type-1 and type-2 kinks
were observed in the simulations of DNA minicircles [12,
14]. Another challenge is to take into account the sequence
dependence of the persistence length, which is a significant
factor in DNA-protein interaction [53]. Such an improved
framework would be a more realistic theoretical tool for
the analysis of the flexibility and conformational proper-
ties of the kinkable DNA double helix involved in key bio-
logical processes such as folding, transcription and others.
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