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Abstract. The pressure-driven growth model for advance of a foam front through an oil reservoir during
foam improved oil recovery is considered: specifically the limit of strong heterogeneity in the reservoir
permeability is treated, such that permeability variation with depth more than outweighs the tendency
of the net pressure driving the front to decay with depth. This means that the fastest moving part of
the front is not at the top of the solution domain, but rather somewhere in the interior. Moreover the
location of the foam front on the top boundary of the system can no longer be specified as a boundary
condition, but instead must be determined as part of the solution of the problem. Numerical solutions
obtained from the pressure-driven growth model under these circumstances are compared with approximate
analytic solutions. An early-time approximate solution is found to break down remarkably quickly (far more
quickly than breakdown would occur in the analogous homogeneous system). Numerical solutions agree
much better with local quasi-static solutions centred about local maxima in the front shape, each local
maximum corresponding to a depth within the reservoir at which a high permeability stratum is found.
These individual local solutions meet together at sharp concave corners to cover the entire depth of the
foam front. As time continues to progress however, the system evolves towards a long-time, global quasi-
static solution, corresponding to the fastest moving of the aforementioned local maxima. Additional key
features of the predicted front shapes are elucidated. The foam front is found to meet the top boundary
obliquely despite an established convention in pressure-driven growth that the front and top boundary
should meet at right angles. In addition, at each sharp concave corner, discontinuous jumps are predicted
in the path length that material points travel to reach either side of the corner. Moreover the long-time,
global quasi-static solution is found to admit smooth concavities, as opposed to the aforementioned sharp
concave corners, which only tend to be prominent earlier on.

1 Introduction

During oil production, only a fraction of the oil originally
in place within an oil reservoir is driven out under the
reservoir’s own pressure. Once the reservoir’s pressure is
depleted, additional oil can be extracted by injecting driv-
ing fluids into the reservoir. Amongst the candidate fluids
for driving out the oil are gas-liquid foams [1–3], employed
in the process of “foam improved oil recovery”.

The reasons why foam is a good candidate driving fluid
for improved oil recovery stem from a number of proper-
ties of foam, particularly the properties it exhibits when
present within porous media such as oil reservoirs [4,5].
Using foam as a driving fluid, rather than using injected
gas alone, tends to prevent gas (within the foam) from sim-
ply rising to the top of the reservoir and “overriding” the
oil present [6,7]. Moreover since foam is a fluid with com-
plex rheology, such that the tendency of foam films either
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to block or to flow through pores [8] can be sensitive to
pore size, foam can potentially reach oil within pores that
other injection fluids might not have reached. Yet another
key property of foam is that its mobility within porous
media is surprisingly low, particularly when the foam is
finely-textured [6]. This low mobility enables a foam front
within a porous medium to advance in a uniform fashion
(rather than developing fingering instabilities [9], which
would involve flow then occurring upon preferential flow
paths, namely the fingers, but bypassing the oil still in
place).

Multiphase flow in porous media is classically de-
scribed by Darcy-type relationships [10], but with differ-
ent fluids in the multiphase flow having different trans-
port properties [8,11] (e.g. different relative permeabili-
ties and/or different effective viscosities, with the relative
mobility being the ratio between relative permeability and
effective viscosity). Recognising, however, that foams can
be much less mobile than other fluids in the reservoir,
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Fig. 1. A front of finely-textured foam, which is initially ver-
tical but which moves from left to right as time evolves. The
front (shown here as a thick curve) separates liquid (surfactant
solution and oil) downstream (towards the right) from coarse
foam upstream (towards the left). The front can be described
at any time t by a curve x vs. y, with each front material point
having displaced through a distance s to reach its current loca-
tion. The instantaneous direction of motion of front material
points is along the front normal n, with α denoting the an-
gle between the normal and the horizontal. For a system with
strongly heterogeneous permeability, x can exhibit several local
maxima, xmax,1, xmax,2, xmax,3, whilst x at the top (denoted
xtop) might lag behind one or more of these. Sharp concave
corners can appear between the various maxima.

Darcy’s law can be simplified to a case in which essen-
tially all the pressure drop in the flow is realised across
the least mobile fluid present [12].

Specifically, we shall consider the case of foam produc-
tion in situ within the reservoir, with a slug of aqueous
surfactant solution injected first, followed by a slug of in-
jected gas: this process is known as surfactant alternat-
ing gas [13,14]. A foam front is formed at the interface
between surfactant and gas and this interface migrates
through the reservoir as injection proceeds. Under these
circumstances, the finest textured foam (i.e., the small-
est bubbles) is found at the front itself, whereas upstream
the foam is much coarser (since bubbles formed upstream
have already collapsed [15–17]), and downstream there is
no foam (only surfactant and oil). The least mobile part of
the flow by far is the finely-textured foam at the front [12],
so as we have noted earlier, this is where the bulk of the
Darcy pressure drop must be realised.

In typical applications, this finely-textured foam front
is a region which is perhaps tens or hundreds of metres
thick containing a myriad of foam bubbles [18]. Nonethe-
less we are dealing with a front that can itself propagate
over a distance of kilometres. Relative to the distance scale
over which the front propagates, the front thickness is con-
sidered to be comparatively small. To a reasonable ap-
proximation then, the foam front can be represented (see,
e.g. fig. 1) by a 1-D curve in a 2-D domain (or more gen-
erally by a 2-D curved surface in a 3-D domain [12,18],
although we do not treat that generalisation here). If the

entire Darcy pressure drop is realised across this effec-
tively 1-D curve, then Darcy’s law reduces to a simpler
mathematical model known as “pressure-driven growth”
(see [12,18,19]). Following a number of recent studies in
the literature [20–25], this is the model we will analyse
here.

Pressure-driven growth solely involves computing how
the locus of the 1-D foam front evolves over time: it does
not require a solution of the full 2-D domain. According to
the model [12,18], any given element of the 1-D front ad-
vances due to the net pressure driving it, the net pressure
here being the difference between the injection pressure
(behind the front) and a hydrostatic pressure (ahead of
it). The hydrostatic pressure increases with depth, mean-
ing that the net driving pressure decays with depth: even-
tually one reaches a maximum depth at which hydrostatic
pressure balances injection pressure, and the front cannot
advance beyond this. At depths less than the maximum,
the net driving pressure is balanced by the dissipation
associated with moving along the finely-textured, low mo-
bility foam front [12,18]: this balance sets the speed of
each element of foam front, with the direction of motion
of each element being normal to the front.

Although conceptually the pressure-driven growth
model is relatively easy to explain, it admits a surpris-
ingly complex set of mathematical behaviours. The rea-
son why the mathematical behaviour manages to be so
rich is that the equation governing the model turns out to
be a hyperbolic partial differential equation, and it is well
known that such equations admit solutions that are not
necessarily smooth [26]. In other words, pressure-driven
growth, as formulated, lacks any regularising “diffusive”-
type term that would require the solutions to be smooth.
The most striking manifestation of “non-smooth” so-
lutions in pressure-driven growth is that concave front
shapes can potentially focus down to sharp concave cor-
ners: again see fig. 1. Physically what these sharp corners
represent is that the foam front can reorient itself on a
length scale comparable with the thickness of the finely-
textured foam front (rather than on a length scale compa-
rable with the much longer distance over which the front
propagates).

In spite of the tendency of the model to develop solu-
tions that are obviously not smooth, for many problems of
interest, including the advance of a foam front through a
homogeneous reservoir, these sharp concave corners tend
not to manifest [12,18]. Instead the front tends to be con-
vex (or strictly speaking so close to being convex that tiny
departures from convexity can be easily overlooked [25]):
convex shapes do not lead to the same mathematical ill-
behaviour in the pressure-driven growth model that con-
cave shapes do [18].

Nonetheless there are important classes of problems in
which concavities can and do arise [20,21,23]. Amongst
these (see [23]) is the case of a heterogeneous reservoir
in which the permeability of the porous medium varies
with depth. The reservoir might for instance be stratified,
with different strata in the reservoir at different depths.
Concavities in the front shape then arise naturally in those
strata for which the front motion lags behind the motion
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in neighbouring strata, and as [23] found, these concavities
can indeed focus down into sharp corners, such as those
shown schematically in fig. 1.

That prior study [23] however left a number of ques-
tions still unanswered. One unanswered question was
whether there might be a simple way to represent the
front shape away from the concave corners. Another unan-
swered question was how the front shape evolved at long
times, and moreover whether or not the concave corners
persisted at these long times. Another key unanswered
question concerned the behaviour of cases with compar-
atively strong heterogeneity, and in particular how foam
fronts in such cases behave near the top boundary of the
reservoir. We explain the issue near the top boundary as
follows.

We have already stated that the net driving pressure
difference (injection pressure less hydrostatic) is highest
at the top [18]. Ordinarily this leads to the top of the
front advancing further than the remainder of the front
lower down. Typically moreover, a boundary condition is
imposed such that the tangent to the front meets the top
boundary of the solution domain at right angles. Since
the direction of motion of front material points is normal
to the front itself, this boundary condition serves to keep
the top of the front moving along the top boundary of
the domain, as one might expect [12]. As we will explain
in more detail later on, a consequence of this boundary
condition turns out to be that the location of the top of
the front is known a priori for all times [18], and this can
be imposed on the solution for the front shape. A poten-
tial issue however arises in a heterogeneous reservoir for
which the reservoir permeability happens to be decreasing
on the approach to the top boundary. The permeability
affects the rate of advance of the foam front, and if the
decrease in permeability near the top is sufficiently strong,
it can overcome the tendency of material points higher up
to have a higher rate of advance owing to their higher net
driving pressure. The system is then said to be “strongly
heterogeneous”, and in effect, front material points on the
top boundary could lag behind points slightly lower down:
see, e.g., fig. 1. This makes it impossible, at least within
the pressure-driven growth model, to impose a condition
that the front tangent meets the top boundary at right
angles. Failure to impose this particular boundary condi-
tion also implies that the location of the top of the front is
no longer specified as part of the problem formulation but
instead is a priori unknown. In the language of hyperbolic
partial differential equations, it is possible to show that the
trajectories of front material points correspond to charac-
teristic curves with information being propagated along
the characteristics [18]: instead of characteristics entering
the solution domain from the top boundary, both they and
the information that propagates along them are now being
directed outwards from the solution domain towards that
boundary. We emphasise that this situation only occurs
when the heterogeneity in the permeability is sufficiently
strong as to outweigh the depth variation of the net driv-
ing pressure. When the heterogeneity is weaker, the usual
top boundary condition applies, as per what occurs in ho-
mogeneous systems.

The purpose of the present work is to address some
of the issues and unanswered questions that were identi-
fied above specifically for pressure-driven growth in sys-
tems having heterogeneous permeability, with a focus on
strongly heterogeneous systems in particular. The remain-
der of this work is laid out as follows. Section 2 outlines
the governing equations of pressure-driven growth, firstly
for a homogeneous system, and subsequently extended for
a (strongly) heterogeneous one. Numerical solution tech-
niques are discussed in sect. 3, with a number of approx-
imate analytical solutions outlined in sect. 4. Results are
presented in sect. 5, which also compares data from nu-
merical simulations with approximate analytical predic-
tions. Conclusions are offered in sect. 6.

2 Model and governing equations

The formulation of the pressure-driven growth model can
be found in several publications that are already in the
literature (see, e.g., [12,18,20,21,23]). Hence we will not
derive the model again in full here, opting instead merely
to introduce the governing equations and describe what
they mean physically.

The key governing equation is

dx

dt
=

kλr

(1 − Sw)φ
ΔP

τthick
n. (1)

Here x represents the location of a material point on the
foam front, t represents time, k represents the reservoir
permeability (assumed to be homogeneous in the first in-
stance), λr is the relative mobility of the finely-textured
foam front, Sw is the liquid saturation in the foam (i.e.,
the volume fraction of aqueous surfactant solution in the
foam), φ is the reservoir porosity, ΔP is the net driving
pressure (injection pressure less hydrostatic), τthick is the
front thickness, and n is the front normal. That this is
a hyperbolic partial differential equation can be appreci-
ated since on the left-hand side we have a time derivative
of x, whereas on the right-hand side we have the front
normal n, which is simply a rotation of the front tangent
through a right angle, with the front tangent itself being
a derivative of x with respect to distance along the front.

The net driving pressure ΔP is the difference between
a driving injection pressure Pdrive and a hydrostatic pres-
sure, the latter increasing with depth. If ρ is the liquid-
to-gas density difference and g is acceleration due to grav-
ity, there is a maximum depth to which foam can reach,
dmax ≡ Pdrive/(ρg) injection pressure being balanced to
hydrostatic pressure at this particular depth. Further-
more, although the front thickness τthick is much smaller
than the distance over which the front propagates, it turns
out that the front thickness is proportional to the distance
over which front material elements displace. This is ex-
pressed as τthick = τ s where s is the distance through
which a front material point has displaced, and τ is a di-
mensionless constant much smaller than unity. Typically
(see [18]) we choose τ = 0.01, although the analysis we
present works for any τ value, provided τ � 1.
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We define an (x, y) coordinate system, such that x = 0
is the location of an injection well and y = 0 is the afore-
mentioned depth at which injection pressure and hydro-
static pressure balance. We make the governing equations
dimensionless by scaling distances by dmax and times by
a scale

tscale = (1 − Sw)φkλr
d2
max

Pdrive
τ. (2)

Values of dmax and tscale are of course sensitive to the pa-
rameter values we set, but typical values reported by [20]
suggest dmax values from several hundred metres up to a
couple of kilometres, and tscale roughly on the order of a
week.

Continuing in what follows to employ the symbols
x ≡ (x, y), s and t, to represent dimensionless variables
(the entire discussion from here on being in dimensionless
form), the governing equation becomes

dx

dt
=

y

s
n, (3)

where in addition

ds/dt = n · dx/dt = y/s. (4)

Here the term in y on the right-hand side represents the
net driving pressure: this vanishes at the bottom of the
domain, and is highest at the top (y = 1 in our dimen-
sionless system). This means that points higher up on the
front tend to move faster and further than those lower
down.

The initial condition is ideally x = 0 and s = 0 at t = 0
for all values of y. This however leads to arbitrarily large
initial values of dx/dt and ds/dt. To avoid this, in numeri-
cal computations we tend to set x = s = s0 at t = 0 where
s0 is a small dimensionless parameter, typically s0 = 0.01.
As we will discuss later, the solutions that develop over
time are really very insensitive to s0, so the exact choice
of s0 has little bearing on the model predictions.

A boundary condition is also usually imposed on the
top boundary. To achieve this we first define an angle α
such that

tan α = (dx/dy)f , (5)

the subscript “f” here representing a derivative along the
foam front. According to this definition α is the angle that
the front normal makes to the horizontal; the sign con-
vention is that a positive α corresponds to a front normal
pointing below the horizontal (see fig. 1), which is what we
expect to develop if upper parts of the front move further
and faster than parts lower down.

Having now defined α, the usual boundary condition
that is imposed is α = 0 at the top. This ensures that
the front normal is along the top boundary, and hence
(according to eq. (3)) the direction of motion of front ma-
terial points is along that boundary.

If points are moving along the top boundary, the dis-
tance through which they have displaced s must be the
same as their horizontal coordinate x, which we now de-
note by xtop. Thus for the top boundary y = 1, eq. (3)

reduces to dxtop/dt = 1/xtop of which a solution is

xtop =
√

2t. (6)

More generally the solution can be written

xtop =
√

2t + s2
0 (7)

although the difference between eqs. (6) and (7) is usually
negligible: for the value s0 = 0.01 mentioned earlier, the
difference is negligible for any t value greater than order
10−4.

All of the above development has envisaged a homo-
geneous permeability. A heterogeneous permeability can
easily be incorporated into the model by defining a dimen-
sionless function J(y) which describes how permeability is
modulated with depth. The governing equations then be-
come

dx

dt
= J(y)

y

s
n, (8)

ds

dt
= J(y)

y

s
. (9)

Following [23] we select a sinusoidally varying function
for J(y), representing the fact that a reservoir is stratified
with a well-defined wavelength for the strata

J(y) = 1 − khet sin(2πnhety). (10)

In what follows, in the interests of maintaining consistency
with [23], we set khet = 0.3 and nhet = 3. Notice that as a
result of this definition J(0) = J(1) = 1. Notice also that
the derivative J ′(y) ≡ dJ/dy is

J ′(y) = −2πkhetnhet cos(2πnhety). (11)

When evaluated on the approach to y = 1 using the khet

and nhet values given above, this turns out to be negative
with the value −2πkhetnhet. Suppose we define a function
j(y) to be the product of J(y) (the heterogeneity modula-
tion) and y (the net driving pressure), this product being
what appears in eqs. (8) and (9). Hence

j(y) ≡ y J(y), (12)

which we have plotted in fig. 2 for our chosen khet and
nhet values. It follows that

j′(y) = J(y) + y J ′(y). (13)

Evaluating this at y = 1, we deduce that the value of j′ at
the top (denoted j′top) satisfies j′top = 1−2πkhetnhet. This
implies that for our chosen khet and nhet, not only is J ′(y)
negative at the top boundary, it is actually sufficiently
negative that j′(y) is also negative there, as fig. 2 indeed
indicates.

This is what we call a strongly heterogeneous system.
The conventional picture whereby points higher up in-
variably move further and faster than those lower down
no longer applies, and the boundary condition given by
eq. (6) (or more generally by (7)) ceases to apply. Instead
the value of x at the top boundary xtop must be obtained
as part of the solution of the problem. How the solution
can be obtained is discussed in the following sections.
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Fig. 2. The function j(y) ≡ y J(y) for a heterogeneous reser-
voir plotted vs. y (see also eqs. (10) and (12)). Parameters
describing the heterogeneity are khet = 0.3 and nhet = 3. Local
maxima (×) and local minima (◦) of j are indicated.

3 Numerical scheme

Equations (8), (9) can be readily solved numerically. De-
tails of the numerical scheme for systems with homoge-
neous permeability have already been published in the lit-
erature [18]. Here therefore we focus mostly on how we
adapted that existing scheme to deal with heterogeneous
permeability.

Basically the existing numerical scheme is a finite dif-
ference scheme in which the front normals at any given
point on the front are computed to second order spatial
accuracy by examining the locations of neighbouring spa-
tial points either side of the given point but giving more
weight to whichever neighbour is closer by. Point posi-
tions are then updated in time to second order temporal
accuracy using Heun’s method.

In the original scheme (for a homogeneous permeabil-
ity system) the numerical time step was 5 × 10−5 dimen-
sionless units and the initial spatial separation between
material points was 0.025 dimensionless units, data for
these choices being found to converge with data gener-
ated with much smaller time steps and finer spatial sepa-
rations [18]. However since the front shape predicted was
convex, and since for convex front shapes material points
move apart as the front advances, it was necessary to
impose a maximum permitted spacing between material
points: this was 0.05, i.e. twice the initial spacing. Once
the maximum permitted spacing between front material
points was exceeded, a new material point was inserted
between the existing ones.

Given however that in the present heterogeneous sys-
tem the permeability is modulated (with nhet = 3 wave-
lengths of the modulation fitting into the vertical extent of
the domain) we chose a finer spatial grid here. Specifically
we selected an initial point spacing 0.01 and a maximum
permitted spacing 0.02. The time step was also chosen to
be correspondingly smaller 10−5.

As we are now dealing with a front which has concave
parts in addition to convex ones, some of the elements ac-
tually shrank over time. We therefore also had to assign
a minimum permitted point spacing, below which we re-

moved points from the front: this minimum spacing was
chosen as 0.005. Eventually the concavities shrank down
into sharp concave corners. As has been explained in [18]
these need to be specially handled in numerical schemes:
a corner that turns through an angle δθ needs to be sped
up by a factor 1/ cos(δθ/2) relative to the speed of a ma-
terial point, as otherwise spurious loops develop in the
front shapes. This speed up relative to material points is
justified, as strictly speaking the concave corners are not
themselves material points, but rather geometric points
at which material points are being consumed. We consid-
ered a corner to be sharp once it turned through an angle
that exceeded the square root of the minimum point spac-
ing, ensuring that the curvature at the corner was typi-
cally on the order of the inverse square root of the point
spacing (and was therefore large). This follows the recom-
mendation of [18] which suggests that the critical corner
angle required to apply speed up should be simultaneously
small compared to unity but large compared to the point
spacing.

Results from computations using the above numerical
scheme are presented later on in sect. 5. There are however
a number of analytical approximations that we can make
which are useful for analysing the front shape: these are
considered in sect. 4.

4 Analytical approximations for front shape

Some approximate analytical solutions are now presented.
Section 4.1 considers a small time t � 1 approximation.
Section 4.2 discusses instead longer time, quasi-static so-
lutions. There turn out to be several local quasi-static so-
lutions on various parts of the front (see sect. 4.3), eventu-
ally giving way to a global quasi-static solution (sect. 4.4)
over the entire front depth. Section 4.5 meanwhile contains
a detailed analysis of the front shape not considering the
entire depth, but rather in the neighbourhood of the top
boundary.

4.1 Small time asymptotic approximation

An asymptotic solution for pressure-driven growth that is
valid in the limit of small times, assuming homogeneous
permeability, was presented by de Velde Harsenhorst and
co-workers [19]: in the literature [25] this has been referred
to as the Velde solution. The solution is

x ∼ s ∼
√

2 y t, (14)

where the effect of the parameter s0 (see sect. 2) is treated
as negligible. The basis of the Velde solution is that, at
early times, material points move primarily in the horizon-
tal direction, and the Velde solution is what one obtains
if the vertical motion is neglected in the first instance.

Using the Velde solution it is also possible to estimate
the extent of the vertical motion that has been neglected.
Via eq. (14), we estimate the derivative of x with respect
to y along the front

(dx/dy)f ∼
√

t/(2y) (15)
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noting that this equals tanα according to eq. (5). Given
the way that α has been defined, the vertical component of
n is − sin α, but for small time, the value of α is also small
and tanα ∼ sin α ∼ α. Substituting eqs. (14) and (15)
into (3), we find that front material points drift vertically
according to

dy/dt ∼ −1
2

. (16)

This equation, for the case of a homogeneous permeability
system, gives a uniform vertical velocity regardless of y
(or more correctly, as will be explained below, a vertical
velocity that is independent of y for the overwhelming
majority of the y domain).

It is possible to employ the vertical motion in eq. (16)
to improve the estimate of the horizontal motion: this then
leads to an improved Velde solution. The technique for
generating this improved solution is explained in [25] (see
also an analogous technique in [24]), but here we merely
note that in view of eq. (16), a point currently at location
y at time t, historically was higher up in the domain, and
historically was moving faster than it is currently moving,
meaning it manages to reach a slightly higher x, namely

x ∼
√

2 y t + t2/6. (17)

In [25] it is shown that this formula, albeit formally ap-
plicable for t � 1, manages to fit numerical data even
for times as large as t = 0.5. Note however that the for-
mula only applies for points which have spent the entire
period up to time t drifting downwards with vertical veloc-
ity component given by (16): it does not therefore apply
for points that find themselves either very close to the bot-
tom boundary (since all motion is arrested there) or very
close to the top (specifically the formula does not apply
when y > 1− t/2, and indeed (17) is not compatible with
the boundary condition (6)). In the small t limit however,
the domains in which eq. (17) breaks down account for
just a very small part of the overall y domain.

The above analysis applies to a homogeneous perme-
ability system. In a heterogeneous system, we need to re-
place y by a function j(y) given by eq. (12). The Velde
solution becomes

x ∼ s ∼
√

2 j(y) t (18)

and the vertical drift associated with it becomes

dy/dt ∼ −j′(y)/2. (19)

The improved Velde solution (after working through the
heterogeneous analogue of the technique presented in [24,
25]) becomes

x ∼
√

2 j t + (j′)2t2/6. (20)

If we are particularly interested in using eq. (20) to esti-
mate the (a priori unknown) trajectory of x on the top
boundary, we could estimate

xtop ∼
√

2t + (j′top)2t2/6, (21)

where we have used the fact that in our system j = 1 at
the top (by construction), and where also the value of j′

at the top (j′top) is known: see sect. 2.
Despite the similarities between the homogeneous and

heterogeneous analyses, there are some significant differ-
ences. In the heterogeneous case, for our chosen j (see
eqs. (10)–(13) and see also fig. 2), the function j′(y)
changes in sign according to the y value. Unlike in the
homogeneous case in which points on the front had a uni-
form downward drift velocity, in the heterogeneous case,
the vertical drift velocity given by (19) here is non-uniform
and can in fact change sign according to the value of y.
Since the rate at which front points are moving horizon-
tally is governed by j (see eq. (18)), it follows that eq. (19)
which drives vertical drift opposite to the direction of j′ is
driving front material points from regions of higher speed
(high j) to regions of lower speed (low j). This is why
eq. (20) always predicts an x value larger than (18) does:
regardless of whether points are migrating upwards or
downwards, historically they experienced faster horizon-
tal motion than their current y location would indicate.

The assumption used to derive (20) is that the cur-
rent vertical drift velocity (for a point currently at y) is
representative of the drift velocity that a material point
has seen throughout its entire evolution up to the current
time t. Clearly in a homogeneous system, with uniform
vertical drift, that is a good assumption. However, in a
strongly heterogeneous system it is a poor assumption,
since the rate of vertical motion is y dependent. This sug-
gests that the time domain for which the heterogeneous
equation (20) is applicable might be rather less than that
for which the homogeneous analogue (17) applies, and con-
sequently (21) might be a comparatively poor approxima-
tion to xtop in a heterogeneous system.

It is possible moreover to argue that eq. (20) (from
which eq. (21) is itself derived) will break down far sooner
towards the top of the domain than towards the bottom.
The reason is because of the differing behaviour of j and
j′ near the bottom and near the top, as we now explain.
Recall that j and j′ are given by eqs. (12)–(13), where
the values of J and J ′ that appear in these equations
are in turn given by eqs. (10)–(11). Both J and J ′ are
oscillatory, but for our chosen khet and nhet values (khet =
0.3, nhet = 3) the value of J ′ is typically an order of
magnitude larger than that of J : the function J ′ oscillates
between ±2πkhetnhet whereas J oscillates only between
1±khet. As fig. 2 indeed shows, the largest oscillations in j′

are therefore seen in the upper part of the domain (where
the term in y J ′(y) within eq. (13) is significant), with less
oscillation seen in the lower part of the domain (where
y J ′(y) must be smaller). It follows also that in the upper
part of the domain j′ can be up to an order of magnitude
larger than J and hence up to an order of magnitude larger
than j. Applying this result to the early-time formula for
x, whereas in the homogeneous formula (17) the term in
t2/6 represents, even for times as large as t = 0.5, just a
small perturbation to the Velde solution, in the strongly
heterogeneous case the analogous term (j′)2t2/6 in (20)
represents a very significant perturbation, particularly in
the upper part of the front where j′ tends to be largest.
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This again supports the view that eqs. (20)–(21) might
only be applicable over just a very limited time domain.

Yet another way of drawing the same conclusion comes
from recalling that the Velde solution (18) and the “im-
proved” Velde solution (20) obtained from it are based
on the idea that motion is primarily horizontal with only
weak vertical displacements. At leading order, the verti-
cal drift velocity is −j′/2 (eq. (19)) for a heterogeneous
system, compared with − 1

2 (eq. (16)) in a homogeneous
case. Given the way that j′ behaves, the vertical drift ve-
locity can be up to an order of magnitude larger in the
heterogeneous system considered here than in the anal-
ogous homogeneous system, suggesting that the vertical
displacements in the heterogeneous system are not nec-
essarily weak. This then explains why the Velde solution
should break down sooner in the heterogeneous case.

4.2 Local quasi-static behaviour

Notwithstanding the arguments that we have just ad-
vanced concerning the Velde solution possibly being unre-
liable in heterogeneous systems, there are certain y loca-
tions at which it can still be applied to estimate x. Con-
sider the locations at which j is a local maximum (we
denote these locations by ymax with the corresponding j
values being jmax). According to the small time asymp-
totic expansion (see eq. (19)), these same locations should
have no vertical drift (since j′ = 0 there). At (or near)
these locations therefore, the location of the front should
match well with the Velde solution (even if the rest of the
front does not). In particular the x coordinate of the front
should be at a location that we denote xmax satisfying

xmax ∼
√

2jmaxt. (22)

In the homogeneous system the maximum value of x
always occurred at the top of the front y = 1, although in a
strongly heterogeneous system the local maxima xmax are
expected to be at smaller values of y. What [18] demon-
strated, at least for a homogeneous system, was that the
shape of the front behind the maximum x value developed
over time a quasi-static shape, in which the “apparent”
horizontal motion of the front was uniform with height.
The actual motion of front elements in this case was nor-
mal to the front, but since the front normal was oriented
obliquely to the horizontal, the “apparent” motion (in the
sense indicated in fig. 3) differed from the actual motion.
Returning to consider the heterogeneous case, it is valid
to ask by analogy, whether the front shape in the neigh-
bourhood of xmax ever attains a quasi-static shape, and
whether the resulting “apparent” horizontal motion is like-
wise uniform with height.

The equations governing the (heterogeneous) quasi-
static shape can be derived as follows. Consider (see fig. 3)
a point at a y value slightly below ymax, such that the
normal to the front at y is at an angle α from the hor-
izontal (with α ≡ 0 at ymax itself, but not at other y
values). In a small interval of time δt, the point displaces
through a distance j(y) δt/xmax, assuming that up to time

x

max



y

y
max

j          t  /  x
max

x

j(y)    t  / x
max


max

Fig. 3. At a given time t, a local maximum of the front is
at location (xmax, ymax), and in a small time δt, this maxi-
mum displaces horizontally by jmax δt/xmax. Although a ma-
terial point at a nearby but otherwise arbitrary vertical loca-
tion (denoted y), actually displaces normally to the front by an
amount j(y) δt/xmax (moving at an angle α to the horizontal),
a new material point arrives at this location y starting from
both higher up and further ahead horizontally (motion of this
point indicated here by a dashed arrow). The net result, if the
front shape is to be quasi-static, is that the entire section of
front apparently displaces in the horizontal uniformly, with the
same velocity jmax/xmax as the local maximum.

t all points in the neighbourhood of (xmax, ymax) have dis-
placed by a comparable path length namely xmax. If the
apparent horizontal motion of the quasi-static shape is
δxmax = jmax δt/xmax uniformly for all y in the neigh-
bourhood, then we require that the projection of δxmax

from the horizontal onto the front normal at location y
matches the normal displacement j(y) δt/xmax, and hence

cos α = j(y)/jmax. (23)

This is entirely analogous to the quasi-static solution for
the homogeneous case as presented in [18], which actually
satisfies

cos α = y (24)

(even though that is not obvious from the way in which
the solution is written in [18]; noting however that cotα =
y/

√
1 − y2, equivalence with the results of [18] can be ob-

tained).
Returning to consider the heterogeneous case, and us-

ing eq. (23), we can derive quasi-static formulae for x vs.
y as follows:

x =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xmax −
∫ ymax

y

√
1 − j2/j2

max

j/jmax
, for y < ymax,

xmax −
∫ y

ymax

√
1 − j2/j2

max

j/jmax
, for y > ymax.

(25)
Using the j values plotted in fig. 2, the predicted quasi-
static front shapes x vs. y via eq. (25) are plotted in fig. 4.
The function j vs. y in fig. 2 has three local maxima (which
we can denote from top to bottom as jmax,1, jmax,2, jmax,3

at respective locations ymax,1, ymax,2, ymax,3). Hence there
are likewise three branches of local quasi-static solutions
in fig. 4. To simplify the plot in fig. 4 we have introduced
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Fig. 4. Quasi-static front shapes computed by eq. (25) for
each of the local maxima in the x-direction. To simplify the
plot, the lower two maxima here have been shifted horizon-
tally to make the various quasi-static solutions join up contin-
uously, although in general there would be a horizontal mis-
match between them as the maxima move at different rates
(see eq. (22)). A global quasi-static front shape covering the
entire vertical domain is also plotted.

an arbitrary horizontal shift into the solutions correspond-
ing to the two lower local maxima, to ensure that all the
solutions join up continuously at concave corners, the cor-
ners being placed at the y locations corresponding to the
local minima of j.

4.3 Comparison between local quasi-static solutions

Although it is possible to construct local quasi-static so-
lutions x vs. y about each local maximum, ymax,1, ymax,2,
ymax,3, it is not possible in general to match together these
local solutions in a uniform fashion to construct a global
quasi-static solution. The reason why such matching is im-
possible is that each local maximum has a different xmax

value: we denote the values by xmax,1, xmax,2, xmax,3 etc.
and moreover (since they correspond to different jmax val-
ues) they move over time at different rates (as eq. (22)
predicts). Thus, even though it might be possible to match
both x and y values for adjacent local solutions at one par-
ticular instant in time (see, e.g., fig. 4 where the solutions
have been matched via an arbitrary horizontal shift), it
will not be possible to retain such matching at later times.
Instead the fastest moving of the local maxima (which
typically is the one that is higher up than any of the oth-
ers, since the function j tends to be larger in the upper
part of the domain than lower down) will therefore run
ahead of the others. As it runs ahead, this fastest mov-
ing maximum will start to invade the domain occupied by
the slower moving local maxima underneath it. A global
quasi-static solution must therefore be based on the fastest
moving local maximum and not on any of the others: the
implications of this are explored below.

4.4 Global quasi-static solution

A global quasi-static solution for the front shape is now
described. Suppose the global maximum of j is jmax,1 oc-

curring at y = ymax,1. Equation (25) is now assumed to
hold over the entire solution domain (instead of just a lo-
cal region centred about ymax,1): the relevant solution for
the function j obtained via eqs. (10) and (12) is plotted
in fig. 4.

Extending the domain in this fashion however predicts
an interesting feature of the global quasi-static solution,
described as follows. As y decreases below ymax,1, the value
of j(y) decreases, cos α decreases according to eq. (23),
and hence α increases: the front reorients as we expect.
Eventually however a local minimum of j(y) is reached
(see, e.g., fig. 2). Moving downwards below this, according
to eq. (23), α starts to decrease again. This then signals a
change in the front shape in fig. 4 from convex to concave.

It is known, however (see sect. 1 and also [18]) that con-
cave shapes are problematic in the pressure-driven growth
model, since they have a tendency to focus down into
sharp concave corners. It is valid to ask therefore how
it is possible for a concavity to be sustained indefinitely
in a quasi-static solution. The reason turns out to be that
individual elements of front only spend a finite amount
of time in the concave region: they migrate into the con-
cavity at one vertical location and then migrate out of it
again at another vertical location before they have shrunk
down to a sharp corner. The proof of this result is given
below.

We use the symbol S to denote distance measured
along a foam front downward from the top: this is not
to be confused with s which is the distance that front ma-
terial points displace during their trajectory. Consider an
element on the front of size δS. Following a foam front el-
ement, the rate at which δS evolves, denoted ˙δS, is known
to satisfy (see [27])

˙δS = κv⊥ δS, (26)

where κ is front curvature, and v⊥ denotes the normal
velocity of the front (which, in the case of interest here,
can be obtained from (9)). Given that we are following
a foam front element, and since the system is assumed
quasi-static, we can replace the time derivative here by a
convected derivative,

vzd(δS)/dz = κv⊥ δS, (27)

where z is a coordinate measured down from the top (as
opposed to y which is measured up from the bottom),
and where vz is the velocity component in the z direction.
Based on the definition of the orientation angle α, we know
that

vz = v⊥ sinα (28)

and also (based on the definition of curvature)

κ ≡ dα/dS = cos α dα/dz, (29)

where recall S is a coordinate along the front measured
downwards from the top, and where we have used the fact
that dz/dS = cos α. Substituting eqs. (28)–(29) into (27)
it follows that

sin α d(δS)/dz = δS cos α dα/dz (30)



Eur. Phys. J. E (2018) 41: 10 Page 9 of 16

and it is easy to check that the solution of this is

δS ∝ sinα. (31)

Consider a front element that starts off at some y lo-
cation slightly underneath ymax,1. As this front element
migrates downward, its α value will grow and hence ac-
cording to eq. (31) its δS value will likewise grow (the
element will stretch). Eventually however the element will
move from a convex to a concave region of the front: the
value of α now starts to decrease, so the element’s δS value
must then begin to decrease also (the element shrinks).
However δS never shrinks down to nothing, since sinα
never falls all the way back to zero. The smallest value of
α or equivalently the largest value of cosα that we attain,
can be readily computed. Via eq. (23), the cosα in ques-
tion corresponds to a local maximum of j/jmax,1: this is
always strictly less than unity, since none of the other lo-
cal maxima for j (jmax,2, jmax,3, etc.) are ever as large as
jmax,1. Thus even though front elements are indeed shrink-
ing when they are on concave regions of the front, they
manage to migrate reasonably quickly onto the next con-
vex region of the front where they manage to start growing
again.

To summarise, even though the front shape admits
sharp concave corners at finite times, the long-time, quasi-
static front shape admits smooth concavities (but not
sharp concave corners). As we will see later on, whilst
sharp concave corners are in fact transiently produced dur-
ing the evolution of this heterogeneous system, those sharp
corners are driven to the bottom boundary of the system
where motion of the front ceases, meaning these corners
play no role in the long-time, quasi-static behaviour.

4.5 Front orientation at the top boundary

The analysis that we have presented to date has been fo-
cussed mostly upon what happens below the global maxi-
mum, i.e., below ymax,1. Here however we switch focus to
what happens above ymax,1 and in particular what hap-
pens adjacent to the top boundary at y = 1. In particular
we want to know, at the top of the domain, what angle (de-
noted αtop) the front normal makes to the top boundary.
We know that initially αtop ≡ 0, since the front starts off
as a vertical line. Over time however αtop should evolve,
and we wish to establish whether αtop will ever attain a
long-time, steady-state value, denoted αtop,ss say. In fact,
according to eq. (23), the long-time, quasi-static value of
αtop should satisfy

cos αtop,ss = jtop/jmax,1, (32)

where jtop is the value of j at the top surface, with in fact
jtop ≡ 1 in our system (see eqs. (10) and (12)). It follows
therefore that

αtop,ss = − arccos(1/jmax,1) (33)

the sign convention being that α is negative when the front
normal has a component pointing upwards.

n

x

inner solution

outer solution
y

x

distance order 

top

top

Fig. 5. Sketch of a foam front shape immediately adjacent to
the location xtop at the top boundary of a reservoir, the shape
consisting of a sharply curved “inner solution” that is realised
over a dimensionless distance on the order of γ (with γ � 1)
matched onto a much lower curvature “outer solution”. The
inner solution manages to meet the top boundary at a right
angle, whereas the outer solution is oriented obliquely, with
the normal n to the front being at an angle |αtop| above the
horizontal.

A non-zero αtop is counterintuitive since, as has
already been mentioned in sect. 2, conventionally in
pressure-driven growth [18,23] (either in homogeneous
systems or in weakly heterogeneous systems which still
have j′ > 0 at y = 1) we impose a boundary condition
αtop = 0. It is only when j′top < 0 that the pressure-driven
growth system no longer satisfies the boundary condition
αtop = 0. This leads to a paradox since the reason for
imposing this condition is to prevent the foam front from
penetrating the top boundary, and this “no penetration”
condition now appears to be violated.

The way to resolve the paradox is to recall from [18]
that the pressure-driven growth model is in fact a singu-
lar limit of a more general model known as the viscous
froth, which has been extensively studied in the litera-
ture [27–35]. It is found that there needs to be a “bound-
ary layer” immediately adjacent to the top surface within
which all terms in the viscous froth model must be re-
tained, even though certain terms would ordinarily be ne-
glected in the pressure-driven growth limit. As indicated in
fig. 5, eq. (25) represents an “outer solution”, but there is
also an “inner solution” or “boundary layer” across which
the front reorients abruptly to avoid penetrating the top
boundary. As fig. 5 shows, the front shape in the bound-
ary layer is necessarily concave (since the front orienta-
tion angle α must change from zero right at the top to
a value αtop given, e.g., by eq. (33) moving downwards
through the boundary layer). There is however no risk of
this concavity focussing down to a sharp corner (because
a sharp corner can only arise in the context of pressure-
driven growth, but not for a viscous froth [18]).

As per the discussion in [18], the viscous model here
(assumed to be in dimensionless form) satisfies

xtopv⊥ = Δp + γK, (34)

where xtop is the location of the front on the top bound-
ary, Δp is the (dimensionless) net driving pressure dif-
ference, γ is a (weak) dimensionless surface tension term
and K is the front curvature (but defined now with a sign
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convection such that K is positive in concave regions, i.e.
K = −κ).

Since we are interested primarily in a long-time, quasi-
static state, we suppose that xtop remains a fixed distance
behind xmax,1. Since however xmax,1 is growing with time,
it follows that xtop in eq. (34) can be well approximated
(at least in relative terms) by xmax,1, and hence

xtop ∼ xmax,1 ∼
√

2jmax,1t. (35)

Moreover, near the top boundary, the dimensionless net
driving pressure becomes Δp ≡ 1. Finally it is recalled
that γ is a small dimensionless parameter. As is explained
in [18], in the current context, γ should not be thought of
as “surface tension” in the conventional sense. Rather it is
a parameter that limits the growth of the front curvature:
although represented here by a 1-D curve, in reality the
foam front has a finite thickness and it cannot curve over
length scales less than its thickness.

To generate the “inner solution” at the top boundary
suppose we look for a quasi-static front shape of the form

x = xtop + ξ(y) ∼
√

2jmax,1t + ξ(y), (36)

where ξ is a function we must determine. Differentiating
with respect to time gives the apparent horizontal speed
of the front as

√
jmax,1/(2t), and it then follows:

v⊥ =
√

jmax,1/(2t) cos α. (37)

Substituting eqs. (35) and (37) into (34), we find

jmax,1 cos α = 1 + γK, (38)

an equation which admits a quasi-static solution (in which
α and K depend on y but not on t). Moreover

K ≡ −dα/dS = cos α dα/dy (39)

where S is a distance measured downward along the front,
where we recall our sign convention is such that α becomes
increasingly negative as we move downward from the top
boundary, and where we have used the fact that dy/dS =
− cos α. Thus

jmax,1 cos α = 1 + γ cos α dα/dy. (40)

Equations of this form have been studied by [36] and
implicit solutions (giving y as a function of α) are eas-
ily obtained. Moreover dξ/dy = tan α, so once y vs. α is
known, the function y vs. ξ can also be obtained. We will
not give the detailed formulae for these “inner solutions”
here as they are already published in literature [36]. The
key features of these solutions are however as follows. At
the top boundary y = 1, the “inner solution” has α = 0
and hence has a large curvature K = (jmax,1 − 1)/γ, re-
membering that γ is a small parameter. If we move a ver-
tical distance on the order of γ below the top surface, the
front reorients and the curvature decays. At a distance
such that the curvature term has fallen to a negligible
value, α attains the value αtop,ss as given by (33), corre-
sponding to the aforementioned “outer solution”.

It is already known in the context of foam improved
oil recovery within homogeneous systems that “outer” and
“inner” solutions are actually required to represent the
front shape [18]. However the outer solution is rather dif-
ferent in the homogeneous case, as it already manages to
satisfy αtop = 0. As a result, the inner solution is com-
paratively unimportant, serving not so much to reorient
the foam front (as must happen for a strongly hetero-
geneous case), but rather just to relax a weak singular-
ity in the front curvature. Moreover, in the homogeneous
system, the front shapes predicted by both “inner” and
“outer” solutions are convex [18]. Here, for a strongly het-
erogeneous system, we have a quite distinct inner solution
which is concave, and which matches on to an outer solu-
tion with non-zero αtop. Whereas in [18] individual mate-
rial elements of the front could migrate from an “inner”
region to an “outer” one, here with strong heterogeneity
the migration is in the opposite sense (from the “outer”
to the “inner” region), and once in that “inner” region,
elements reorient their motion, so as ultimately to travel
parallel to the boundary. The paradox of the pressure-
driven growth model in strongly heterogeneous systems
appearing to violate the no penetration condition at the
top boundary is thereby resolved.

In what follows we will focus exclusively upon the
“outer solution” namely pressure-driven growth. Impor-
tant results in the case of pressure-driven growth are (33)
for αtop and (35) for xtop both in the long-time, quasi-
static limit. According to eqs. (9) and (12), the actual
speed of material points near the top boundary is less
than that of material points at the location y = ymax,1

because j at the top is smaller than jmax,1. Nonetheless
the fact that the front meets the top surface obliquely
means that the apparent horizontal motion along the top
boundary exceeds the actual speed of material points at
the top. The value of xtop then grows like

√
2jmax,1t (as

per eq. (35)) which exceeds
√

2t (see eq. (6), being the
value that xtop would have had if the front had met the
top boundary at right angles instead of obliquely).

This completes the discussion of the various analytical
approximations for the front shape. In the next section we
will ascertain how the analytical approximations compare
and contrast with numerical data.

5 Results

In what follows we present numerical data obtained via
the method outlined in sect. 3, comparing these data with
analytical predictions from sect. 4 where relevant. Sec-
tion 5.1 examines data for front shapes (x vs. y for various
t), whereas sect. 5.2 focusses on the situation at the top
boundary. Finally, sect. 5.3 examines data for the path
length s through which material points on the foam front
displace.

5.1 Front shapes

Numerically computed front shapes at a selection of times
from between t = 0.125 and t = 8 are plotted in fig. 6. It
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Fig. 6. Numerical front shapes predicted at various times from
t = 0.125 through t = 8.
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Fig. 7. Numerical front shapes predicted at (a) t = 0.0625
and (b) t = 0.125 compared with the early-time Velde solution
(eq. (18)) and improved Velde solution (eq. (20)).

is clear that the front evolves from a configuration that is
near vertical at early times to one that is much more tilted
over at later times. The front has a tendency to form con-
cave corners: these are very evident for t = 0.125 through
t = 1, but are rather less evident for t = 2 through t = 8.
The concave corners do not remain at a fixed y location
but instead are seen to migrate downwards. Indeed if one
looks closely at the t = 2 and t = 4 curves, very small con-
cave corners can be detected towards the bottom of the
domain. The more striking feature of the t = 2 through
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Fig. 8. Numerical front shapes predicted at (a) t = 0.125 and
(b) t = 0.5 compared with local quasi-static solutions obtained
from eq. (25).

t = 8 curves, however, is that they admit (smooth) con-
cavities which are clearly distinct from concave corners:
this is consistent with the predictions of sect. 4.4.

In fig. 7 some early-time numerical data are compared
with the predictions of the Velde solution (18) and the
improved Velde solution (20). In fig. 7(a) for t = 0.0625
we see very clearly that the improved Velde solution is
a better fit. In fig. 7(b) for t = 0.125 however, the “im-
provement” is less clear. On average the improved Velde
performs better, since the Velde solution is consistently
behind the numerical curve, yet the improved Velde so-
lution is sometimes behind and sometimes ahead. How-
ever pointwise at t = 0.125 the improved Velde solution is
no better, in the sense that there are points (particularly
those in the upper part of the domain) at which the “im-
proved” Velde solution is a similar distance away from the
numerical data as the Velde solution is. As anticipated
in sect. 4.1, even though the improved Velde solution is
known to work well for homogeneous systems even out to
t = 0.5, for a heterogeneous system it breaks down much
sooner, and that breakdown manifests itself primarily in
the upper part of the solution domain.

A far better fit to the t = 0.125 data can in fact be
obtained via the quasi-static solutions given via eq. (25).
As is seen in fig. 8(a), locally a quasi-static solution seems
to develop centred about each of the local maxima in x,
growing outwards from there. The agreement with the nu-
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Fig. 9. Numerical front shapes computed at various times t =
4 through t = 16 compared with the predicted final state (i.e.
a long-time, global quasi-static solution).

merical data is good especially given that there are no ad-
justable fitting parameters here, as each local maximum
in the x direction is given by eq. (22) with the rest of
each curve then being determined from eq. (25). There are
however mismatches where the quasi-static solutions asso-
ciated with different local maxima fail to join up continu-
ously: in the numerical data, these manifest themselves in
the form of concave corners that run ahead of the quasi-
static predictions.

The situation at t = 0.5 has evolved somewhat, as
fig. 8(b) shows. There are still recognizable local quasi-
static solutions about each of the local maxima in x,
but there is a clear tendency of the quasi-static solutions
higher up to advance further and thereby invade parts
of the domain formerly occupied by the quasi-static solu-
tions associated with maxima lower down. This is asso-
ciated with the concave corners at the junctions between
the various local quasi-static solutions having migrated
downwards relative to their earlier locations in fig. 8(a).

By t = 4 (see fig. 9) there is a recognisable tendency
for the foam front to converge to a global quasi-static so-
lution. However it is clear that convergence is not uniform:
agreement with the global quasi-static solution is achieved
quickly in the upper part of the domain, with convergence
in the lower part of the domain being rather slower. One
of the issues faced here is that for the numerical data y
necessarily falls to zero when x = 0 but for the long-time,
quasi-static state (see eq. (25)), y only falls to zero as
x − xmax → −∞. It is only as t increases from t = 4 to
t = 8 to t = 16 that we see the numerical curve in the
lower part of the domain starting to migrate towards the
long-time quasi-static state curve.

Despite the slow convergence, the fact that the solution
does indeed evolve towards a long-time, quasi-static state
is a significant one from the point of view of improved oil
recovery operations. By construction (see eq. (25)), over
the overwhelming majority of the depth of the domain
(with the exception of y � 1), the location x of the front is
no more than an O(1) distance behind xmax, i.e. typically
a point on the front is no further behind the leading x
value than the domain itself is deep. This implies that the
advancing foam front manages to avoid so called “gravity

override” an undesirable situation in which isolated parts
of the front, typically those higher up in the domain, far
outrun the majority of the front.

5.2 Front motion along the top boundary

Another observation that we can make from the curve
shapes in, e.g., fig. 6 through fig. 9, is that the curves
do not quite meet the top boundary at right angles (i.e.,
αtop 	= 0). As was discussed in sect. 4.5, this is associated
with xtop growing slightly faster than it would for a right
angle configuration. Here we study in detail how xtop vs.
t behaves.

In fig. 10(a) the numerical xtop vs. t data are com-
pared against two formulae:

√
2t (eq. (6), the formula

that would apply if αtop = 0 at all times) and
√

2jmax,1t
(eq. (35), the formula that would apply if αtop = αtop,ss ≡
− arccos(1/jmax,1) at all times). By time t = 1 it is clear
that the numerical data fit the latter formula far better
than they fit the former. However it is difficult to detect
which formula fits better for small times t � 1, since
all the curves converge together on the plot as t → 0.
In order to visualise this better, in fig. 10(b) we plot
xtop/

√
2t vs. t. Over time this is seen to migrate from

1 to close to
√

jmax,1 (corresponding to the angle αtop re-
orienting from zero at t = 0 to a final steady-state value
αtop,ss ≡ − arccos(1/jmax,1)).

The evolution of αtop with time is shown explicitly
in fig. 10(c). Clearly there is some noise in the numeri-
cal data: this is actually a numerical artifact arising from
the fact that we quite often have to delete front material
points near the top boundary. As explained in sect. 3, we
delete material points whenever the point spacing falls be-
low a minimum permitted value. Near the top boundary,
material points are predicted to have an upwards velocity
component, so the spacing between these material points
and the top boundary is continually decreasing. In spite
of the noise, it is clear that the data match the predicted
steady state αtop,ss.

It is possible to use the Velde and improved Velde for-
mulae (eqs. (18) and (20)) to determine (via eq. (5)) a
value of αtop: the resulting formulae are also plotted on
fig. 10(c). Clearly the Velde and improved Velde formu-
lae for αtop only apply at very early times: for any time
t greater than about 0.05 the numerical data tend to be
closer to αtop,ss than to the Velde data.

The data we have considered here have a well de-
fined value of j′top (with j′top being negative as is clear
from fig. 2): based on eqs. (10)–(13), j′top evaluates to
1 − 2πkhetnhet as already mentioned in sect. 2. It is in-
teresting to speculate what might happen in a situation
where the magnitude of j′top is decreased. This could be
achieved for instance by decreasing the value of the param-
eter khet, which would maintain the value of j at the top,
denoted jtop, equal to unity. Reducing khet from the orig-
inal choice khet = 0.3 down to khet = 1/(2πnhet), would
make j′top tend to zero. Since vanishing j′ corresponds to
having a maximum in j, the more that the magnitude of
j′top is decreased, the closer jmax,1 must move to jtop ≡ 1.
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Fig. 10. (a) For a strongly heterogeneous system, the loca-
tion of the front on the top boundary xtop vs. time t compared
with the boundary condition imposed for a homogeneous sys-
tem

√
2t and also compared with the expected long-time be-

haviour
√

2jmax,1t (for the strongly heterogeneous system). (b)
xtop/

√
2t vs. time t; the constant value

√
jmax,1 is also indi-

cated. (c) The absolute value |αtop| vs. time t, as computed
numerically, compared with the expected long-time steady-
state value |αtop,ss|, and also contrasted with the predictions for
|αtop| deduced from the Velde and improved Velde solutions.

The value of αtop,ss given by eq. (33) must then migrate
towards zero, implying that the xtop vs. t formula from
eq. (6) will be recovered.

The discussion presented above concerned the case
j′top ≤ 0, but with the magnitude of j′top decreasing to-
wards zero. A boundary condition αtop = 0 is also typi-
cally imposed on systems for which j′top is strictly greater

than zero, e.g. in the case of homogeneous permeability
we have j ≡ y and hence j′top = 1. It is known however
that imposing αtop = 0 when j′top is strictly greater than
zero leads to considerable complexity in the structure of
the foam front at early times and near the top [25]: this
arises due to an incompatibility between those material
points forced to remain on the top boundary and points
immediately below the top which must drift downwards
with velocity component −j′top/2 according to the Velde
solution (see eq. (19)). This incompatibility is removed in
the special case when j′top → 0, suggesting that the com-
plicated structure near the top of the foam front needed
to resolve that incompatibility (as presented by [25] for a
homogeneous system) is not actually required in the spe-
cial case of a heterogeneous system with vanishing j′top.
In what follows however we return to the case of non-
vanishing j′top and more particularly strongly heteroge-
neous systems with j′top < 0.

5.3 Behaviour of path length variable s

So far we have focussed attention primarily upon front
shapes and quantities (e.g., xtop, αtop) which can be ob-
tained directly from them. Here we switch the focus in-
stead to the path length variable s. Although this must
be computed in order to determine the front shape, the
evolution eq. (8) for the front shape being dependent upon
it, we have not yet examined its behaviour in detail.

We know that s is necessarily greater than x, because
to reach a given x location, front material points generally
must displace both horizontally and vertically. However
since front motion is initially predominately horizontal, s
should be only slightly greater than x (at least initially).
Figure 11(a) shows a plot of s vs. y superposed on a plot
of x vs. y for various times up to t = 0.5. As expected, the
s values are just very slightly larger than x.

The biggest discrepancies between s and x tend to be
seen in the regions immediately above concave corners in
the front shape. This is unsurprising. We know (via fig. 8)
that in the time regime considered here, the front shape
is well described by local quasi-static solutions satisfying
eq. (23). For s to grow above x we need a significant ver-
tical component of motion, i.e. we need α different from
zero, and this is achieved via eq. (23) when j is signifi-
cantly smaller than jmax. Note that, the angles α are not
expected to be symmetric either side of a concave corner:
selecting the y value corresponding to the corner between
the two uppermost local quasi-static solutions, j(y)/jmax,1

will be less than j(y)/jmax,2 for instance, these values then
determining α according to eq. (23). The front is therefore
tilted over to a greater extent above the corner than below,
which also contributes to the gradual downward migration
of the corner itself, since the algorithm proposed by [18]
sets the direction of motion of the corner to be along the
corner bisector. Another consequence of having a larger
α above the corner than below is that s is larger above
the corner (because as explained above, larger α implies
more vertical motion, which in turn implies a larger path
length s travelled to reach a given horizontal location x).
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Fig. 11. Curves of path length s vs. y compared with curves
of x vs. y at various times (a) from t = 0.0625 to t = 0.5 and
(b) from t = 0.5 to t = 4.

It is clear therefore that there is actually a jump in s at
each of the concave corners which is what fig. 11(a) shows.

This is the first time that a jump in the value of path
length s has been clearly demonstrated in numerical re-
sults of the pressure-driven growth model. The result is
actually a fairly significant one for the numerical imple-
mentation of the model, since the rule we use for evolv-
ing the corners i.e. a speed up factor relative to material
points of 1/ cos(δθ/2) where δθ is the angle through which
the corner turns, strictly speaking only applies when ma-
terial points either side of the corner are moving at the
same speed (but in different directions). In reality, the
speed of material points is sensitive to s (see eq. (9)), so
if there is a jump in s at the corner, there must also be a
jump in that material point speed.

Strictly speaking then we ought to be using a more
general technique for determining how the concave cor-
ners move: indeed a general technique for determining
how sharp corners must evolve in pressure-driven growth
when the speed of material points undergoes a jump at
a concave corner has already been derived by [22]. The
derivation specifically envisaged the case of an anisotropic
permeability, so that a jump in orientation of the front
(as necessarily happens at a concave corner) implies a
jump in speed of material points, regardless of whether
or not path length s undergoes a jump at the corner. In
the present system we have a heterogeneous but isotropic

permeability, but the technique derived by [22] for prop-
agating the concave corners can still be employed, as all
that matters in the technique is that there is a jump in
the speed of material points regardless of how it is caused.

We leave the implementation of this more general tech-
nique for computing the evolution of the locations of the
concave corners for future work. We note however from
fig. 11(a) that the jumps in s compared to the value of s
itself are fairly small, so the error involved in propagating
the concave corners assuming equal s and hence (accord-
ing to eq. (9)) equal speed either side of the corner should
likewise be small. Moreover the mathematical structure of
the pressure-driven growth equations should help to main-
tain the integrity of the solution in spite of the exact de-
tails of how the corner is propagated: information about
the front shape tends to propagate outwards in convex
regions but inwards in concave regions (towards the con-
cave corner). As front material points migrate closer and
closer together at the concavity and thereby the spacing
between them diminishes, we eventually need to remove
points from the front altogether: in the neighbourhood
of the corner then we destroy information, meaning that
slight inaccuracies in that information cease to be relevant.
Sufficiently large inaccuracies can and do produce spurious
behaviour (see [18]), but slight inaccuracies can be toler-
ated (since the inaccurate information itself is eventually
destroyed).

Yet another consideration is that as time proceeds the
concave corners themselves become less prominent so the
algorithm for propagating them should likewise become
less critical: fig. 11(b) for instance shows x and s vs. y
at longer times up to t = 4. The concave corners on the
x vs. y plots are now difficult to see, although jumps in
s at certain y values remain evident: these jumps in s
are however gradually being pushed to the bottom of the
solution domain, beyond which no further advance of the
foam front is possible.

6 Conclusions

We have used the pressure-driven growth model in order
to study the advance of a foam front through an oil reser-
voir in the context of foam improved oil recovery. Whereas
previous studies have focussed on homogeneous and/or
weakly heterogeneous systems, here we have considered a
strongly heterogeneous case: strong heterogeneity in this
context means that the reservoir permeability varies sig-
nificantly from stratum to stratum, and in particular de-
creases sufficiently in the direction moving toward the top
boundary, that it overcomes the tendency of the net driv-
ing pressure (injection pressure less hydrostatic pressure)
to grow moving upwards. Thus the part of the foam front
that moves the furthest and the fastest is not that right
at the top of the reservoir, but rather somewhere in the
interior, albeit typically relatively close to the top.

An early-time solution for the shape of the front is
available that assumes that the motion of front mate-
rial points is predominately in the horizontal. This solu-
tion predicts that the horizontal displacement of the foam
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front develops several local maxima, each maximum cor-
responding to a high permeability stratum. This solution
however breaks down comparatively quickly (much more
quickly than the analogous early-time solution for a ho-
mogeneous system does) since it turns out that vertical
motion of front material points can be rather more signif-
icant in a strongly heterogeneous system than in a homo-
geneous one.

A better match to the front shape can be found by
assuming a local quasi-static solution about each of the
local maxima of the front displacement. Each local quasi-
static solution assumes a locally uniform “apparent” hor-
izontal motion matching that of the corresponding local
maximum. The various local solutions cannot however be
matched together to give a global quasi-static solution
since it turns out that the different local maxima move
at different rates from one another. Over time then, the
faster moving local quasi-static solutions tend to invade
the domains occupied by their slower moving neighbours
with the result that the global long-time, quasi-static so-
lution is that corresponding to the fastest moving out of
all the local maxima: this is typically the maximum that is
located highest up in the domain. All points on the front
are now predicted to have an apparent horizontal motion
equal to that of the leading local maximum.

One interesting prediction is that the global, long-time
solution admits concave regions in the foam front shape.
Unlike what is normally seen in pressure-driven growth,
these are smooth concavities rather than sharp concave
corners: individual material elements spend only a limited
time migrating through any given concavity, implying in-
sufficient time for the concavity to sharpen. Sharp concave
corners do in fact appear in the front shape early on, but
they turn out to be transient being driven to the bottom
boundary of the front where they can advance no further:
the concavities that persist at long times are smooth ones.

The motion of the uppermost of the local maxima on
the front (associated with the uppermost of the high per-
meability strata) also influences the solution for the front
at the top boundary of the domain. The result is that the
front along the top boundary moves faster in a strongly
heterogeneous system than in a homogeneous or weakly
heterogeneous one. The foam front also appears to meet
the top boundary obliquely, rather than (as is usual for
pressure-driven growth) at a right angle: this reflects a
rapid spatial re-orientation of the foam front near the
top boundary, which can be captured by a more general
model (the viscous froth, an “inner solution” valid very
near the boundary) albeit not via pressure-driven growth
(an “outer solution”).

The prediction of a long-time, global quasi-static solu-
tion for pressure-driven growth even in a strongly hetero-
geneous system such as this one is significant for petroleum
engineering operations. Since the global quasi-static solu-
tion predicts that all points move with the same apparent
horizontal motion as the forwardmost point (i.e., as the
leading local maximum), this means that the front itself
remains just a limited distance behind that forwardmost
point. This then suggests that override (an undesirable

situation in which certain points on the front can advance
arbitrarily far ahead of others) should not occur in this
system.
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