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Abstract. We have analyzed the behavior of a randomly triangulated, self-avoiding surface model of a
flexible, fluid membrane subject to a circular boundary by Wang-Landau Monte Carlo computer simulation
techniques. The dependence of the canonical free energy and frame tension on the frame area is obtained
for flexible membranes. It is shown that for low bending rigidities the framed membrane is only stable
above a threshold tension, suggesting a discontinuous transition from the collapsed (branched polymer)
state to a finite tension extended state. In a tension range above this threshold tension the membranes
display power-law characteristics for the equation of state, while higher tension levels includes both an
extended linear (elastic) as well as a highly non-linear stretching regime. For semi-flexible membranes a
transition from extended to buckled conformations takes place at negative frame tensions. Our analysis
indicates that at zero frame tension the crumpling transition of fluid membranes show characteristics of
both critical behavior and a discontinuous transition at low bending rigidities.

1 Introduction

The characterization of the physical properties of flexi-
ble sheets and membranes remains a challenging research
topic. In particular the behavior of self-avoiding tethered
(or polymerized) surfaces with fixed in-plane connectiv-
ity has been explored by theoretical analysis and com-
puter simulations, where much of the methodology from
polymer physics and 2D lattice model systems can be
generalized. For the description of the conformations of
self-avoiding, flexible, fluid membranes this generalization
is less obvious, since the varying connectivity coupled to
surface geometry gives rise to a significantly larger phase
space. The theoretical analyses of self-avoiding fluid sur-
faces are mostly based on computer simulations of lat-
tice plaquette models [1, 2] and randomly triangulated
surfaces [3, 4]. We find the latter techniques particularly
promising, because they allow for formulations of dis-
cretized models of surfaces with a trivial continuum limit
which can be related to the standard continuum interfa-
cial free energy models. The research in randomly trian-
gulated surface models has mostly focused on the anal-
ysis of simple closed membranes with very few surface
features, e.g., the bending elasticity or osmotic pressure
difference between the interior and the surroundings. For
such membranes it has been well established that the free-
standing flexible membrane looses its surface character
and behaves like a branched polymer comprised of mem-
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brane tubes at diameters at the microscopic cut-off length
scale l [3–5]. For semi-flexible membranes this picture re-
mains, except for length scales smaller than the persis-
tence length ξP (κ) � l exp( 4πκ

3kBT ) [6–8], where the mem-
brane appears as rigid with strong correlations between
surface normals. κ is the bending rigidity, the elastic con-
stant stabilizing the mean-curvature of the membrane. By
increasing the bending rigidity we can thus in a continuous
manner reestablish the surface smoothness over distances
below ξP (κ). In contrast to this, it was discovered that
the application of a small inflating pressure to a closed,
flexible vesicle gives rise to an abrupt deflation-inflation
transition at a well-defined pressure, to a new phase with
interesting new scaling properties [9, 10]. The new vesi-
cle structure then smoothly transforms into the spheri-
cal configuration by further increase of the pressure. The
properties of the new inflated phase has been interpreted
in terms of a generalized model for stretched polymers.
However, this interpretation involves several assumptions,
e.g., that the osmotic pressure has a simple translation
to a surface frame tension in this regime and the ab-
sence of a zero-tension limit for a framed membrane. In
this study, we have formulated the triangulated surface
model with a boundary fixed to a circular frame, which
may be controlled by a lateral frame tension to illuminate
the properties of flexible membranes at low κ values. This
is a direct analogy to the classical linear polymer anal-
ysis, where the polymer arc length and the end-to-end
distance are the control parameters, the latter possibly
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controlled by a tensile force. By far most of the theoret-
ical literature on fluid membrane conformations is based
on descriptions of framed membranes, where fluctuations
around a mean shape are analyzed, e.g., the Monge or
quasi-spherical representations of membrane shapes. As
examples can be mentioned the interesting discussions
about the relationship between the various membrane ten-
sion definitions [11–16], the interpretation of results from
aspiration of vesicles by micro-pipette techniques [17, 18]
or optical tweezer [19], and steric repulsive interactions of
lamellar membranes [20]. The effect of membrane tension
is also of direct consequence for the membrane conforma-
tions in biological membranes. The volume of the cytosol
and the lumen of the organelles are highly regulated by
the osmolarity and thereby this give rise to a lateral ten-
sion in the membranes. Furthermore, the biomembranes
interact with cyto-skeletal components, thereby modulat-
ing the membrane tension. In this work we study the prop-
erties of hyper-flexible framed membranes by application
of a variant of the Monte Carlo technique, the Wang-
Landau method [21], on a self-avoiding triangulated ran-
dom surface model on a frame. The Wang-Landau tech-
nique allows us to give numerical estimates of the free en-
ergy under various system conditions. Although the Wang-
Landau technique is still under development, it has been
applied successfully for a range of problems, e.g., discrete
lattice models [21], polymer properties [22], protein con-
formations [23] and the calculation of reaction rates [24].
In context of triangulated surfaces Wang-Landau algo-
rithms have been used to obtain the genus-dependence
of the density of states [25] and the specific heat of fixed
connectivity surfaces [26]. This paper is organized as fol-
lows: In sect. 2 the framed model is introduced with em-
phasis on the discretization on the randomly triangulated
surface; sect. 3 describes the Monte Carlo simulation tech-
nique by Wang and Landau applied to the framed model
membrane; sect. 4 gives a brief introduction to the ther-
modynamics of the framed fluid surface necessary for the
interpretation given in the results and discussion sect. 5,
and sect. 6 is for conclusions.

2 Model

2.1 Continuum model

The fluid membrane can, to a good approximation, be
modeled as a mathematical surface. So, we consider a sur-
face of area A in R3 which is homeomorphic to a disc.
For convenience we chose the boundary of the surface as
circular, enclosing an area AB . Most theoretical descrip-
tions of the conformations of fluid membranes take their
beginning in Helfrich’s interfacial free energy expression,
which in its simplest form becomes [27–29]:

H = κ

∫
(2H)2 dA + κG

∫
A

GdA, (1)

where H is the local mean curvature of the membrane and
A is the surface area. The elastic constant κ, the bending

Fig. 1. The frame-based configuration with the confining torus
shown in red. The beads are not shown here in order to better
visualize the network structure.

rigidity, is an experimentally measurable quantity typi-
cally found in the range of 10–50 in units of kBT for syn-
thetic bilayer membranes. The general Helfrich model also
involves a term linear in H, which we abolished since our
membrane is featureless and posses up-down symmetry.
The last term in eq. (1) involves a term proportional to
the Gauss curvature G integrated over the surface, which
we neglect here (κG = 0) despite it has an explicit de-
pendence on the boundary. According to Gauss-Bonnett’s
theorem: ∫

A

GdA = 2πχ −
∮

∂A

λgds, (2)

where the Euler characteristic χ = 1 for a compact disc
and λg is the geodesic curvature of the boundary curve.
Although, we have chosen κG = 0, an effective term of
this type may well be generated by simulation of the dis-
cretized model [7] or from renormalization effects [6]. How-
ever, the contribution eq. (2) is a non-extensive bound-
ary term and is expected to be insignificant for the over-
all properties of the framed surfaces with fixed topology.
For a membrane patch with fixed number of components
the total surface area is limited by an additional elastic
contribution KAA0

2 (A−A0
A0

)2 to the free energy, where KA

is the compressibility modulus and A0 is the equilibrium
area. This term becomes dominating when the membrane
is subject to high external tension [18].

2.2 Discretization

Any closed surface can be approximated by dividing it
into sufficiently many small triangular simplices. Such a
triangulated surface consists of a union of triangles, where
the corners of the triangles form a set of vertices {i} at
positions xi and the sides of the triangles are referred
to as links between vertices. See fig. 1 for an illustra-
tion of a triangularized surface patch. The N vertices,
NT = 2N −NB −2 triangles and NL = 3N −NB −3 links
together form a planar triangular network bounded by
NB boundary links. The surface triangulization provides
an effective method of characterizing surface properties
from the discretzed surface. To ensure the fluid character
of the surface we need to take into account all possible
triangulizations of the surface.

This is handled by random triangulization, where the
planar triangular network can change its connectivity.
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Randomly triangulated surfaces have been used in in-
vestigations of both high energy physics [30–32] and in
the description of in-plane fluid phase separation [33] and
conformations of simple, fluid membranes (reviewed by
Gompper in [34]) and more recently in the description of
nematic membranes [35].

2.3 Self-avoidance

To give a realistic description of the large scale confor-
mations of a fluid lipid membrane, the model needs to
be self-avoiding. It is a challenging requirement, since the
Wang-Landau simulation technique (sect. 3) will explore
any corner of the phase space. The specific model used
here is a simple bead-and-tether model, where each ver-
tex is at the center of a hard shell with radius σ0 and the
links between the vertices in a triangle have a maximum
tether length of l0. The model is thus a generalization of
the pearl necklace model of polymer physics. Such models
can both provide self-avoidance of the surface and restrict
the surface area to a narrow range.

A simple analysis shows that l0
σ0

<
√

3 is a neces-
sary criterion to maintain a weak self-avoidance condition
which has proven practical in MC simulations of rigid
membranes [7], but for the general self-avoiding surface
problem it is not sufficient [8]. However, the algorithms
have shown to become very inefficient as l0

σ0
is reduced. In

this work we have chosen to follow another route to main-
tain full self-avoidance. For convenience we set σ0 = 1 and
l0 =

√
3 and implement the constraint that the angle be-

tween the normals of any neighboring triangle must not
exceed 2

3π. Further conditions to ensure self-avoidance are
implemented by making sure that no links intersect with
any triangle by maintaining a linked list cell structure,
which keeps track of vertex positions, and triangle cen-
troids in any spatial neighborhood. This data structure
allows, in conjunction with the triangulization, an effi-
cient selection of potential link-triangle intersections to
be examined explicitly for intersections. This procedure is
particularly important at the boundary where the above
conditions do not apply.

2.4 Discretized model

For numerical analysis the Helfrich free energy expression
eq. (1) needs to be discretized, i.e. formulated for the gen-
eral triangular lattice introduced in the previous section.
As a starting point we establish the mean curvature vec-
tor in a single vertex constructed from the geometry of its
neighborhood. It can been shown that

H(xi) =
1

2Ai,mixed

∑
j∈N1(i)

cot sij(xi − xj) (3)

provides a consistent definition of the discretized mean
curvature vector [36]. For the link between i and j, cot sij

is calculated as [37]

cot sij =

⎧⎪⎪⎨
⎪⎪⎩

1
2
(cot (θk) + cot (θl)), for interior links,

1
2

cot (θk) , for boundary links.

For two neighboring triangles (ijk) and (ijl) of the tri-
angulation θk and θl are the angles opposite to the side
(ij). N1(i) represents the nearest-neighbor vertices of i.
The area Ai,mixed is a local area assigned to the Voronoi
cell around the vertex i. In case all the triangles of the
Voronoi area are non-obtuse, Ai,mixed is identical to the
standard Voronoi expression

Ai,V oronoi =
1
4

∑
j∈N1(i)

cot sij ‖xi − xj‖2
. (4)

This area has a simple geometric interpretation based on
the circumcenters of the triangles constituting the Voronoi
cell. In the case of an obtuse triangle the area contribu-
tion from a triangle is chosen as the total area A� of the
triangle. The area of the triangle is divided into 3 pieces,
one half the area and two a quarter each. If the obtuse
angle is at the vertex i the area contribution is A�

4 and
if it is one of the two remaining angles the contribution is
A�
2 . This procedure ensures that each patch of the entire

area of the surface is used one and only once. The above
can be formalized as [37]:

Amixed =

⎧⎪⎨
⎪⎩

AV oronoi, if T is non-obtuse,

A�/2, if T is obtuse at i,

A�/4, if T is obtuse at j or k.

The mean-curvature vector H(xi) gives the magnitude of
the mean curvature and the orientation of the surface nor-
mal, since H(x) = Hn(x), while the direction of the sur-
face normal and sign of the mean curvature has to be
determined independently. Therefore an estimate of the
normal nv(x) at a vertex is calculated by averaging the
normals of the surrounding triangles weighted by their
Amixed contribution. This gives the final equation for the
mean curvature squared of the entire surface:

∫
dAH2 =

∑
i∈vertex

Ai,mixed (H(xi) · nv(xi))
2
. (5)

Equation (5) will be used throughout the simulations.

3 Wang-Landau simulation

3.1 The principles of the Wang-Landau simulation

The Wang-Landau method takes it beginning in Lee’s en-
tropic sampling scheme [38]. Let us consider the partition
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function over the micro-states η for the discretized mem-
brane with N vertices and κ = 0:

ZN (T, τ) =
∑

η

exp (−βτA(η))

=
∫

dABgN (AB) exp (−βτAB) , (6)

where AB(η) is the framed area for the micro-state,
gN (AB) =

∑
η δ(AB(η)−AB) is the density of states and

β = 1/kBT . The corresponding Metropolis importance
sampling transition probability between micro-states η
and η′ is given by

pηη′ = min {1, exp (−βτ(AB(η) − AB(η′)))} . (7)

The probability of finding the membrane with a particular
frame area AB fulfills

PN (AB) ∝ exp(SN (AB)/kB − βτAB), (8)

where SN (AB) = kB ln(gN (AB)) is the micro-canonical
entropy. Following Lee [38] we can instead choose to sam-
ple the system to generate the distribution

PN (AB) ∝ exp(SN (AB)/kB − Φ(AB)) (9)

with the corresponding Metropolis transition probabilities
between micro-states:

pηη′ = min {1, exp (− (Φ(AB(η)) − Φ(AB(η′))))} . (10)

If Φ(AB) is chosen so PN (AB) = const, or equivalently
SN (AB)/kB − Φ(AB) = const, the simulation scheme has
generated a procedure to calculate the entropy function
numerically up to a constant. Based on these consider-
ations Wang and Landau [21] devised an effective, itera-
tive method to numerically obtain an approximate entropy
function (or Φ(AB)). For the framed membrane, it is im-
plemented by first dividing the area range into M bins.
These bins serve as the foundation for two histograms,
one for the density of states g(AB) and one where the
number of times a particular bin has been visited in this
iteration H(AB).

The iterations start with a completely flat Φ(AB) =
const or a Φ(AB) obtained from an earlier simulation. Af-
ter a trial move is either accepted or rejected according
to the transition probability eq. (10), the current bin i
is updated with a positive modification factor f in the Φ-
histogram as Φ(A(i)

B ) = Φ(A(i)
B )+f and the histogram over

visited states is updated as H(A(i)
B ) = H(A(i)

B ) + 1. This
strongly penalizes the already-visited states, since a new
visit is more likely to be rejected by the Metropolis algo-
rithm. The new Φ(A(i)

B ) is likely a better estimate of the
entropy function than the old. This form the basis for an
iterative scheme which will produce a series of estimates
of Φ(AB) converging toward the entropy function. If the
Φ-histogram is an accurate estimate of S(AB)/kB , the fre-
quency of the visited states H(AB) will be the same. How-
ever, since the Φ-histogram is just an approximation and

the simulations are finite, the H(AB)-histogram is only
approximately flat. As a criterion for flatness we choose
that no bin should have more than ±10% of the mean
value of the H. When H(AB) is flat the modification
factor f is reduced after each iteration by fi+1 = fi

1.75 .
H(AB) is then set to zero and a new iteration starts. This
is done until f becomes small (f < 10−10). Unfortunately,
the simulation dynamics is non-Markovian by this proce-
dure, since the transition probabilities become simulation
time dependent. However, as f gets smaller the modifi-
cations of Φ diminishes and the simulation dynamics be-
comes asymptotically Markovian, as the changes in the
transition probabilities become negligible.

3.2 Mixed ensemble simulation by WL

For κ �= 0 the above considerations are not sufficient for
the description of the thermodynamics of a framed mem-
brane. The entropic sampling can be generalized to the
calculation of entropy of any set of extensive variables, or
a combination of extensive and intensive variables, which
we called mixed sampling. For the control variables τ and
AB this is easily seen by rewriting the partition function

ZN (T, τ) =
∑

η

e−βE(η)−βτAB(η)

=
∑
AB

(∑
η

exp(−βE(η))δ (AB − AB(η))

)
exp(−βτAB)

=
∑
AB

gN (AB , T ) exp(−βτAB). (11)

In this work E(η) is the energy of the surface (eq. (1) with
the approximation eq. (3)) for the micro-state η represent-
ing a configuration of the discretized surface. The consid-
erations of sect. 3.1 can now be applied to this case with
the modification that the canonical entropy SN (AB , T ) =
kB ln(gN (AB , T )) is calculated and the simulations must
be devised so that SN (AB , T )/kB − βE − Φ(AB , T ) =
const. This is ensured with the following transition prob-
ability between micro-states:

pη,η′ = min
{

1, e−β(E(η′)−E(η))−(Φ(AB(η′))−Φ(AB(η)))
}

.

(12)
Otherwise, the recipe given in sect. 3.1 is followed.

3.3 Move classes

The generation of valid states for the Monte Carlo pro-
cedure is performed by a series of incremental changes of
states, so-called moves. The moves of the randomly trian-
gulated framed surface fall into five move classes.

3.3.1 Linkflip

The fluidity of the membrane is maintained by changes in
the vertex connectivity of the triangulization network. To
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Fig. 2. A linkflip with most of the surrounding network not
shown.

Fig. 3. The movement of a single vertex changes the triangles
around it.

change the vertex connectivity of the network, the links
can be flipped. Each link is a side of two triangles. This
link can then be flipped so the two previously unconnected
vertices in the two triangles are connected (see fig. 2). To
maintain the topology of the surface, such a move can
only take place, if the originally connected vertices have
more than three links and the two new vertices are not
connected prior to the flip. Also, self-avoidance must be
maintained in the linkflip. Links between boundary ver-
tices cannot be flipped.

3.3.2 Vertex move

The second move class is the vertex move, where a sin-
gle vertex undergoes a translation (see fig. 3). A vertex is
allowed to undergo a small displacement within a ball of
radius d in space. This displacement is possible, if there
is no overlap between two beads or the tether restrictions
are violated, i.e. the distance between any vertices i and
j fulfill dist(i, j) > 1 and dist(i, j) <

√
3 for nearest-

neighbor vertices. In general the displacement must not
violate the self-avoidance condition, see sect. 2.3. An ini-
tial value d = 0.1 is chosen for each simulation and then a
short calibration run is made to find a d-value where the
acceptance ratio is around 0.5. Boundary vertices must be
confined to the boundary torus.

3.3.3 Inner-to-boundary vertex conversion

The boundary radius is varying during the simulation, so
the exchange of vertices between the boundary and the
interior of the surfaces must be conducted. For an inner

vertex to be converted to a boundary vertex several con-
straints have to be fulfilled: the vertex must have two
neighbors which are boundary vertices and be situated
between those inside the boundary torus. If the vertex is
connected to more than two pairs of boundary vertices,
one pair is chosen at random for the vertex to be placed
in between. The generation of suitable trial moves of this
type is rather low in the Monte Carlo procedure.

3.3.4 Boundary-to-inner vertex conversion

For a boundary vertex to become an inner vertex the fol-
lowing has to be satisfied: the total number of boundary
vertices cannot be lower than 6. This is introduced to sat-
isfy that the boundary approximately follow the major
circle of the boundary torus. To make sure that the ring
of boundary vertices only surrounds one section of inner
vertices, the chosen vertex has to be connected to at least
one inner vertex. If a conversion takes place, then a new
triangle is formed, which has to satisfy the previously de-
scribed requirements of triangles in sect. 3.3.1. Similarly,
the newly formed link must fulfill the conditions described
in sect. 2.3.

3.3.5 Frame re-size

A frame re-size trial move is performed for every N trial
moves. When generating a new frame with radius rold +d,
all boundary vertices has to lie inside the new frame. The
frame is also allowed to move a small amount in the (x, y)-
plane.

3.4 Detailed balance for boundary conversions

For both boundary move classes in sect. 3.3.3 and
sect. 3.3.4 a boundary vertex is picked. For the inner-
to-boundary conversion, an inner vertex connected to, at
least, one boundary vertex is chosen to improve the chance
of the vertex to be a valid candidate for conversion, since
it is within or near the torus. For detailed balance to be
obeyed, it should be equally probable to select the tran-
sitions η → η′ and η′ → η. In the method chosen here,
the probability of choosing a specific move depends on
the number of boundary links in the configuration, which
is not constant. The transition probability must obey the
detailed balance condition

α

nboundarylinks
=

β

nboundarylinks+1
, (13)

where α and β are the acceptance probabilities for the
move classes in sect. 3.3.3 and sect. 3.3.4. In eq. (13) going
from left to right is a boundary-to-inner conversion and
going from right to left is an inner-to-boundary conversion.
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4 Thermodynamics of framed, fluid surfaces

The outcome from the Wang-Landau Monte Carlo sim-
ulation is a density of states gN (T,AB), which contains
information about the thermodynamic properties of the
framed membrane system. This information can either be
extracted from the derivatives of the Helmholtz free en-
ergy F (T,AB , N) = −kBT ln(gN (T,AB)) or from aver-
ages of the probability distribution PN,T (AB) = gN (T,AB)

ZN (T ) ,
where ZN (T ) =

∫
dABgN (T,AB). We will first estab-

lish a framework for the discussion of the properties of
the framed, fluid surface in the thermodynamic limit (N
large), and then explore the possible scenarios for the free
energy and establish some nomenclature.

4.1 The thermodynamic limit

The internal energy U of the framed membrane fulfills the
fundamental thermodynamic form

dU = T dS + τ dAB + μdN (14)

or equivalently in the Helmholtz representa-
tion (T,AB , N) it becomes dF (T,AB , N) =
−S dT + τ dAB + μdN . Therefore, we can charac-
terize the behavior of the membrane by the specific free
energy

f(T, aB) =
F (T,AB , N)

N
= μ + τaB , (15)

where aB = AB

N . T is constant in the following consider-
ations and will be omitted in the notation. A necessary
condition for mechanical equilibrium at fixed tension τ is
thus

τ =
∂f

∂aB
(16)

with the stability criteria ∂2f
∂a2

B
= ∂τ

∂aB
≥ 0.

Everywhere convex f(aB)

In [39] David and Leibler discussed some basic properties
of f(aB) when it is everywhere convex. Two basic senarios
are possible:

1-i) f(aB) has a minimum at some finite a0
B , 0 < a0

B <
amax

B , which corresponds to an overall flat state AB ∝ N
of a tension-less membrane. For non-vanishing tensions aB

will be vary smoothly according to eq. (16).

2-i) Here f(aB) has its minimum at aB = 0, a crum-
pled state. The corresponding tension τ0 will in general
be non-vanishing, τ0 > 0, and a continuous crumpling of
the membrane takes place for τ → τ0+. For tensions below
τ0 no aB can be assigned the membrane and a discontinu-
ous change to a collapsed state is expected, e.g., branched
polymer configurations.

Fig. 4. Sketches of some of the non-convex cases of f(aB) dis-
cussed in sect. 4.1. 1-ii) The slope of the common tangent is
equal to the positive transition tension between two flat states.
1-iii) The slope of the common tangent is the negative transi-
tion tension between two flat states. For the lower f(aB) shown
the membrane collapse at a negative tension. 2-iii) ac

B mark the
inflection point of f(aB).

Convex f(aB) except for a concave interval

In the following we will extend these considerations to the
case where f(aB) has a concave region in 0 ≤ aB < amax

B .
Some of the possibilities are illustrated in fig. 4. When
f(aB) has a minimum at a0

B , 0 < a0
B < amax

B , there will
be a tension-free, flat equilibrium state of the membrane
as described above.

1-ii) If the concave region is above a0
B a discontinuous

transition between two flat states takes place at some ten-
sion τ ≥ 0, both obeying eq. (16) (see fig. 4).

1-iii) For a concave domain of f(aB) below a0
B , a discon-

tinuous transition at a negative tension takes place, either
between two flat states as above, or a flat and collapsed
membrane when ∂2f

∂a2
B

< 0 at aB = 0 (see fig. 4).
When the minimum of f(aB) is located at the lower

boundary, a0
B = 0, with the slope τ0 ≥ 0 there will be two

possibilities:

2-ii) ∂2f
∂a2

B
> 0 at aB = 0, a transition between two flat

states take place at τ > τ0 (see fig. 4) or between a flat
phase and the crumpled phase at τ = τ0. At tensions
below τ0 the membrane is in a collapsed state.

2-iii) For ∂2f
∂a2

B
< 0 at aB = 0 the framed membrane is

undefined, i.e. collapsed, in the region 0 < aB < ac
B , where

∂2f
∂a2

B
= 0 at ac

B (see fig. 4). A framed membrane can thus

be stabilized for τ ≥ τ c = ∂f
∂aB

(ac
B). At τ c a discontinuous
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Fig. 5. Entropy S(T, AB) versus projected area AB for κ = 0
and N = 400.

Fig. 6. The frame tension βτ versus AB for N = 400 and
κ = 0. βτ is derived from S(T, AB) shown in fig. 5. Note that
the frame tension stays positive everywhere.

collapse of the membrane will take place, nevertheless, at
tensions close to τ c it may display a critical behavior with
the diverging response function ∂aB

∂τ .
The simulation results presented in the next section

suggest that both the scenarios 1-iii) and 2-iii) are in play
for the flexible and semi-flexible framed membranes. In the
above discussion we have not considered the conditions
close to maximal specific projected area amax

B , where no
configurational or extensional fluctuations can take place.
We therefore expect τ = ∂f

∂aB
→ ∞ for aB → amax

B . In
this stretching limit a plausible phenomenological form is
f(aB , T ) � f(T, amax

B )+cst·|amax
B −aB |ω, where 0 ≤ ω < 1

with ω = 0 corresponding to the logarithmic dependence.

5 Results and discussion

5.1 The free energy

The results of a simulation can be described by a nu-
merical estimate Φ(AB , T,N) of S(AB , T,N)/kB − βE =
−F (AB , T,N)β up to an arbitrary constant. In fig. 5 the
dependence of Φ(AB , T,N) on AB is shown. The corre-
sponding tension is obtained from Φ(AB , T,N) by use of
eq. (11) and eq. (16). This tension is shown in fig. 6, where

Fig. 7. The effect of the system size on the membrane stretch-
ing at κ = 0. βτ versus aB displays a noticable N -dependence
in the strectching regime, while the effect of the system size can
hardly be resolved at low aB values. The tension is positive in
the whole aB range.

βτ is plotted against AB . The shown case is for N = 400
and κ = 0. Such curves make it possible to conduct an
analysis along the lines described in sects. 3.2 and 4. The
stretching curves are robust over a wide range of frame
areas, while the convergence of the Wang-Landau proce-
dure becomes very slow in ranges close to the minimal
and maximal possible areas. The quality of the free en-
ergy determination and the estimation of the tension is
thus hampered close to these boundaries and long simu-
lation times are required. Also, for increasing values of κ
the convergence of this Wang-Landau algorithm becomes
very slow. It has therefore only been possible to analyze
the system for small κ values less than 3kBT .

5.2 Floppy membranes, κ = 0

In fig. 7 are shown stretching curves for the membrane
(βτ vs. aB) for N = 49, 100, 144, 196 and 400. The figure
shows that the overall shape of the stretching curves is
the same for most of the stretching region for the system
sizes considered. A striking observation is the absence of a
thermodynamically stable frame tension-free state, since
the lowest tension τc is positive for all the observed system
sizes. This minimum in τ(aB) occurs for some aB = ac

B >
0 with

∂τ

∂aB
= 0, (17)

indicating a region aB < ac
B , where ∂τ

∂aB
< 0 and the

framed membrane is thermodynamically unstable. Since
τ(aB) keeps rising for aB → 0+, it suggests that the whole
region 0 < aB < ac

B is unstable. In the discussion in sect. 4
the flexible membrane thus falls into the category 2-iii),
where τc marks the lower tension limit of the framed mem-
brane model. Beyond this tension, the framed membrane
has a discontinuous collapse into a state, which cannot be
characterized by a finite framed tension, e.g., the branched
polymer configurations. However, τc also has the charac-
teristics of a critical point for τ → τ+

c due to the condition
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Table 1. Data for ac
B , τc, δ, 2ν′ obtained from fits in the low

tension regime.

N 49 100 144 196 400

ac
B 0.51(2) 0.35(1) 0.41(1) 0.41(1) 0.41(1)

τc 0.38 0.31 0.28 0.25 0.0171

δ 1.70 2.65 2.30 2.36 2.34

2ν′ 0.63 0.73 0.70 0.70 0.70

eq. (17) and ∂τ
∂aB

> 0 for aB > ac
B . This suggests the non-

linear behavior

β(τ − τc) � ρ(aB − ac
B)δ = ρ

(
AB − Ac

B

N

)δ

, (18)

where ρ is a constant, δ is a stretching exponent, and
Ac

B = ac
BN . Equation (18) has some similarity with the

Pincus stretching regime for a self-avoiding polymer [40].
For τ close to τc we can invoke the hyperscaling relation
β(τ − τc)(AB − Ac

B) � 1 which leads to the relationship

AB − Ac
B � ρ−2ν′−1N2ν′

. (19)

Here, we have introduced the exponent ν′ with 2ν′ = δ
δ+1 ,

which relates the internal with the external (frame) di-
mension of the membrane. Averaged over the four largest
system sizes (table 1) it is found 2ν′ = 0.71 ± 0.01, which
gives a clear indication of a non-trivial critical behavior.
This value is somewhat lower than the Flory estimate of
0.8 obtained for Gaussian, self-avoiding surfaces [41] or
the estimated exponent found in computer simulations of
pressurized vesicles above the inflation transition [9, 10].
However, our findings are in good accordance with the
observed inflation transition pressure p∗ ∼ N−w where
w � 0.5 for κ = 0 for closed vesicles [9]. The transi-
tion pressure can readily be obtained from our minimum
threshold tension τc by use of Laplace law p∗ = 2τc

RG
, where

the radius of gyration RG can be identified with the radius
of a spherical frame,

p∗ =
4τc

√
π√

Ac
B

=
4τc

√
π√

ac
BN

∼ N−0.5. (20)

The inflation transition is accompanied by apparent crit-
ical behavior with non-trivial scaling in radius of gyra-
tion and volume [9, 10]. However, the above results for
flexible, framed membranes suggest that in the thermo-
dynamic limit these vesicle size quantifiers posses a trivial
scaling behavior, since R2

G ∝ A � ac
BN + ρ−2ν′−1N2ν′

and V ∝ (ac
BN + ρ−2ν′−1N2ν′

)
3
2 . We note that this re-

sult is in agreement with the real-space renormalization
group analysis of pressurized lattice vesicles [42]. In fig. 7
are shown stretching curves for the flexible membrane for
different system sizes and the obtained values of τc, ac

B , δ
and ν′ are given in table 1.

Beyond this highly non-linear elastic regime we find
a range of tensions (βτ � 1–5) with approximately lin-
ear elastic behavior τ = τm + KA

aB−am
B

am
B

. (am
B , τm) marks

Table 2. Fitted values of am
B , βτm and βK from the linear

stretching regime.

N 49 100 144 196 400

β ∂τ
∂aB

4.24(1) 4.22(8) 4.29(3) 4.00(0) 3.96(3)

am
B 1.16 1.20 1.19 1.22 1.21

βτm 2.15(1) 2.11(5) 2.06(7) 2.08(2) 2.09(3)

βK 4.64 4.75 5.11 5.15 5.13

Fig. 8. τ−1 vs. aB in the stretching regime for κ = 0.

the middle of the region with constant ∂τ
∂aB

and KA =
aB

∂τ
∂aB

is the corresponding compressibility modulus (see
table 2). It is illuminating to compare the averaged value
βKA = 0.023 with the compressibility modulus of the cor-
responding planar “Fisherman’s net” βKA = aB

∂βτ
∂aB

=
〈aB〉

〈a2
B〉−〈aB〉2 � 1 [43]. We thus conclude that this linear

elasticity regime is much softer than expected from the
planar expansion of an entropic net and out-of-plane con-
figurational entropy must play a significant role. At high
tension levels, aB approaches its maximum as illustrated
in fig. 8. It is evident that this regime is a property of the
discetized model, which is not represented in the contin-
uum description. It is found that even at the highest exten-
sions we can sample, about 90% of the maximal extension,
the asymptotic relationship βτ = 2amax

B

aB

1
amax

B −aB
[43, 44]

for a planar “Fisherman’s net” is not reached, suggesting
that the disclinations and out-of-plane configurations are
important.

5.3 Semi-flexible membranes, κ � kBT

The properties of the hyperflexible membrane κ = 0 are
expected to persist at very low bending rigidities. In this
section the transition from a flexible to a rigid membrane
behavior is analyzed. In fig. 9 is shown a series of stretch-
ing curves for N = 400 and different values of κ in a range
up to 2kBT . For small values of κ (βκ ≤ 0.5) the behavior
observed is very similar to the κ = 0 case described in
sect. 5.2. We can thus generalize eq. (18) for small κ

τ = ρ(κ)|a − ac
B(κ)|δ(κ) + τc(κ), (21)
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Fig. 9. Tension βτ(aB) versus projected area aB for N = 400
and various values of βκ.

Table 3. Fitted values of ∂τ
∂aB

, a0 and βKA at a0 for varying
κ and N .

β ∂τ
∂aB

N = 49 144 196

κ

0 4.24 4.29 4.00

0.5 4.81 5.24 5.21

1.0 5.77 6.00 6.10

1.5 6.72 6.77 6.73

a0

N = 49 144 196

0 1.16 1.19 1.22

0.5 1.22 1.47 1.50

1.0 1.23 1.45 1.49

1.5 1.22 1.44 1.50

βKA

N = 49 144 196

0 4.64 5.11 5.15

0.5 5.87 7.70 7.84

1 7.10 8.82 9.01

1.5 8.21 9.82 10.10

where ρ(κ) > 0, τc(κ), δ(κ) and ac
B(κ) are some smooth

functions of κ. Here ρ(κ) > 0, ac
B(κ) is increasing, while

the threshold tension τc(κ) is decreasing with κ, i.e. a col-
lapse of the framed membrane at τc(κ) with critical behav-
ior when τ → τc(κ)+. Unfortunately, it was not possible
to determine the exponent δ(κ), since the regime of ap-
proximate scaling behavior becomes small. Also, the linear
stretching regime diminishes, while the strong stretching
regime is closely following the κ = 0 behavior. For κ = κ̄,
with βκ̄ � 0.6, we find that the membrane is tension-free
at the collapse transition, τc(κ̄) = 0. For further increase
in κ the tension-free state becomes thermodynamically
stable and the associated specific area a0

B(κ) is increas-
ing (table 3), while the membrane undergoes a transition

Fig. 10. Tension βτ(aB) versus projected area aB for various
values of N and βκ = 1.5.

at a negative tension τr(κ) from the extended conforma-
tion ar

B(κ) to a small specific area, which unfortunately
cannot be identified. Furthermore, the signature of critical
behavior at tensions close to the transition tension τr(κ)
disappears, since ∂τ

∂aB
> 0 and increases at ar

B(κ). In this
regime we find approximately τr(κ) ∝ −κ. For κ � κ̄
the stretching curves display a strong variation with the
system size. This can indicate a cross-over behavior of
the system in a parameter range where an intrinsic length
scale (the persistence length) and the system size

√
Nl2

are similar. For small system sizes we find that a tension-
free state is stable and τr(κ) < 0 (see fig. 10). For large
system sizes the collapse tension τr(κ) is well defined with
0 < τr(κ) < τr(0).

In fig. 10 is shown the size dependence of the stretching
curves for a more rigid framed membrane with βκ = 1.5.
Here the collapse transition takes place at negative ten-
sion values for the analyzed system sizes. It is interesting
to note that we here observe τr(1.5kBT ) ∝ −1/N and
ar

B(1.5kBT ) ∝ N . Therefore, τr(1.5kBT ) ∝ −κ/N and it
is natural to interpret the collapse transition in this regime
as a simple buckling of the rigid membrane, subject to neg-
ative lateral tension. The observed independence of τ(aB)
from aB is consistent with this interpretation. In the clas-
sification given in sect. 4 the framed membrane crosses
over from the 2-iii) to the 1-iii) behavior above κ̄.

5.4 Tension-free membranes

The above considerations show that floppy, framed self-
avoiding membranes are only stable above some threshold
tension τc(κ). Also, they show that for κ ≥ κ̄, a stable
tension-free state exists. This is demonstrated in fig. 11
where AB(τ = 0, κ) is plotted versus κ for N = 400. For
the tension-free membrane the projected area shows small
variations with κ for rigid membranes, while it vanishes
as κ → κ̄+ in an apparent singular manner. This behavior
can be understood from eq. (21). For τc(κ) � 0 we can
linearize τc(κ) � τ ′

c(κ̄)(κ− κ̄) with τ ′
c(κ̄) < 0 and ac

B(κ) �
ac

B(κ̄)+a′
c(κ̄)(κ− κ̄) with a′

c(κ̄) > 0. Combining this with
eq. (21) we expect that the leading behaviour of aB for a
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Fig. 11. Projected area AB(τ = 0, κ) for the tension-free mem-
brane versus βκ for N = 400.

Fig. 12. Configurational snapshots.

tension-free membrane at κ � κ̄ is

a0
B(κ) = a(τ = 0, κ) ∼ |κ − κ̄|

1
δ̄ , (22)

where δ̄ = δ(κ̄). Unfortunately, the accuracy of the data
in fig. 11 is not sufficient to estimate an exponent char-
acterizing the singular behavior of AB(τ = 0, κ) for κ ap-
proaching κ̄. The results of this section confirms that the
free-standing (tension-free and unsupported) membrane
does not exist below a bending rigidity βκ̄ � 0.6. The
existence of such a low-κ limit for the stability of mem-
branes was predicted by David and Guitter by large-d
analysis of self-intersecting membranes [45, 46]. It is in-
teresting to note that the various discretized models of

rigid, self-avoiding triangulated surfaces all show a cusp
in the specific heat of free-standing vesicles at βκ values
close to 1 [7, 8, 35], which coincide with the lower limit of
the behavior of membranes expected from the continuum
description of rigid membranes [8].

Figure 12 shows configurational snapshots from the
Wang-Landau Monte Carlo simulation of the framed
membrane model for κ = 0, N = 400 and aB =
0.39, 1.06, 2.26.

6 Conclusion

We have performed a numerical analysis of the free energy
and the tension-extension relationship for framed, fluid
membranes at low bending rigidities. The membrane was
described by a randomly triangulated self-avoiding sur-
face model, which was analyzed by Wang-Landau Monte
Carlo computer simulation techniques. The simulation re-
sults demonstrated that for flexible membranes there ex-
ists a minimal threshold tension τc at a non-zero spe-
cific frame area ac

B , below which the framed membrane is
mechanically unstable, with an accompanying discontin-
uous collapse of the surface. Approaching τc from above
the membrane displays critical behavior with an exponent
ν′ � 0.36. This behavior is changed by the bending stiff-
ness of the membrane. For bending rigidities above the
threshold βκ̄ � 0.6, the stable framed membranes pre-
vails for all τ ≥ 0. In particular free-standing membranes
are only stable for κ ≥ κ̄.
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