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Abstract. Supercooled colloidal or molecular systems at low densities are known to form liquid, crystalline
or glassy drops, which may remain isolated for a long time before they aggregate. This paper analyses the
properties of this large time window, and how it can be tackled by computer simulation. We use single-
particle and virtual move Monte Carlo simulations of short-range attractive spheres which are undercooled
to the temperature region, where the spinodal intersects the attractive glass line. We study two different
systems and we report the following kinetic behavior. A low-density system is shown to exhibit universal
linear growth regimes under single-particle Monte Carlo correlating the growth rate to the local structure.
These regimes are suppressed under collective motion, where droplets aggregate into a single large disor-
dered domain. It is shown that the aggregation can be avoided and linear regimes recovered, if long-range
repulsion is added to the short-range attraction. The results provide an insight into the behavior of the
virtual move algorithm generating cluster moves according to the local forcefields. We show that different
choices of maximum Monte Carlo displacement affect the dynamical trajectories but lead to the same
kinetically slowed down or arrested states.

1 Introduction

Phase separation of undercooled systems at low densities
is a common mechanism of colloidal, molecular or atom-
istic crystallization. An example is the controlled fabri-
cation of nanocrystals, and their self-assembly into larger
structures known as colloidal crystals or crystals formed
by oriented attachment or mesocrystallization [1,2]. The
crystallization in those systems may be initiated by a
phase separation into locally dense regions (drops) [3–
6], which may remain isolated for a very long time [7,8].
These drops are typically metastable and may be in a liq-
uid, crystalline, or glassy [9] state before they aggregate or
dissolve. The properties of the state depend on the inter-
play between various parameters of the system such as the
temperature, strength of the attraction [10], timescale [9],
or viscosity of the solvent affecting the diffusion rate [11,
5]. For example, crystallization within the drops may pre-
cede the aggregation, if the temperature of the quench lies
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above the intersection of the spinodal with the extrapo-
lated glass line [8,12,13]. If the temperature is below this
intersection, the drops may remain in the form of pieces
of attractive glass [9,8], where the crystallization is log-
arithmically slowed down (not completely arrested [14]).
These glassy regions eventually aggregate into a gel-like
structure [15].

Computer simulation is a commonly used tool to study
the phase separation [8,3,16–19], with standard molecu-
lar dynamics (MD) or Brownian dynamics methods being
the main simulation approaches. These methods provide
a good insight into shorter timescales at which the ini-
tial fluid condenses into the drops, and at which the crys-
tallinity within the drops evolves. However, the timescale
needed for large scale motion or aggregation of the drops
is long and remains typically unexplored [8]. Moreover, as
described by the Stokes law of hydrodynamics for spheri-
cal objects in a fluid [20], the diffusion rates of single parti-
cles, small clusters, and large clusters, cover a wide range,
which limits the efficiency of standard, realistic, simulation
methods. Accordingly, there is some interest in applying
artificially accelerated simulation methods, together with
an attempt at mapping the observed kinetics back onto
physically realistic timescales.
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Fig. 1. (Color online) Short-range attractive 36-18 (α = 18)
Lennard-Jones potential with (green, SALR) and without
(blue, SA) long-range Yukawa repulsion.

In this paper, we study a standard simulation model
for colloidal gelation [3,21,8]: short-range attractive (SA)
spheres with a repulsive core and with the range of at-
traction being approximately 20% of the core diameter
(fig. 1). The phase diagram of this model is well ex-
plored [3]; the metastable gas-liquid binodal is buried be-
low the fluid-solid coexistence line. This system is well
known to undergo strong clustering into metastable drops
after quenching to low densities [3,8]. In an attempt to ex-
plore those parts of phase space which are hardly accessi-
ble to an MD-based algorithm, we use an enhanced Monte
Carlo (MC) technique similar to that of configurational-
bias Monte Carlo [22]. Since the long-living kinetically
slowed down phase studied in this paper is a direct conse-
quence of kinetics (competing with thermodynamics [18]),
we use kinetic, or local, MC moves [23]. This is in con-
trast to non-local moves [24,25], which mix the states
only in order to efficiently sample thermodynamic states
of the system without considering the effect of the kinet-
ics. If non-local moves were used [19], the system studied
here would eventually reach the thermodynamically sta-
ble state where gas coexists with a crystal. Translational
and rotational MC cluster moves [20,18,26,27], known as
virtual move Monte Carlo (VMMC), have been used here
to model the dynamics. The algorithm selects the mov-
ing particles or clusters according to the local forcefields,
and turned out to be particularly efficient in the simu-
lation of aggregation in low-density systems [18,26,27].
Another advantage of the VMMC algorithm is the ability
to control the acceptance rate of differently sized moving
clusters, thus distinguishing between their diffusion rates.

The simulation models and methods are described in
sect. 2. In sect. 3, we examine the differences between
the phase separation trajectories of the SA system both
under single-particle Monte Carlo (sect. 3.1) and VMMC
(sect. 3.2) motion. We show that, if collective motion is
forbidden, phase-separating drops grow via three linear
growth regimes, and crystallization within the drops pre-
cedes the aggregation. To investigate the effect of charge
or steric [28] stabilization, in sect. 3.3 we study the tra-
jectories of a system that is identical, except that the
SA particles also repel each other at long distances, the
so-called short-range attractive and long-range repulsive

(SALR) interaction. The long-range repulsion may also
represent accumulation [29] repulsion (see Supplementary
Information (SI)). It is shown that the long-range repul-
sion stabilizes the drops against aggregation, and that,
similarly to single-particle Monte Carlo, the growth pro-
ceeds via single-particle exchange characterized by linear
growth regimes. In sect. 4, we question whether the MC
dynamics is independent of the maximum MC displace-
ment δ. We show that the initial dynamics scales reason-
ably well with δ, provided the growth proceeds mainly via
single-particle exchange. However, if collective motion is
allowed, the phase separation trajectories are entirely dif-
ferent for different choices of δ. In sect. 5, we discuss how
to optimally choose and interpret the maximum displace-
ment δ. We conclude in sect. 6.

2 Methods

Particles in our system attract each other via a short-
range attraction [3,8], typically representing colloidal de-
pletion or Van der Waals interactions. Particles may also
repel each other at long distances via a screened electro-
static repulsion [30,21,31,32]. Systems of these particles
are quenched from the fluid phase to the region of the
phase diagram where condensation into liquid drops en-
sues. Monte Carlo techniques [18,26,27] are then used to
study the competition between the kinetics of crystalliza-
tion in the drops, and the aggregation of the drops into a
single domain, or multiple metastable domains.

2.1 Simulation model

We use a system of N = 2000 particles interacting via the
potential

V (r) = A
e−r/ξ

r/ξ
+ 4ε

[(σ

r

)2α

−
(σ

r

)α
]
− Vc, (1)

where the first term is the long-range Yukawa repulsion,
and the second term is the generalized Lennard-Jones (LJ)
short-range attraction [3]. The parameter A is the Yukawa
amplitude, ξ is the screening length, σ represents the di-
ameter of the repulsive core, ε is the strength of the short-
range attraction, and α controls the attraction width. Vc

is chosen such that V (rc) = 0. We took α = 18, σ = 1.0,
ε = 1.0. To simulate the SA model we fix A = 0.0, rc = 1.8;
to simulate the SALR model we take A = 0.08, ξ = 2.0,
rc = 3.0. These potentials are plotted in fig. 1, and are
similar to those of ref. [32], except that the repulsion is
weaker.

The simulations were carried out in the constant-NV T
ensemble, with low packing fraction φ = π/6 · N/V =
0.01 [8,33]. The system is quenched from a high tempera-
ture fluid to T = 0.25, which seems to be close to the re-
gion of the kinetic phase diagram [15], where the spinodal
intersects the extrapolated glass line, and where phase sep-
aration starts to be logarithmically slowed down to an
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extent that long-lived disordered aggregates can be ob-
served [8]. Moreover, this temperature lies on the bound-
ary of the optimum region for self-assembly of a similar
short-range attractive colloidal system, gleaned from an-
alyzing the fluctuation-dissipation ratios [34,35]. We thus
expect both the large-scale aggregation of drops, and the
evolution of local order, to happen simultaneously on the
timescales we shall consider. To study directly how long-
range repulsion between particles affects the kinetics of
phase separation, the same temperature is used for the
short-range attractive system with long-range repulsion.
The inverse temperature is denoted as β = 1/kBT , where
kB is the Boltzmann constant.

The simulations of kinetic arrests (or more precisely ki-
netically slowed down phase separations [36,8]) start from
a randomly distributed set of particles without high en-
ergetic overlaps. Since we start from a fluid, but under
conditions corresponding to an equilibrium state in which
the crystal coexists with the gas, and since no time is given
to the system to equilibrate at intermediate conditions be-
tween these two states, our simulation protocol is referred
to as a rapid (non-equilibrium or instantaneous) quench,
as opposed to a slow (equilibrium or finite) quenching [9,
37,38], where the system is allowed at least a short time
to find a local equilibrium, and locally phase-separate.

2.2 Simulation methods

We use the standard single-particle Monte Carlo (SPMC)
algorithm [39], and the symmetrized version [18] of the
VMMC algorithm [20], which was formally described and
extended by us in refs. [26,27]. A MC sweep in the
SPMC simulation consists of N single-particle transla-
tional moves. In the VMMC simulation, it consists of
N virtual translational or rotational moves, selected ran-
domly with 50% probability. For simplicity, we describe
here only the translational moves; the rotational moves
were performed in the way described in ref. [26].

The main features of the algorithm can be summa-
rized as follows. Let us consider two states μ and ν of
our system, which will differ by the position of a group of
particles called the moving cluster C. The difference is a
small (rigid) translation applied to all particles in C. The
number of particles in C will be denoted as nC . We shall
consider different particle pairs (i, j), i �= j. Position vec-
tors of i and j are denoted as ri and rj . M is the MC
map, meaning that position vectors of i after applying M
are denoted as Mri. We will consider two relative separa-
tions of particles in pair (i, j): separation (in the original
state μ) given by (ri, rj); and separation (in a so-called
virtual state μi) given by (Mri, rj). The respective pair-
wise energies are denoted as ε

(μ)
ij , ε

(μ)
i′j . The collective MC

move can then be summarized as

1. Pick a random particle, and use it as the first (root)
particle of the cluster C. Pick a random unit vector
u, determining the orientation of translation. Pick a
random number a drawn uniformly from (−δ, δ), de-
termining the magnitude of translation. The position

vector of particle i after applying move map M can be
expressed as Mri = ri + a · u.

2. Pick a random number b ∈ U(0, 1), and define the
maximum number of particles in the cluster as NC =
1/b. (This limit aims to mimic freely draining diffusion
of differently sized clusters [20].)

3. Perform a recursive loop selecting all other particles
not in C.
(a) Pick randomly a pair (i, j), i ∈ C, j /∈ C, which

interacts in (ri, rj) or in (Mri, rj), and to which
a link has not yet been proposed. If no such pair
exists, finish the cluster selection by exiting the re-
cursive loop.

(b) Test for reaching the maximum number of particles
in the cluster: If nC > NC , label (i, j) as forced
failed, and go to (a). Carry on, otherwise.

(c) Attempt to create a link between (i, j) as follows.
i. Form a pre-link with probability

p
(μ)
i′j = max

{
0, 1 − exp

(
−β(ε(μ)

i′j − ε
(μ)
ij )

)}
.

ii. If the pre-link does not form, label (i, j) as out-
right failed, go to (a).

iii. If the pre-link forms, calculate the reverse link
formation probability

p
(μ)
ij′ = max

{
0, 1 − exp

(
−β(ε(μ)

ij′ − ε
(μ)
ij )

)}
,

where ε
(μ)
ij′ denotes the energy of (i, j) in μ after

applying the move map M only to j, and form
the link with probability

min
{

1, p
(μ)
ij′ /p

(μ)
i′j

}
.

(d) If the link does not form, label (i, j) as frustrated,
go to (a).

(e) If the link forms, include j into C, go to (a).
4. Identify the boundary B of cluster C as those pairs

(i, j), i ∈ C, j /∈ C, to which a link was proposed
but failed to form, i.e. is either outright failed, forced
failed, or frustrated.

5. Divide B into forced failed pairs B†, and all other pairs
B∗.

6. Accept the cluster move with probability

W (μ→ν|R)
acc = min

⎧⎨
⎩1,

∏
(i,j)∈B†

exp
(
−β

(
ε
(μ)
i′j − ε

(μ)
ij

))
⎫⎬
⎭ ,

(2)
provided B∗ only contains outright failed links. If B∗

contains a frustrated link, the move of C is rejected.

Isotropic ordering [26] of the cluster is used across all
our VMMC simulations. The role of energy gradient in
selecting the cluster can be alternatively seen from another
form of the linking function described in the SI and in
ref. [26].

In the following, the physical time τ is defined as

τ = nsweep · δ2 , (3)
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where nsweep is the number of MC sweeps, and δ is the
displacement parameter. The time in eq. (3) arises from
identifying a diffusion coefficient D from a single-particle
random walk in three dimensions

〈∣∣ri(τ) − ri(0)
∣∣2〉 = nsweepδ2 =

τ

Δτ
δ2 = 6Dτ, (4)

where we associate the time interval Δτ with each Monte
Carlo sweep. In SPMC, this corresponds to one attempted
move per particle. Under the assumption that the simula-
tion behaves like a diffusive process [40], and not account-
ing for the effect of rejecting MC trial moves, our choice
corresponds to (arbitrarily) fixing the physical “diffusion
coefficient” such that 6D = 1, and Δτ = δ2, in the re-
duced units defined by the interaction potential. These
assumptions and approximations are not correct, since the
acceptance probability is lower than one and changes in
time during the phase separation process. Moreover, the
time step associated with a translational cluster move is
proportional to the cluster size according to the Stokes
equation as τ ∝ Rtδ

2
t , where Rt is the hydrodynamic ra-

dius of the cluster corresponding to translation with a
certain direction and magnitude δt. A similar expression
for rotations reads τ ∝ R3

rδ
2
r . These relations are derived

in ref. [41], are constant across the simulation. It is shown
in the SI that this assumption is not valid in our simula-
tions, and that the acceptance ratio changes dramatically
in time. An integration based on the local acceptance rate
would be needed to approximate the time step. This is
outside the scope of the present paper. By plotting the
observables as functions of τ defined by eq. (4) even for
VMMC, we highlight the deviations from simple diffusive
scaling. We expect these deviations to grow with δ.

2.3 Analysis

To analyze the speed of aggregation and stability of cluster
phases, we monitor the size of phase separated aggregates.
We say that particles i and j are neighbors, denoted (i, j),
if they are separated by a distance less than 1.4σ. This dis-
tance roughly corresponds to the local maximum in the
interaction potential in eq. (1), but is more universal, and
can characterize clustering in systems of attractive parti-
cles with a repulsive core, or even just hard spheres [42].
A cluster (also domain or aggregate) is a group of parti-
cles which can be connected through a set of neighboring
particles, i.e. particles k and l are members of the same
cluster if and only if there is a set of neighbors such that
(k, a), (a, b),...,(y, x), (x, l). The number of particles within
a cluster is defined as the cluster size. It must be stressed
that the cluster is generally different from what we term
the moving cluster C. The moving cluster is the set of
particles that are moved within the VMMC cluster move.
The moving cluster is generated randomly, and although
it often spans the entire cluster which contains the root
particle, it may only be a subset of the cluster, or it may
extend across different clusters. We will typically monitor
the time evolution of the largest few clusters. In the SI we

discuss how the distribution of moving clusters evolves in
time.

The time evolution of local crystallinity will be an-
alyzed with q6q6 “Steinhardt” parameters [43,44,42]. If
Nb(i) is the number of neighbors of particle i, the orien-
tational structure can be characterized by

Qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(rij), (5a)

qlm(i) =
Qlm(i)(∑l

m′=−l

∣∣Qlm′(i)
∣∣2)1/2

, (5b)

where Ylm(rij) is the spherical harmonic corresponding to
the orientation vector rij pointing from particle i to par-
ticle j. It is known that the crystal structure of the 36-18
LJ system developed after a suitable quench is a mix-
ture of hexagonal and face-centered cubic lattices, with
a slight predominance of the hexagonal structure [8]. We
thus focus on l = 6. A neighboring pair (i, j) is said to be
orientationally bonded if

6∑
m=−6

q6m(i)q6m(j) > 0.7, (6)

where q6m(j) is the complex conjugate of q6m(j). The
number of neighbors which are orientationally bonded to
i is denoted as nb(i). A particle i is called crystalline if
nb(i) = 12, and weakly bonded if nb(i) = 2. A group of
at least two bonded crystalline particles, will be called a
crystal. A group of at least two particles with nb(i) > 5,
will be called a Low Symmetry Cluster (LSC). In analogy
to ref. [42], we will be distinguishing between the LSC
with and without a crystal inside.

To characterize the products of a kinetically slowed
down phase separation we will define the disordered ag-
gregate as a low-density cluster, which has an aspherical
and concave geometry. We typically assume that the ag-
gregate does not disintegrate over a sufficiently long tra-
jectory, and that it is a product of a kinetically slowed
down phase separation [8,36,14]. It will be seen that these
assumptions are satisfied from monitoring the structure of
clusters and from the behavior of the VMMC. The defini-
tion of a disordered aggregate is different from the defini-
tion of a gel [37,21] in that the system does not need to
percolate through the periodic boundary conditions in at
least 50% of randomly chosen conformations.

3 Dynamics of undercooled systems

In what follows, a low-density short-range attractive fluid
is quenched to the temperature T = 0.25. An SPMC simu-
lation is firstly used to study the limiting dynamics where
single particles and small clusters diffuse easily compared
to large clusters which move very slowly only as a re-
sult of single-particle movements within the cluster. The
role of collective motion is then studied by VMMC, which
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considers local forcefields to select the moves of both sin-
gle particles and clusters. Similarly to what has been re-
ported before [18], it is shown that the collective motion
leads to aggregation of the drops into a gel-like structure.
Following on from this, we study the time evolution of lo-
cal crystallinity, and how it competes with aggregation, if
long-range repulsion is added to the attraction.

3.1 Coarsening in attractive systems

Let us firstly investigate coarsening under SPMC motion
in the SA system of attractive spheres (A = 0 in eq. (1)),
quenched to a temperature T = 0.25. The dynamics of this
model can represent a realistic physical system, where sin-
gle particles diffuse significantly faster than large clusters.
The following analysis allows us to compare with collec-
tive motion, and to spotlight the coarsening mechanisms
in the limiting case where only single particles are allowed
to move. The self-assembly and coarsening phenomena in
more physically realistic systems can then be understood
as a superposition of processes and growth regimes which
are consequences of either collective or single-particle mo-
tion.

Figure 2 shows that the particles condense into sev-
eral, long-lived domains, and that the phase separation
can be characterized by three different growth regimes,
with distinct growth rates.

The first stage of coarsening is characterized by a time
window with a large number of clusters (fig. 2(a)) and with
the dominant number of particles having a low number of
orientational bonds (fig. 2(b)). (See also SI for more de-
tails.) The high number of clusters implies a large surface
area, and hence low thermodynamic stability and low re-
pulsive (kinetic) barrier to detachment. Consequently, the
reorganization is fast: particles easily detach, diffuse, and
attach [45,35]. The time window is characterized by a fast
and linear increase in the number of particles in crystals
and in LSCs of both kinds. The total number of crystals
and LSCs of both kinds increases rapidly and reaches a
maximum, signaling the end of this time window (com-
pare also with fig. 2(c)). The end is also characterized by
approximately equal concentrations of weakly bonded and
crystalline particles (fig. 2(b)). Figure 2(c) implies that
LSCs can contain more than one crystal, and that new
crystals generally nucleate only during this time window,
and not at later stages of the simulation.

The second stage is dominated by dissolution of disor-
dered clusters. Figure 2(b) shows that the concentration
of weakly bonded particles is gradually exceeded by more
strongly bonded particles. Growth of the largest domains
is slower than in the previous regime, because the num-
ber of clusters (and hence the total surface area) is de-
creasing, and particles are attached to their clusters by
an increasing number of bonds. Nevertheless, the growth
is faster than in the upcoming time window, because the
largest domains grow not only by adsorption of smaller
crystals, but mainly because of the presence of LSCs with-
out crystals or even of less well-ordered clusters. Indeed,
fig. 2(c) shows that the number of LSCs without crystal

Fig. 2. (Color online) Time evolution of the system under
single-particle motion. Here, and elsewhere, time is measured
in terms of the quantity τ defined by eq. (3). The particles are
unlikely to escape the crystalline droplets which themselves
hardly move. Maximum MC displacement is δ = 0.30σ. Par-
ticles in the snapshots are colored according to the number of
orientational bonds nb ascendingly from white via blue to dark
grey. (a) Size of the first six largest clusters. (b) Local order
measured by the number of particles with a fixed number of
orientational bonds given in the legend. (c) Number of crystals
(diamonds), low-symmetry clusters (stars), and low-symmetry
clusters with crystals inside (circles). All error bars are esti-
mated from ten independent simulations.

cores undergoes a rapid and distinct period of decrease,
and that most clusters which survive this window have a
crystal core inside. Figure 2(b) then implies that crystals
within LSCs grow during this intermediate time window.
The window exists because the timescale needed for crys-
tallization is much longer than the timescale needed to
dissolve the low-structured clusters.

The final stage is a growth region with a low concentra-
tion of weakly bonded particles. The averages in fig. 2(c)
show that the system has several growing and several dis-
solving clusters. The number of particles with six and eight
orientational bonds does not change, indicating that the
crystalline surfaces and edges of the domains are well de-
veloped. The average number of particles in LSCs is also
approximately constant, pointing to the fact that large
clusters grow by adsorbing the smaller ones. The growth
rate is again smaller than in the previous window, because
the overall surface area of the clusters is smaller and be-
cause, to detach a particle from a well-formed surface,
more bonds need to be broken than to detach a particle
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Fig. 3. (Color online) The time evolution of a system where
collective motion is allowed leads to the rapid formation of
amorphous droplets, which coalesce into a disordered aggre-
gate. Maximum MC displacement is δ = 0.30σ. Crystals within
this aggregate develop later and are separated by a disordered
(liquid) surface. Figures and symbols have meaning analogous
of that in fig. 2.

from a LSC or from the disordered (liquid) surface of a
crystal. The growth rate of the largest domain is linear
on the timescale of our simulation window, and crystals
within LSCs keep growing linearly but at a slower pace
than in the previous window (fig. 2(c)).

A comparison of the linear growth stages with the pre-
vious analytical [5] or simulation [8] studies would be an
interesting topic but has not been done here.

3.2 Aggregation in attractive systems

We now consider the same system as in the previous sec-
tion, except that VMMC is used instead of SPMC. Fig-
ure 3 shows that particles merge very quickly into a single
cluster. Similarly to SPMC, the first stage of the simula-
tion leads to a rapid clustering within the system into a
large number of small clusters. Contrary to SPMC, small
clusters not only coarsen but also move easily, and the
growth proceeds not only via single-particle exchange, but
also via cluster-cluster attachment. This is because the
timescale for detachment of a single particle from its clus-
ter and its diffusion to another cluster is comparable to the
timescale needed for the whole cluster to diffuse that dis-
tance. The locus of states at which this occurs was defined
as “clustodal” (by analogy with binodal and spinodal) in

ref. [18]. Since small clusters diffuse faster than large clus-
ters, we can generally say that large clusters grow by ad-
sorbing the smaller ones. The aggregation mechanism is so
fast that the correlation between the short- and long-range
structure known from SPMC is now entirely suppressed.

After a very short time, the second largest cluster
reaches its peak size, and starts dissolving, at the expense
of the largest one. The dissolution rate is significantly
faster than in the SPMC. Figure 3(b) shows that this is
caused by a small number of bonds with which a particle
is attached to its cluster. The collective motion, allowing
whole groups of particles to detach from their clusters and
diffuse, and a low repulsive kinetic barrier [46] in locally
dense disordered regions, may also accelerate the dissolu-
tion process. The dissolution then, on average, stops, and
the cluster size reaches a plateau before the second largest
cluster dissolves or merges with the largest cluster. Large
clusters generally survive longest, because of slow diffu-
sion, and because they are more likely to contain a crystal
or a LSC which take longer to dissolve.

Figures 3(a) and 3(c) show that after some time
(50 · 103 VMMC sweeps), there are on average only two
clusters and more than six LSCs, and their number is
growing even if the number of clusters remains the same.
Figure 3(b) shows that this initial time window is domi-
nated by particles embedded in aggregates with weakly
bonded particles. Single-particle rearrangements within
these aggregates are easy and local order grows quickly,
because the moving clusters are selected through the local
energy gradients, and because particles can move along the
large surface of the aggregate. Nevertheless, the number
of crystals and LSCs with crystals are the same (fig. 3(c))
meaning that LSCs only contain one such crystal in the
initial stages of the simulation. Figures 3(b) and 3(c) im-
ply that the crystals are small with less than ten crys-
talline particles.

The size of the largest clusters is not shown at long
times, since it remains almost unchanged for the rest of
the simulation, and the second largest cluster is on aver-
age just one particle. This points to the coexistence of the
largest aggregate with gas. There are some fluctuations
in the size of the first and second largest clusters indi-
cating detachment and attachment of larger aggregates
from the largest cluster. The fluctuations decay with time
as a consequence of an increasing crystallinity within the
system making these detachments less likely. The size of
the largest cluster slowly increases. This is a kinetic phe-
nomenon resulting from the fact that the evolution of crys-
tallinity depends on the interface between the gas and the
aggregate and from the fact that the detachment and at-
tachment of single particles is more and more difficult,
due to an increasing attractive and repulsive barrier in
the denser parts of the system.

Figure 3(c) implies that LSCs can eventually contain
more than one crystal. The number of crystals, and the
number of LSCs with crystals, stop growing, while the
number of non-crystalline LSCs starts decreasing. This in-
dicates that no new crystals form within the LSCs, and
that non-crystalline LSCs gradually dissolve at the cost
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of growing crystalline LSCs. Rearrangements at this late
stage resemble coarsening rather than assembly, and hap-
pen without significantly distorting the large aggregate via
single-particle or small-cluster motion. Large collective re-
arrangements via cluster division are less likely and rare
at these later times, since they require large and unlikely
energy changes. An example of such a rare reorganization
is shown in fig. 3 where a branch of the disordered aggre-
gate crystallizes, grows, detaches (time 730) and attaches
(time 800) to another part of the aggregate.

We note that the local crystal order has a similar evolu-
tion both in SPMC and VMMC, despite the fact that the
trajectory is different when quantified with a macroscopic
observable such as the size of the largest cluster. This re-
sult is a consequence of generating the moving clusters via
local energy gradients. Also, a similar number of LSCs of
both kinds is observed at long times both in VMMC and
in SPMC, even if one system is merged into a single aggre-
gate and the other is not. This suggests that crystals grow
from the amorphous drops, independently of whether the
drops are merged or isolated. Contrary to the SPMC, we
did not reach timescales where most LSCs without crystals
dissolve. Figure 3(c) then shows that the number of LSCs
with crystals decreases at long times, while the number
of crystals remains the same. This suggests that particles
in disordered parts of the cluster, forming an interface
between two separate LSCs with crystals, slowly become
stronger bonded particles, and eventually produce a single
LSC with multiple crystalline cores.

3.3 Coarsening in charged attractive systems

We now examine by VMMC simulation the kinetic evo-
lution of a low-density system with short-range attrac-
tive particles which are quenched to the same tempera-
ture as in the previous section, with the difference that
the particles are charged, and repel each other weakly
at long distances (SALR, see fig. 1). From the kinetic
point of view, addition of a long-range repulsion to the
short-range attraction decreases the depth of the attrac-
tion, thereby reducing the bond lifetime, and moving the
temperature closer to the optimum temperature region
for self-assembly [34]. From the thermodynamic point of
view, long-range repulsion decreases the liquid-vapor crit-
ical point [47]. Our simulations are not long enough to
equilibrate the system, and we do not deal with equi-
librium cluster phases [30], or with small arrested non-
equilibrium clusters [10]. We rather simulate large [48],
metastable and spherical clusters, where particle exchange
between them indicates an ongoing phase-separation, and
where the fluid-solid coexistence region seems to be the
equilibrium phase in the long-time limit. This system is
investigated here in order to show that even a weak long-
range repulsion slows down the aggregation in the pres-
ence of collective motion to an extent, where the cluster
lifetime is comparable to the bond lifetime, and that clus-
ters may (at least temporarily) recrystallize into several
isolated crystalline domains.

Fig. 4. (Color online) Time evolution of the system composed
of particles with short-range attraction and long-range repul-
sion. The simulation is started from a quenched liquid state.
The three figures on the bottom show possible products of the
simulation at time 180, other figures and symbols have the
same meaning as in fig. 2

Figure 4 shows that after the quench, the system phase
separates rapidly into several large clusters which move
with respect to each other without merging into a single
aggregate. Similarly to SPMC simulation of SA systems,
large isolated clusters do not merge on our simulation
timescale and the growth proceeds via linear regimes,
which are correlated with the short- and long-scale struc-
tures. This indicates that the growth of the largest clus-
ters in the SALR system is governed by single-particle at-
tachment and detachment. The snapshots in fig. 4 show,
indeed, that crystals grow mainly through addition of
monomers to crystalline surfaces of the clusters.

The observables in fig. 4 have large fluctuations, re-
flecting complex energy landscapes [31,49], and kinetic
trapping resulting from the finite-size effects. Indeed, the
snapshots at the bottom of fig. 4 show that the simulations
do not necessarily result in several separated crystals, but
can also produce a single large crystalline cluster, or clus-
ters with low internal crystal order. Figure 4 (state III.)
then shows a situation where the system is trapped in a
state where exchange of particles between two amorphous
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surfaces may continue for a long time. This may be due to
both the delay time [5] caused by a lower nucleation rate
of particles within the amorphous drops [50] or due to a
finite-size kinetic effect. If the system were larger, a crystal
would form with a higher probability which would then
grow at the expense of amorphous structures.

4 Scaling of the dynamics

The probability of moving a single particle or a cluster is
dependent on local forcefields in both SPMC and VMMC.
This allows one to study the dynamical evolution of local
crystallinity in simulations by both methods. However,
similarly to the choice of the time step in a dynamical
simulation, MC techniques require one to choose the size
of the MC displacement. It is known that SPMC can ap-
proximate the dynamics of equilibrium fluids, if the dis-
placement is small [51], but the suitability of MC simu-
lation for non-equilibrium simulations such as gelation is
unclear. In what follows, we discuss the role of that choice
in our non-equilibrium simulation of the phase separation
process.

Firstly, figs. 5(a-c) show that the properties of crystal-
lization pathways are roughly independent of δ in SPMC
simulation, if the observables are plotted as a function of
τ . This suggests that the SPMC simulation may realisti-
cally represent the time evolution of our non-equilibrium
system, where collective motion is negligible, unimportant
or may be integrated out, and that a rough timescale may
be defined not only in equilibrium [51], but also in non-
equilibrium MC simulations of quenched systems where
phase separation and crystallization are underway.

Secondly, in figs. 5(d–f), we study the dynamics un-
der different choices of δ in the VMMC simulation. If δ
is smaller than the width of the pairwise attraction, the
local forcefields are weak and only small moving clusters
form. The dynamics is then similar to the SPMC. A more
significant collective motion appears, only when δ is com-
parable to or larger than the attraction range. Large δ
may, however, significantly increase the fraction of large
cluster moves.

In the following, we show that the crystallization path-
ways in the VMMC are entirely different for different
choices of δ at early times, but become independent of
δ at late times. Figures 5(d) and (e) show that the cluster
growth is no longer correlated with the local structure.
This can be seen again from the size of the second largest
cluster (fig. 5(d)), and from the concentrations of weakly
bonded and crystalline particles (fig. 5(e)), where the size
reaches its maximum at different times τ , and the concen-
trations meet at roughly the same times τ . This difference
is crucial for the approximation of the dynamics by the
VMMC. For smaller maximum displacements δ, isolated
clusters move slowly, and have more time to develop a
local crystal structure, before they merge with other clus-
ters. For larger δ, clusters move faster and coalesce into a
disordered aggregate well before a significant local order
develops. We emphasize that time τ is defined by eq. (4),
which does not consider different timescales of differently
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Fig. 5. (Color online) Time evolution of long- and short-range
structure and its dependence on the maximum displacement
size δ/σ in a low-density and short-range attractive system
following a quench. The system is simulated using SPMC sim-
ulation (a-c) and VMMC simulation (d-f). The size of δ is
in the legend of (b). Panels (a) and (d) show size of several
largest clusters. (b) and (e) show the number of weakly bonded
(nb = 2) and crystalline (nb = 12) particles. Panels (c) and (f)
show the number of crystals and the number of LSCs with and
without a crystal inside. The long-time data in (d) and (f) only
show results for δ equal to 0.20σ and 0.30σ, the data for shorter
timescales and δ < 0.20 scale similarly. The averages are over
10 independent simulations.

sized clusters. The omission of this time rescaling will not
affect our conclusion about different trajectories for differ-
ent δ, which are fixed through the course of the simulation.
For example, if the time was rescaled by a constant such
that the cluster sizes peak at the same time for different
δ, the concentrations would meet at different times, and
the properties of trajectories would still be different.

One might thus expect that different choices of δ in
the VMMC may lead to different kinetically slowed down
states, characterized by different structural observables.
However, the initial structural differences may disappear
at later times of the simulation. This is shown in figs. 5(c)
and (f), where observables under consideration are nearly
independent of δ. These results are in agreement with the
previous observations that the products of the kinetically
slowed down phase separation are invariant with respect
to the dynamics [12]. How this scaling relates to the scal-
ing of dynamics with the range of attraction in similar
systems [52] is an interesting topic for future study.

As far as the invariance of trajectories in SALR sys-
tems is concerned, the preliminary results indicate that
the properties of crystallization pathways are nearly in-
dependent of δ. This is due to the fact that the phase
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separation is governed by single-particle exchange as it
is in SPMC simulation of SA systems. The definition of
a physical time, and the approximation of realistic dy-
namical pathways, is more feasible in SALR systems with
several isolated long-living aggregates, than in attractive
systems without long-range repulsion where a single dis-
ordered aggregate forms.

5 Discussion

This paper describes the MC kinetics in a low-density sys-
tem after quench, and illustrates the role of collective mo-
tion when local crystallization competes with aggregation.
The first part of the results shows straightforwardly quali-
tative relations between the crystal growth and local crys-
tallinity in systems where collective motion is and is not
allowed. The second part deserves more attention in the
discussion since it shows that the choice of maximum dis-
placement δ in our MC simulation significantly alters the
ensemble of crystallization pathways. We may thus ask
how to interpret the dynamics under different choices of
δ, and what is the optimum δ?

The optimum size of δ depends on the aim of the
VMMC simulation. If the aim is to approximate the
dynamical pathways, the optimum δ can be chosen by
simulating a single spherical cluster of a given size in
the VMMC, and by measuring its diffusion for different
choices of maximum δ. The optimum δ is the one which
matches most closely the diffusion coefficient given analyt-
ically by the Stokes equation for the spherical cluster [41].
However, several of these tests should be done for differ-
ently sized clusters and a different optimal δ should be
expected from each of those tests. The size of average δ
which best matches the diffusion coefficients of differently
sized clusters is then calculated in a further optimization.
These tests [41] involve an approximation which assumes
that the cluster is spherical, crystalline, and has perma-
nent bonds, which guarantee that the cluster does not
break during the test. The present paper shows for a sim-
ple system that these assumptions do not hold, during the
simulation of gelation or kinetically slowed down phase
separation where clusters are not spherical, are allowed to
break, have low internal crystallinity, and their acceptance
probability may change during the course of the phase sep-
aration (see also SI). Although the diffusion test on crys-
talline clusters [41] is probably the simplest approach to
choose the optimum δ, there may still be alternative ap-
proaches to vary δ during the course of the simulation as
is discussed below. We emphasize that despite all the ap-
proximations, the VMMC is believed [41] to simulate the
dynamics of phase separation more realistically than BD,
which does not distinguish between diffusion coefficients of
differently sized clusters. The approaches discussed below
should further improve the simulation.

Another aim of the VMMC simulation may be to cap-
ture a physically realistic product of kinetically slowed
down phase separation or to reach the equilibrium state
of the system in a minimum amount of computational
time. This is a sensible question since our results indicate

that the structure of the kinetically slowed down aggre-
gate is invariant with respect to the choice of δ, and the
same naturally applies for the equilibrium state. The max-
imum displacement and the overall crystallinity vs CPU
time is then a suitable measure of efficiency. Our prelimi-
nary results show that larger values of δ become ineffective
in local equilibration of the system at later stages of the
VMMC simulation, as most of the time is spent on mov-
ing large clusters, and that a small value of δ (δ ≤ 0.05)
eventually becomes the most efficient.

Hierarchical self-assembly. A slow variation of δ during
the course of the simulation may result in a multi-scale
modeling protocol, which efficiently captures the collec-
tive motion on a scale which is characteristic of a spe-
cific time window of the self-assembly. In hierarchical self-
organization [48], this scale increases with time, and the
size of δ could, for example, be made to depend on the
average size of crystals in the system. The early stages of
this protocol would be associated with the shortest δ, the
shortest physical timescales, and with the self-assembly of
the smallest building units; the later stages by a larger
δ, longer times, and self-assembly at a scale given by the
size of the aggregates self-assembled earlier. Under the
assumption that local motion is important on one scale,
but not important later at a larger scale, local motion at
late stages would be made less frequent, but would not
be completely forbidden. Another assumption is that slow
variation of δ violates the detailed balance condition for
the sampling to an extent which is negligible compared
to the effects of coarse-graining and the non-equilibrium
nature of the quench.

We can use our SA system to speculate about a pro-
tocol varying δ during the simulation such that the aggre-
gation happens via the motion of isolated crystals. The
VMMC simulation of the quench would start with a suffi-
ciently low δ. Our results indicate that the system phase
separates into a large number of clusters and that the first
crystals appear. As implied by our VMMC with δ, or by
using Brownian Dynamics [8], the clusters remain isolated
for the timescale of the simulation and the aggregates may
crystallize. The system then develops a transient but long
enough time window, where the crystals can be temporally
described on another scale [9], as new and larger renormal-
ized spherical particles with attractions that are shorter
ranged relative to the size of the drops. Moreover, the at-
tractive potential of the drops may be stronger than that
between the constituent particles, because a contact be-
tween the drops can be formed by more than one contact
between the constituent particles. This leads to a deeper
well or equivalently to a larger ε in the renormalized sys-
tem, with the position of the state point in the phase di-
agram being changed in two ways. The relatively shorter-
ranged attraction moves the fluid-solid binodal and the
critical point to lower temperatures [3]. Since ε and T are
equivalent through kBT/ε, the deeper well has a similar ef-
fect, and moves the state point to a lower part of the phase
diagram. The latter effect is stronger, because a single ag-
gregate of drops is formed rather than a fluid of drops in
our simulations. In hierarchical self-assembly [48], it is de-
sirable to avoid dynamic arrest at the scale of the drops,
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and to produce spherical clusters of drops rather than a
disordered cluster from drops. It is possible that there is a
simulation protocol, where T and δ are varied slowly and
simultaneously, producing large long-living spherical ag-
gregates from the smaller scale renormalized spheres. This
protocol may or may not correspond to physical reality.

Approaches to vary δ. The maximum MC displace-
ment δ may not only represent a parameter of the sim-
ulation coarsening the dynamics, but may also be related
to a dissipative quantity such as viscosity. The above pro-
tocol for realistic dynamics or efficient sampling may be
achieved in different ways. Instead of drawing δ from a uni-
form distribution, δ drawn from another, possibly Gaus-
sian, distribution, may result in a more realistic distri-
bution of moving clusters approximating the dynamics.
One could also draw an analogy between the optimum size
of the particle displacement in the VMMC and the opti-
mum pseudo-temperature regulating the linking strength
in static cluster algorithms [53,54]. A pseudo-temperature
in the VMMC algorithm can be introduced by using an-
other temperature in the linking function, and correcting
with a bias in the acceptance probability. This approach
is equivalent to using fictitious potentials for linking, and
real potentials for accepting, the moving clusters [23]. This
pseudo-temperature may then be slowly changed instead
of δ. Rapid periodic changes of δ are also possible in SPMC
simulations, but can bring the system out of equilibrium
sampling [55]. Changes of δ or the pseudo-temperature in
the MC simulations during assembly may also be step-
wise and follow a real-time feedback. A systematic change
of bond strength can, indeed, improve crystal yield [56].
How δ and its changes are represented in experiments re-
quires more attention, but microwave heating [57] can be
used to locally disturb the bonds, the time control of bond
strength is achievable by exposure to light in repeated
pulses [58], and hierarchical self-assembly in DNA origami
can be achieved by a slow cooling process [59].

Very low density and Brownian dynamics. Perez et
al. [8] performed Brownian dynamics (BD) simulations at
very low packing fractions φ = 0.001, using the same po-
tentials as in eq. (1) with no long-range repulsion (A = 0).
Their system was quenched to temperatures T = 0.10
and T = 0.20, producing isolated spherical aggregates
with well developed crystallinity. The aggregates did not
merge into a single cluster on the timescale of their long
BD simulations. To compare with these results, and to in-
vestigate the role of collective MC motion for a larger δ,
we performed VMMC simulations on the same system.
We used δ = 0.20σ and the Brownian scaling of pro-
posed clusters according to step 2(b) of the algorithm.
The result of the VMMC simulation was a system which
rapidly merged into one large fractal-like aggregate, with-
out having enough time to develop spherical clusters with
a high internal crystallinity. The difference between BD
and VMMC for large δ is consistent with the results of
this paper, suggesting that for large δ, clusters aggregate
quickly with respect to local crystallization. Whether it is
BD or VMMC that approximates the dynamics in a more
realistic way may require a comparison with experiment.

6 Conclusion

By using MC simulations, we have characterized the prod-
ucts of medium quenches in SA systems, and we analyzed
the corresponding crystallization pathways. In accordance
with what has been reported before [3,8], the quench is
followed by condensation into liquid drops which remain
isolated for a long time, and aggregation of which can
not be easily studied by conventional dynamical simula-
tions. Our MC methods allow us to tackle this timescale
to show that, if the dominant mechanism for structural
evolution is the single-particle motion, and contribution
from the collective modes of motion can be neglected or
integrated out, the condensation and growth of the drops
follows three linear growth regimes correlated with local
order. The first regime is the formation of drops with and
without a crystal inside; the second regime is a dissolu-
tion of amorphous structures with a low internal crystal
order; and the third regime is a slow growth of crystals
via adsorption of single particles from dissolving usually
smaller crystals. The optimum conditions for this situation
seem to be intermediately strong quenches of systems at
low densities to temperatures corresponding to the inter-
section of the spinodal and the attractive glass line [15,
13], and lying within the optimum temperature range for
self-assembly [56]. The collective motion is unimportant
in systems where long-range repulsion inhibits the aggre-
gation. In systems where collective motion affects the dy-
namics, the correlated linear growth is not observed, and
local crystallization is preceded by larger scale aggrega-
tion. The crystals then grow at the expense of the amor-
phous parts of the aggregate.

The collective dynamics for a fixed δ studied in this pa-
per is not necessarily physically realistic, but it is believed
to be more accurate than other simulation approaches,
such as Brownian dynamics, where different diffusion con-
stants of differently sized clusters are not explicitly de-
pendent on the cluster size and geometry. The sensitiv-
ity of crystallization pathways to different choices of δ
may be significant, and is examined in the second part
of the paper. The pathways are on average independent
of the choice of δ in the SPMC simulation, but differ in
the VMMC simulation of the attractive system especially
for large δ. If δ is small, aggregates do not move, and
the VMMC simulation is similar to the SPMC simulation
with local crystallinity of isolated droplets being devel-
oped first. If δ is large, the system aggregates into liq-
uid clusters which quickly merge into a single, large, and
disordered aggregate, with local crystallinity being devel-
oped afterwards. The structural features of the aggregates,
however, seem to become independent of δ at later times,
suggesting that the kinetically slowed down structures ob-
served in this paper have a universal significance and may
be physical.

The results provide evidence that the dynamical Monte
Carlo methods, studied here, and used elsewhere [41,45,
60–62], predict realistic products of phase separation, de-
spite the fact that different choices of δ may lead to dif-
ferent initial crystallization pathways. The methods are
of potential use in modeling the dynamics or in finding
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the products of phase separation in those systems where
collective modes of motion contribute to overall dynam-
ics [18], where anisotropic interactions govern the crystal-
lization pathways [41], where hydrodynamics affects the
onset of gelation, and where alternative dynamical meth-
ods [63–65,40] are not sufficient to capture the important
physical phenomena behind the self-assembly.
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