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Abstract. In this note we look at the influence of a shallow, uneven riverbed on a soliton. The idea consists
in an approximate transformation of the equation governing wave motion over an uneven bottom to an
equation for a flat one for which the exact solution exists. The calculation is one space dimensional, and
so corresponds to long trenches or banks under wide rivers or oceans.

1 Introduction

Recently, we have found exact solitonic [1] and periodic [2]
wave solutions for water waves moving over a smooth
riverbed. Amazingly they were simple, though governed
by a more exact expansion of the Euler equations with sev-
eral new terms added when compared to the Korteweg–de
Vries (KdV) equation [1,3–5]. Our next step is to consider
how these results are modified by a rough river or ocean
bottom. We start with a simple case. The geometry is
one space dimensional and the wave a soliton. Even so,
approximations rear their head! The consideration of a
two-dimensional bump on the bottom, as well as periodic
waves propagating overhead, are planned for a later effort.

Here we consider the following equation governing the
elevation of the water surface η/H above a flat equlibrium
at the surface (written in dimensionless variables):
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The first line gives the KdV equation. The first and sec-
ond line give the KdV2 equation (both corresponding to
even bottom). The last three terms are due to a bottom
profile. We emphasize, that (1) was derived in [1,5] under
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the assumption that α, β, δ are small (positive by defini-
tion) and of the same order. As usual, α = A/H, i.e., the
ratio of the wave amplitude A to the mean water depth
H and β = (H/L)2, where L is the mean wavelength.
The parameter δ = Ah/H is the ratio of the amplitude
of the bottom function h(x) to the mean water depth.
Up to this point A, H, L, Ah are dimension quantities.
Scaling to dimensionless variables allows us to apply the
perturbation approach to the set of Euler equations gov-
erning the model of an ideal fluid. Assuming a flat bottom,
the KdV equation is obtained from the first-order pertur-
bation approach. Applying the second-order perturbation
approach Marchant and Smyth [3] derived eq. (1) limited
to the first two lines, the so-called extended KdV equa-
tion. Since it is derived from second-order perturbation
with respect to small parameters, we call it KdV2. Tak-
ing into account small bottom fluctuations (again using
the second-order perturbation approach) led us in [1,5] to
the KdV2 equation for an uneven bottom (1). In scaled
variables the amplitudes of wave and bottom profiles are
equal to one. In [1, 2] we derived exact soliton and peri-
odic solutions to KdV2. These solutions are given by the
same functions as the corresponding KdV solutions but
with different coefficients.

This paper presents an attempt to describe the dynam-
ics of the exact KdV2 soliton when it approaches a finite
interval of an uneven bottom. We will use the reductive
perturbation method introduced by Taniuti and Wei [6].
Using two space scales allows us to transform the equa-
tion for an uneven bottom (1) into the KdV2 equation
with some coefficients altered, that is, the equation for
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the flat bottom. This transformation is approximate but
the analytical solution to the resulting equation is known.
This approximate analytic description will be compared
with exact numerical calculations.

2 KdV2 soliton (even bottom)

In this section we briefy review the exact soliton solution
to the KdV2 equation given in [1].

Assume the form of a soliton moving to the right,
η(x, t) = η(x − vt). So, ηt = −v ηx and the KdV2 equa-
tion, that is (1) without the last row, becomes an ordinary
differential equation (ODE):
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Integration gives
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Then the solution is assumed in the same form as the KdV
solution

η(y) = A sech2(By), (4)

where A = 1, since in dimensionless variables the ampli-
tude is already rescaled. However, for further considera-
tion it is convenient to keep the general notation. The
insertion of the postulated form of the solution (4) and
the use of properties of hyperbolic functions give (3) in
the polynomial form

C2 sech2(By) + C4 sech4(By) + C6 sech6(By) = 0, (5)

which requires the simultaneous vanishing of all coeffi-
cients C2, C4, C6. These three conditions are as follows:
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Denoting z = βB2

αA one obtains (8) as a quadratic equation
with respect to z with solutions
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Since B =
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α
β zA, only z2 provides a real B value. (In

principle sech2 of imaginary argument can be expressed
by a quotient of expressions given by hyperbolic functions
of real arguments. However, these expressions are singu-
lar for some values of arguments and therefore physically
irrelevant.)

Equations (7) and (8) are consistent only when α =
αs = 3(51−

√
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37 ≈ 0.242399. Then (6) determines veloc-
ity
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(αsz2)2 ≈ 1.114546. (11)

3 Variable depth

Equation (1) can be written in the form
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where f(η, h) is given by
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We treat h as slowly varying and introduce two space
scales x and x1(= εx) which are treated as independent
until the end of the calculation [6]

h = h(εx) = h(x1), ε � 1. (14)

We also introduce
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where a is as yet undefined. To first order in ε one has
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We have
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From (12), (17) and (21) to lowest order we have
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We restrict the consideration to a single soliton, so
η0 → 0 as y → ±∞ and so does f0. The integration of (23)
yields
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to lowest order. Let us introduce ζ = y/a(x1) which re-
mains constant in our approximation. Now,
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This should be compared to (3) or to eq. (22) of [1]. Re-
member that at this stage δ h(x1) is to be treated as a
constant with respect to integration over ζ. The only dif-
ference is that the coefficient (1− δh

2 + 1
a ) appears instead

of (1 − v) in the first term and the coefficient (1 − 6 δ h)
appears instead of 1 in the last term.

Following [1] we obtain
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Assume δh(x) is nonzero only for x ∈ [L1, L2].
For x < L1, η0 = A sech2(B(x − vt)), δh ≡ 0, 1

a = v.
For x > L2, δh ≡ 0, 1

a = v and
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There is a change of phase as the pulse passes through
the region where δh 	= 0. The alteration in the phase is
given by
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v
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(35)
If this integral is zero the phase is unaltered. This can
happen if a deeper region is followed by a shallower region
of appropriate shape or vice versa.

3.1 Examples

In the following figures we present the time evolution of
the approximate analytic solution (30) to the KdV2 equa-
tion with uneven bottom (1) for several parameter values
of the system. These evolutions are compared with “ex-
act” numerical solutions of (1). In both cases the initial
conditions were the exact solutions of the KdV2 equation.
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Fig. 1. Profiles of the soliton as given by (30) with β = δ =
0.15. The shape of the trapezoidal bottom is shown (not in
scale). Consecutive times are tn = n, n = 0, 1, 2, 3, . . . , 32.
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Fig. 2. Profiles of the numerical solution of eq. (1) obtained
with the same initial condition. Time instants are the same as
in fig. 1.

Therefore in all the presented examples α = αs and the
amplitude of the initial soliton is equal to 1.

In fig. 1 we present the approximate solution (30) for
the case when the soliton moves over a trapezoidal eleva-
tion with L1 = 5 and L2 = 25. We took β = δ = 0.15. For
smaller δ the effects of an uneven bottom are very small,
for larger δ second-order effects (not present in the ana-
lytic approximation) cause stronger overlaps of different
profiles.

We compare this approximate solution of (1) to a nu-
merical simulation obtained with the same initial condi-
tion. The evolution is shown in fig. 2. We see that the
approximate solution has the main properties of the soli-
ton motion as governed by eq. (1). However, since the
numerical solution contains higher-order terms depend-
ing on the shape of h the exact motion as obtained
from numerics shows additional small amplitude struc-
tures known from earlier papers, for example [1, 5]. This
is clearly seen in fig. 3 where profiles obtained in analytic
and numeric calculations are compared at time instants
t = 0, 5, 10, 15, 20, 25, 30 on a wider interval of x. All nu-
merical results were obtained with calculations performed
on a wider interval x ∈ [−30, 70] with periodic boundary
conditions. Details of numerics are described in [1, 2, 5].

In figs. 4–6 we present results analogous to those pre-
sented in figs. 1–3 but with a different shape of the bot-
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Fig. 3. Comparison of the wave profiles shown in figs. 1 and 2
for time instants t = 0, 5, 10, 15, 20, 25, 30. Consecutive profiles
are vertically shifted by 0.1.
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Fig. 4. Profiles of the soliton as given by (30) with β = δ = 0.2.
The shape of the parabolic bottom is shown (not in scale).
Consecutive times are tn = n, n = 0, 1, 2, 3, . . . , 32.
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Fig. 5. Profiles of the numerical solution of eq. (1) obtained
with the same initial condition. Time instants are the same as
in fig. 4.

tom bump and larger values of β = δ = 0.2. In this
case the bump is chosen as an arc of parabola h(x) =
1 − (x − 15)2/100 between the same L1 = 5 and L2 = 24
as in the trapezoidal case.

In the approximate analytic solution, the KdV2 soli-
ton changes its amplitude and velocity only over bottom
fluctuations. When the bottom bump is passed it comes
back to its initial shape (only the phase may be changed).
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Fig. 6. Comparison of the wave profiles shown in figs. 4 and 5
for time instants t = 0, 5, 10, 15, 20, 25, 30.
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Fig. 7. Long-time numerical evolution with a trapezoidal bot-
tom bump for β = δ = 0.15.

This is not the case for the “exact” numerical evolution of
the same initial KdV2 soliton when it evolves according
to the second-order equation (1). This is clearly visible in
figs. 3 and 6. What is this motion for much longer periods?
In order to answer this question one has to perform nu-
merical calculations on a much wider interval of x. Such
results are presented in fig. 7. The interaction of a soli-
ton with the bottom bump creates two wave packets of
small amplitudes. The first moves with a higher frequency
faster than the soliton and is created when the soliton en-
ters the bump, while second moves slower with a lower
frequency and appears when the soliton leaves it. After
some time both are separated from the main wave. Since
periodic boundary conditions were used in the numerical
algorithm, the head of the wave packet radiated forward
travelled for t > 170 larger distance than the interval cho-
sen for the calculation and is seen on the left side of the
wave profile.

We have to emphasise that this behaviour is generic,
and looks similar for different shapes of bottom bumps
and different values of β, δ parameters. This was observed
in our earlier papers [1, 7, 8] in which initial conditions
were in the form of the KdV soliton.

4 Conclusions

We have derived a simple formula which gives an ap-
proximate description of a soliton encountering an uneven
riverbed. The model reproduces the known increase in am-
plitude when passing over a shallower region, as well as the
change in phase. However, the full dynamics of the soliton
motion is much richer, with the uneven bottom causing
low amplitude soliton radiation both ahead and after the
main wave. This behaviour was observed in our earlier pa-
pers [1,7,8] in which initial conditions were in the form of
the KdV soliton, whereas in the present cases the KdV2
soliton, that is, the exact solution of the KdV2 equation
has been used.
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