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Abstract. Amoeboid cells take various shapes during migration, depending on the cell type and its environ-
ment. Deformability of the cell shape can then affect the migrating behavior. In this article, we introduce
a theoretical model of chemotactic cell migration with elliptical shape deformation. Based on the model,
we calculate the stationary distributions of the migration directions analytically. As a result, we find that
the distributions show different characteristics depending on the difference in the interdependence of the
internal polarity, cell morphology and gradient sensing.

1 Introduction

The migration of living cells sheds light on investigations
into a wide variety of dynamics in active matter. The eu-
karyotic cell is one such active material, consisting of F-
actin and other cytoskeletal structures. Many eukaryotic
cells show motile behaviors by deforming their shapes in a
random direction, including extensions and contractions.
Spontaneous intracellular activities probably induce such
cell shape deformations and motile processes [1,2]. One of
the remarkable characteristics of cell migration is the cell’s
ability to determine the direction of the stimulation cor-
rectly from its strongly fluctuating surroundings, which is
a striking contrast to non-living active matter. By the abil-
ity to sense a chemical gradient, cells deform their shapes
to orient their cell bodies along the gradient to achieve di-
rectional cell migration or chemotaxis. The cell motility,
together with the sensing of the chemical stimulation, has
been studied by combining theoretical and experimental
approaches [3].

Quantitative experiments have been carried out exten-
sively for spontaneous and chemotactic motions of Dic-
tyostelium cells [4-9]. These studies show that the cell mo-
tion is not a simple random walk, but exhibits a directional
persistence with a correlation time of several minutes. This
far exceeds the correlation time of cell protrusions into
pseudopods, by which amoebic cells are typically thought
to move [4]. To explain the characteristics of cell motility,
models of persistent [4,5] and biased random motion [10]
have been proposed for spontaneous and chemotactic mi-
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gration trajectories, respectively. Following these studies,
we consider that, irrespective of isotropic and anisotropic
external conditions, eukaryotic cells can maintain their in-
ternal polarities, which determine the cell deformations for
movement. In fact, some intracellular processes of chemo-
tactic cells have been demonstrated to exhibit a non-
uniform spatial distribution under isotropic conditions.
Furthermore, even in undeformable cells treated with an
F-actin polymerization inhibitor reagent, some intracellu-
lar signals, which could induce F-actin formation if the
reagent were absent, form a spatially localized pattern in-
side the cells [11-13].

Therefore, in this paper, we first focus on a cell motil-
ity model that couples the spontaneously established in-
ternal polarity with the gradient sensing (see sect. 2) and
cell morphology dynamics (see sect. 3) without invoking
a particular molecular mechanism. We take into account
the dependence of gradient sensing on the cell shape, mo-
tivated by recent theoretical studies [14,15], as explained
in sect. 3. We then perform the numerical analysis of our
model and find that the stationary distribution of polar-
ity directions shows a characteristic profile distinct from
the circular normal distribution, as observed experimen-
tally [3] (see sect. 4). To explain the numerical result, we
derive analytically the distribution of migration directions
of deformable cells (see sect. 5). Finally, we give a sum-
mary and discussion (see sect. 6).

2 Model without shape deformation

We first consider a model of the internal polarity which de-
pends on the directional sensing as illustrated in fig. 1(a).
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Fig. 1. (Color on-line) Model of cell motility with internal po-
larity, shape deformation and gradient sensing. (a),(b) Black
ellipses indicate the cell shape. (b) The driving force and the
restoring force acting on the cell morphology described by the
two terms in eq. (12) (blue arrows of upper and lower panels,
respectively). (c) The distributions of the coarse-grained driv-
ing force (f°) +¢&° and (f) + &€ on the internal polarity q for
circular and elliptical cells (upper and lower panels), respec-
tively. The probability density functions of £€° or & (indicated
as the green contour lines) are shifted (to the magenta contour
lines) by (£°) or (f) (black arrows) under a shallow chemical
gradient.

The magnitude and direction of the internal polarity are
described by the vector ¢ = (¢z,¢qy) = q(—sinf,,cosby).
Then, the evolution equation for spontaneous polarization
is given by

d

3% =IL,(1=¢)q+ f] (i==zy). (1)
In addition to the first term on the right-hand side show-
ing the self-polarization (I is a positive constant), we have
included the term fO = (f7, f)) describing the driving
force to the internal polarity. Here, the direction of f°
may be determined by intracellular processes that esti-
mate the gradient direction for migration based on the
distribution of chemoattractant-occupied receptors on the
surface. (The extracellular gradient is directed to the y-
axis with 6, = 0.) The term f° is thus determined by the
estimated gradient direction to which the internal polarity
is biased and the responsiveness f; of the internal polarity
to the direction, as

= fq(=siny, cos ), (2)

with angle ¢ from the y-axis to the estimated gradient di-
rection. Because binding and unbinding between chemoat-
tractants and receptors are stochastic processes, the direc-
tion ¢ is a random variable with an associated probability
density function (PDF). The correlation time of ¢ is given
by the time constant of the chemoattractant-receptor re-
action, 7r = (kg + kaCo) ™t [3], where Cj is the chemoat-
tractant concentration and kg4 and k, are the dissociation
and association rates, respectively. In Dictyostelium cells,
TR is about 1 second [16,17], and hence much smaller
than the persistence time 7p of the migration direction
~ 300 seconds [4]. In a reasonable approximation, we sup-
pose that on the time scale of the persistence time 7p,
the migration speed v is constant [3,8], and the velocity
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v = v(—sinb,, cosd,) immediately follows the direction
of the internal polarity g, i.e., 8, = 0,.

On the time scale 7p > 7, we can apply the central
limit theorem to the noisy driving force f° ~ (f°) +£° in
eq. (1), giving the equation for q as

d
—aqi=I,(1 —¢*)qi + (f) + &

dt (7’ = xvy)a (3)

where

(F°) = (0, f,A°/2) (4)
is the average driving force due to the chemical gradient,
and ¢&Y is white Gaussian noise with (&%) = (0,0) and
(€°(t") - €°(t)) = 2f27RO(t — t'). Here, A° is the ampli-
tude of the bias to the direction of the chemical gradient.
Hereafter, we consider the case when I; — oo with the
constant strength of the internal polarity ¢ — 1. Since the
relaxation time of q, ~ I~ L is much shorter than that of
the polarity direction, fq_l, ie., Iq_1 < fq_l, eq. (3) can
be rewritten as

do, f,A°

g = 9 sin 9(1 + fg, (5)

where €9 is the component of £° perpendicular to the
polarity direction g. The noise term ¢9 satisfies (€9) =0
and (£7 ()€1 (1)) = faTro(t —t').

From eq. (5), the mean and mean square displacement
of §, are found to be

—%AO sinf,At,  (6)
= fimrAtL, (7)

(04(t + At) = 04(t)) o, (1)=0,
([04(t + At) = 0,()1%) ], (1)=0,

and the higher-order moments are O(At?). Using the
Kramers-Moyal expansion, the time evolution of the PDF
P(6,,t) is therefore given by the following Fokker-Planck
equation:

2
OP(0q,t) _ 0 [CSP(%J)]JF;Q
6‘1

0
o o, [DgP(6,,1)] . (8)
where ¢) = (f;A%sin6,)/2 and D) = (f?7r)/2. This equa-
tion has been used in previous works [3,18].

When the chemical gradient is absent (A% = 0), we can
use eq. (8) to obtain the correlation time 7, of the internal
polarity and the spontaneous migration as 7, = (Dg) ™" =
2(kq + kaCo)/ fZ. When the chemical gradient is present
(A% £ 0), the stationary distribution is the circular normal
distribution (CN)

P(6,) x exp (kcosby), 9)

where © = A°/(f,7r) is the concentration parameter,
which characterizes the inverse of the dispersion. This re-
sult is a natural consequence of the central limit theorem
for the situation where the noise in the driving force is in-
dependent of the migration direction of the circular cell as
illustrated in fig. 1(c) top. Hence, the CN distribution is a
robust property, independent of the details of the model
as long as the cell takes a circular shape.
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3 Taking cell shape into account

Cell shape can affect the statistics of migration and po-
larity directions. For example, the effect of the shape on
the motion of self-propelled objects without gradient sens-
ing has been investigated extensively [19,20]. The gradient
sensing ability can also be sensitive to the cell shape [21,
14,15]. Hence, in this article, we focus on the depen-
dence of the gradient sensing on the cell shape, which can
have indirect but non-negligible effects on the statistics
of polarity and chemotactic migration directions as shown
below.

We consider an elliptically deformable cell, as shown in
figs. 1(a) and (b). Reflecting the symmetry of the ellipse
under the transformation n <> —n with the unit vector
n = (—sinf,, cosf;) parallel to the major (long) axis of
the cell, the deformation magnitude and direction can be
expressed by the tensor S defined as [22]

Si' zs(nmj—(zj>,

where s = (a — b)/(a +b) > 0 measures the degree of the
deformation, and a and b are the lengths of the semi-axes
(a > b) [19,20].

The average driving force exerted on the internal po-
larity, given by (f°) in eq. (3), may be dependent on the
cell shape and orientation. It is also expected that, in gen-
eral, the noise term in the coarse-grained driving force £°
in eq. (3), can be biased according to the cell shape and
orientation, as shown in fig. 1(c). Therefore, the time evo-
lution of the polarity g may be written as

(10)

dg _

T 10— Pa+ FSW) +EES®), ()

where (f) is the averaged driving force, which depends
on the morphological factors as (f(S)) = (0, f,A(S)/2),
and £(¢,.S) is white Gaussian noise with (&) = (0,0) and
(€', S)®&(t, S)) =2Dg(S)d(t —t') with the tensor
product ®. Here, A(S) and Dg(S) are the morphology-
dependent bias amplitude in the direction estimation and
noise strength tensor, respectively. We assume a stochas-
tic integral of Ito type for multiplicative noise in eq. (11).
We shall discuss particular forms of the functions A(S)
and Dgy(S) below. When no driving force acts on the cell
deformation, we suppose that an elliptically deformed cell
with amplitude s gradually relaxes to a circular shape as
ds/dt = —E's with an elastic coefficient E. Hence, when
the driving force deforms the cell elliptically in the direc-

tion of the internal polarity g, the simplest equation for
S;j 1s [19,20,23]

d
&Sij = —ES;; + [sQij, (12)
where fs and Q;; = g;q; —J;;/2 are the strength and direc-
tion of the driving force for the deformation, respectively.
When f is positive or negative, the cell elongates its body

into the direction parallel or perpendicular to the polarity
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direction q, i.e. migration direction, respectively. There-
fore, fs may be positive for a Dictyostelium cell, whereas
fs seems to be negative for a fish keratocyte, which is a
migrating cell that elongates its body perpendicularly to
the migration direction. We note that, in eq. (11), direct
coupling terms between g and S are not considered, un-
like the previous works for the dynamics of self-propelled
particles [19,20,23]. This assumption rules out the insta-
bility of the straight motion and restricts the cell behavior
to rectilinear motion in the absence of noise.

Using the Kramers-Moyal expansion, we obtain the fol-
lowing Fokker-Planck equation for egs. (11) and (12) with
the angular representation as

%P(ﬁq,sﬁs,t) =
i[c P(0,,s,0 t)]—i—iQ[D P(0,,5,0s,1)]
09, T 002 AT TS
0 0
"r% [CSP(Hq,&es,tﬂ + 37& [COSP(emsvesyt” ’ (13)

where ¢, = [f,A(s,05)sin6,]/2, c; = Fs— fscos2(6,—0s),
and cg, = — fssin2(6,—0)/(2s). Here, the bias amplitude
A(s,05) in the direction estimation is given by
A(s,0,) = A°[1 + Af'(s) — Af(s) cos 26,], (14)
where Af'(s) and A4!(s) are particular functions satisfying
AyH(0) = A$(0) = 0. Furthermore, due to the anisotropy
in the dispersion of &(t, S) illustrated in fig. 1(c) bottom,
the mean square displacement of 6, is given by
(18t + A) — 0,1 o, (11—, = 2Dg(0, 5. 6,)At. (15)
Therefore, the diffusion constant D, depends on the cell

orientation s and polarity direction 6,. The dependence
of D, on the cell morphology may be written as

Dy(0y,5,05)=DY[1+ AP (s)— AP (s) cos 2(6,—6,)]. (16)

The third term on the right-hand side of eq. (16) charac-
terizes the anisotropy in the dispersion of & when s > 0.
Here, AP (s) and AP(s) are particular functions which
satisfy AP(0) = AP(0) = 0. In appendix A, we derive
eq. (11) with egs. (14) and (16). It should be noted that,
when f; < 0, the PDF of polarity directions takes the
same form as the case with f; > 0 by rotating the cell
shape by 7/2 as 6; — 05 + 7/2 and inverting the effect
of cell shape on the gradient sensing as Af(s) — —A4(s)
and AP (s) — —AP(s). Therefore, in this article, we only
study the case with fs > 0.

The functions Af!(s) and AP (s) represent the depen-
dence of the bias amplitude and dispersion, respectively,
on the cell morphology S. When the steepness of the
chemoattractant gradient is sufficiently large or the con-
centration of the chemoattractant Cy is comparable to
the dissociation constant of the receptor Kq = kq/ka,
|A° A{(s)| is large. When the steepness is sufficiently small
or the concentration Cjy is much lower or higher than
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K, IDIAP (s)| becomes large. This is because fluctuations
in the spatial distribution of the bound chemoattractant
molecules on the receptors and the dispersion Dg become
large when C{ is much lower or higher than K.

The dependences of A and D, on the cell shape have
been studied previously [14,15] by considering the reaction
between receptors and chemoattractant molecules. When
the signal-to-noise ratio in the estimation of the gradient
direction is high, the bias amplitude A depends on the cell
orientation 6, whereas, when it is low, the estimation in
the direction ¢ depends on 6, as illustrated in fig. 1(c),
and thus the noise strength D, depends on 6, — 0,.

4 Numerical results

In this section, we show the numerical results for eq. (13).
For Af(s) and AP (s) in egs. (14) and (16), we suppose
A (s) = AP (s) = 0. For Af'(s) and AP (s), we consider
two cases: the linear case Af(s) = us and AP(s) =

os, and the saturated case Af(s) = us/(1 + |ps|) and
AP (s) = 0s/(1 + |os|) with constants p and o. From the
requirements that the left-hand side in eq. (15) should
be non-negative and that the bias amplitude A(s,60s) in
eq. (14) may also be positive, the saturated forms are
more realistic. For the numerical calculation of eq. (13),
we first changed the variables from (s,0s) to (S11,S12)
as s = 2,/5% + 5%, and tan(260s) = S12/S11. The Euler
scheme was employed with a time increment At = 0.001.
The discretization of the variables were set to Af, =
(2m)/64, AS1; = 1/64 and AS13 = 1/64. After the non-
dimensionalization ¢ — 7,¢, the dimensionless parameter
values are given by A°/(f,7r) = 1.0, 7,E = 1.0 and
7.fs = 1.0. We obtained the PDF P(6,,t) by integrat-
ing P (04,511, S12,t) with respect to S11 and Sio. With-
out anisotropy (4 = o = 0), the stationary distribution
is given by the CN in eq. (9). We considered the param-
eter range 0 < p < 2 and —1.4 < ¢ < 0.7 for the linear
case, and —5 < y < 5 and —5 < o < 5 for the saturated
case. We confirmed that, within these ranges, the PDF's
asymptotically settled into the same stationary distribu-
tion, independent of the initial conditions.

The stationary PDFs P (6, (= 6,)) of P(6,,t) are shown
in figs. 2(a)-(c) for both the linear case (left) and saturated
case (right). The PDFs show deviations from the CN for
it # 0 and o # 0. Therefore, the cell morphology dynamics
can modulate the distributions of the cell migration direc-
tions for both linear and saturated cases. The tendencies
of the modulation of the distributions do not depend on
whether we use linear or saturated functions.

In figs. 3(a) and (b), we also plotted the first and sec-
ond moments of stationary distributions Ps(0,), respec-
tively. Figure 3 shows that the dependence of the two mo-
ments on 4 is small for o = 0. For p = 0, the two moments
increase with increasing o for o > 0.

In summary, the cell shape dynamics can modulate the
probability density function of migration directions from
the circular normal distribution.
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Fig. 2. (Color on-line). (a)-(c) Stationary distributions P (6,
(= 6,)). The theoretical curves (red solid line) and the circu-
lar normal distributions (blue broken line) are fitted to the nu-
merical results (crosses) by a nonlinear least-square fit. For the
theoretical curve, eq. (25) in (a), eq. (28) in (b), and eq. (29)
in (c) are used. As the fitting parameters for the theoretical
curves and the CN, we take x’ or ", w or X and k, respectively,
and the overall normalization constants. For numerical simula-
tions, we use the linear functions Af'(s) = us and AP (s) = os
(left) and the saturated functions Af(s) = us/(1 4 |us|) and
AP (s) = 0s/(1 4 |os|) (right). The parameter values are (a)
u=2.0 and o = 0.0 for left, and ;= 5.0 and ¢ = 0.0 for right,
(b) ¢ = 0.0 and o = 0.7 for left, and g = 0.0 and o = 5.0
for right, (¢) p = 0.0 and 0 = —1.4 for left, and p = 0.0 and
o = —5.0 for right. The other parameter values are indicated
in the text. Insets show magnifications of the peaks. The lower
panels show the differences between the theoretical distribu-
tions and the fitted circular normal distributions (black solid
lines, right axes). In each graph, the scaled maximum fitting er-
ror maxy[(Pr — f(0vr))/Pk] with the k-th data points (Oyx, Pk)
and fitting curve f(6,) for the CN fitting is ca. 10 times larger
than the theoretical curve fitting. In particular, in (b) right, the
scaled fitting error reaches ~ 1.0 for the CN fitting, whereas
they are less than 0.10 for the theoretical curve.

5 Analytical explanation of the stationary
distributions

In this section, we study the stationary distributions for
the deformable cell, and their deviations from the CN, by
considering eq. (13) analytically.
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Fig. 3. (a) First and (b) second moments of stationary distri-
butions of migration and polarity directions. In both (a) and
(b), we use the saturated functions A{(s) = us/(1+ |us|) and
AP (s) = 0s/(1 + |os|). The other parameter values are indi-
cated in the text.

5.1 Calculation procedure

By integrating eq. (13) with respect to s and 65, we ob-
tained

OP(0,,t) O 02

5 = 87611 [ceP(6,,1)] + 892 [DyP(64,t)], (17)

where over-lines indicate the conditional average with re-
spect to s and 6, for a given 0, and t. This conditional
average can be obtained by interpolating the values in the
limits £ — oo and E ~ 0 with a given value of f;/F
(fig. 4(a)).

For E — o0, since the deformation S is completely re-
laxed for a given 6,, we obtained 65 = 6, (mod 7) and s =
Seo = fs/E from eq. (12). Substituting these into eq. (14),
the average amplitude A of the bias and the diffusion con-
stant Dg,(0,,s,0s) are

As,0) = A = A" [1 + A (500) — Af(soo)cos%q] ,
(18)

Dq(oanaHS) = ﬁqm = D2 [1 + AOD(SOO) - AlD(SOO)] .
(19)

For E ~ 0, s and 65 can be obtained, assuming that
0, obeys the equilibrium distribution. Under such a con-
dition, from eq. (12) we have 05 ~ 0 and

__ [
§s~3= E<COS29 Vo (20)
leading to
A(s,05) = Ag = A [1+ AG(5) — AL (3)], (21)
D,(0,,s,05) = qO_DO[l—I—AO() Al()cos%’]

(22)

The averaged magnitude of the persistent deformation s
is determined self-consistently from the resulting distribu-
tion of the polarity direction 6.

To connect these limits, we introduce a constant p,
which decreases monotonically from p =1top=0as E
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Fig. 4. (Color on-line). (a) The different limits for the present
interpolation. (b)-(d) The stationary distributions of 6, = 04,
with analytical results for eq. (25) (b), eq. (28) (c¢), and eq. (29)
(d). Parameter values are given as follows: (b) " = 1 and p =0
(green dotted line), 0.1 (blue broken line), —0.1 (red solid line),
(c) k" =1 and XA = 0 (green dotted line), 0.4 (blue broken line),
0.7 (red solid line), (d) " =1 and A = 0 (green dotted line),
4 (blue broken line), 0.7 (red solid line).

decreases from F — oo to F — 0. Using this constant,
the interpolation formulae are approximately given by

A(s,05) = pAse + (1 — p)Ay, (23)

(0(17359 ) %pDiqoo—i_(l_
The stationary distributions P(6,,t) can be approxi-
mately obtained by substituting eqs. (23) and (24) with

= [f,A(s,0,)sin6,]/2 into eq. (17). In the following
subsectlons we consider the two different cases.

p>D7q0' (24)

5.2 Case A: Bias A depends on the cell morphology

We first consider the case where AP (s) = AP(s) = 0
and Af(s) # 0, Af(s) # 0; the bias amplitude in the
direction estimation shows a dependence on the cell ori-
entation as well as the shape, whereas the dispersion in
the gradient sensing does not. Such a situation is found
when the chemoattractant concentration is comparable to
the dissociation constant Ky, i.e., in the high accuracy
limit of gradient estimation. The stationary distribution
is obtained as

Py(0,) x exp[(

as shown in fig. 4(b), where £’ is the concentration param-
eter and w characterizes the deviation from the CN, given
by

k' + 3w) cos O, — wcos 36,], (25)

0
W = ffm {14 A (500) + (1 - p) [A8(5) - AL )]}
(26)
_ pAYA (s5e0) (27)

6fq’7'R
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Figure 2(a) shows good agreement between eq. (25) (red
solid line) and the fitted numerical results (crosses) with
fitting parameters ' and w. We also plot the CN distri-
bution obtained by the fit (blue broken lines), which was
narrower than the numerical results and the analytical re-
sults eq. (25).

The parameter w, associated with the deviation from
the CN, is estimated as w ~ pAf(ss). Thus, when the
cell shape immediately follows the internal polarity with
sufficiently large F (fig. 4(a) left), the deviation in the
distribution becomes large.

5.3 Case B: Diffusion constant D, depends on the cell
morphology

We next consider the case where Af'(s) = Af'(s) = 0 and
AP (s) # 0,AP(s) # 0, that is, the bias amplitude does
not show a dependence on the cell orientation, whereas
the dispersion does. Such a situation is found when the
chemoattractant concentration is much smaller or much
larger than the dissociation constant K, i.e., in the low
accuracy limit of gradient estimation. In this case, for
AP (3) > 0, we have

exp [KJH# arctanh(\ cos Gq)]

Py(0 ; 2
(0g) ox 1 — (Acosf,)? (28)
as shown in fig. 4(c), whereas for AP (5) <0
exp [ﬁ/’# arctan(\ cos Oq)}
PL(0,) (29)

1+ (Acosf,)? ’
as shown in fig. 4(d). Here, " is the concentration param-
eter, and \ is the sharpness parameter!, given by

0

A
e {149 AP (500) = AP (500)]

H1-p) (4D - aPE] )

(30)
A= 1/201 =pIAPE) {1+ p [Af (s2) — AP (5:0)]

—-1/2
+1-p) [2aPE +2PE] (31)
The sharpness parameter A characterizes the deviation
of Py(6,) from the CN. In figs. 2(b) and (c), egs. (28)
and (29) are shown (red solid lines) with the numerical
results (crosses), respectively, demonstrating good agree-
ment. The parameter values of x” and A were obtained
from the fit. For each case, we also fitted the CN to the nu-
merical results (blue broken lines) showing characteristic
deviations. For AP (5) > 0, the CN distribution is broader
than eq. (28), but sharper than eq. (29) for AP (3) < 0.

! In eq. (29), X means the broadness rather than the sharp-
ness. However, in this article, we use the terminology “sharp-
ness” for both cases for convenience.
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Note that the sharpness ) is estimated as A ~ |(1 — p)
AP (3)]'/? suggesting that the condition F ~ 0 leads to
distortions in the PDFs given by egs. (28) and (29), as
described in fig. 4(a) right. This means that AP results in
the anisotropy of the diffusion constant of 8,, giving D, ~
(f57r/2) (1 = AP(5)) for 0, ~ 0, 7, and Dy ~ (f7r/2)
(1+AP(3)) for 0, ~ /2. Thus, for AP (3) > 0, when the
internal polarity is directed perpendicular to the gradient,
the polarity direction is more variable. We note that this
anisotropy cannot be neglected even for a shallow gradi-
ent or low concentration of chemoattractants, because 3,
and hence AP (3) in eq. (22), is not sufficiently small, as
shown below. This exhibits a strong contrast to the case
of a circular cell as shown in eq. (7). Because the char-
acteristic response time f_~ L which is tens of seconds, is
much larger than 75 ~ 1 second, «” in eq. (30) is not
small. Consequently, the distribution becomes more lep-
tokurtic, i.e., more concentrated around the mean. As a
result, 3 becomes large as calculated from eq. (20). Fur-
thermore, 5 becomes even larger for the case that fs > 0
and AP (s) > 0 for any s > 0, considering eqgs. (20), (28)
and (31) self-consistently as discussed in sect. 6 in more
detail. We also note that the present interpolation approx-
imation neglects the correlation between fluctuations in s
and 6 like the mean-field approximation.

5.4 Summary of this section

In this section, we have derived the expressions of station-
ary distributions of polarity directions. We have found
that the stationary distributions of polarity directions
show deviations from the circular normal distribution.

We first considered the case when the cell morphol-
ogy affects the bias amplitude A in estimated directions
of the chemical gradient. Such a situation can be found
when the steepness of a chemoattractant gradient is suf-
ficiently large and the chemoattractant concentration is
comparable to the dissociation constant K4 of the recep-
tor. In this situation, the distribution Ps(f,) is given by
eq. (25) and fig. 4(b). The deviation in the stationary PDF
is pronounced when the cell deforms quickly to the polar-
ity direction as described in fig. 4(a) left.

We also considered the case when the dispersion D,
can be dependent on the cell morphology. Such a situa-
tion can be found when the cells are subjected to a faint
gradient. When the dispersion D, is enhanced along the
direction parallel to the cell orientation (fig. 1(c)), the sta-
tionary distribution is sharpened as shown by eq. (28) and
fig. 4(c). Conversely, when D, is strengthened along the
direction perpendicular to the cell orientation, the station-
ary distribution is broadened as shown by eq. (29) and
fig. 4(d). We found that the deviation becomes strong
when the elliptical cell shape is persistently oriented to
the chemical gradient with its slow deformation speed as
described in fig. 4(a) right.

All of these tendencies are consistent with the numer-
ical results shown in fig. 2.
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6 Summary and discussion
6.1 Summary

In this article, we have developed a theory to calculate the
statistics of migration directions of chemotactic eukaryotic
cells which include shape deformations. We consider the
influence of gradient sensing on deformable self-propelled
objects, which has not been studied so far. We have de-
rived the possible stationary distributions of migration di-
rections for elliptically deformable cells, both numerically
and analytically, as shown by eqs. (25), (28), and (29).
We found that the stationary distributions show devia-
tions from the circular normal distribution qualitatively
due to the coupling between the gradient sensing ability
and shape deformation.

6.2 Interdependence of the deformation and
chemotactic ability

To further clarify the influence of this coupling on the sta-
tionary distribution of migration directions, we consider
the interdependence of the deformation s and sharpness A
of the directional distributions. In this paragraph, for sim-
plicity, we assume f, > 0, A§'(s) = AP (s) =0, Afl(s) =
us/(1+|us|) and AP (s) = os/(1+4|os|). For the case when
i ~ 0, the deformation s is determined by the PDF as
shown by eq. (20), whereas the PDF's are functions of 5 as
is evidenced in eqs. (28) and (29) with egs. (30) and (31).
For the o > 0 case, both the deformation 5 and sharpness
A are positively interdependent so that both are enhanced
by one another. The probability Pr ~ 1+ (A°/f,7r)
that the polarity g directs to the true gradient direc-
tion is larger than the probability Pg ~ 1 — (A%/f,7r)
with which the polarity directs to the opposite direction.
From the difference between Pr and Pg, we can esti-
mate the contribution of the variation in the diffusion con-
stant D, on the increase in the concentration parameter
k and the chemotaxis index CI = (cosf,). For instance,
for small bias A% and deformation 5, considering the vari-
ation AD, ~ DJAP(s) in Dy, the increase can be esti-
mated as Ak = k" —k ~ [PpAD, /D) — PgAD,/DJ]/2 ~
{A%/(f,mR)HPAP (s00) + (1 — p) AP (3)]. This estimation
is indeed consistent with the first-order terms of eq. (30)
with respect to AP. In contrast, for the o < 0 case, the
interdependence shows a negative effect so that both the
deformation s and the sharpness A in the PDF are small.
On the other hand, for the case when p # 0 and o = 0,
5 is determined by the ratio between the strength of the
driving force and the elastic constant, so, = fs/F. Hence,
in this case, no effective interdependence is present. These
effects are demonstrated in figs. 2 and 3. For example, for
uw=0,0=>5 we have CI ~ 0.73 and s ~ 0.49, which are
much larger than CI ~ 0.45 and 5 ~ 0.11 for p =0 =0
and CI ~ 0.36 and 5 ~ 0.053 for 4t = 0, 0 = —5. Our find-
ings described in this paragraph are schematically sum-
marized in fig. 5.
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Fig. 5. (Color on-line). The schematic summary of our main
findings. At the leading order of the concentration parameter
K, the persistent deformation 5 and sharpness A influence each
other, and the resulting s influences k (solid curved arrows in
left). The influence of x on § arises from only its nonlinear or-
der (broken curved arrow in left). In particular, for fs > 0 and
AP >0, or fs <0 and AP < 0, this mechanism enhances the
sharpness A, which leads to the large deviation (solid straight
arrows in right) of the stationary distribution of migration di-
rection 6, from the circular normal distribution (CN) as illus-
trated in the right figure.

6.3 Insight into the motility and sensing ability of
chemotactic cells

In this subsection, we discuss the use of our theory to gain
insight into the motile and sensing abilities of eukaryotic
cells based on the chemotaxis of Dictyostelium cells. The
distribution of migration directions of Dictyostelium cells
has been measured experimentally [3]. This distribution
is sharper than the CN, which can be fitted well using
eq. (28) [3]. Together with our results, the characteris-
tic distribution obtained experimentally can be explained
by polarity and cell deformation. Interestingly, in ref. [3],
eq. (28) was derived from a different model, in which the
direction of motion depends on the cell’s estimation of
gradient direction and its steepness. Then, by assuming
that the stochastic fluctuation in the estimation is small,
a linear Langevin equation with multiplicative noise was
derived. This noise resulted in the deviation in the sta-
tionary distribution from the CN and the nonzero value
in the sharpness parameter A [3]. A sharp distribution, as
in eq. (28), was then derived by further assuming that the
direction of cell migration turns to the gradient stronger
as the estimated steepness increases [3]. In our case, the
multiplicative noise in eq. (13) was derived from the de-
terministic effect of the cell shape S rather than the linear
approximation of Gaussian noise due to directional esti-
mation. Hence, our results are applicable to the situations
when the noise is relatively large, such as under a shal-
low and low concentration gradient. Therefore, we expect,
based on our results, that the migration direction, even
under a faint gradient, follows the same tendency as in
eq. (28).

Under a shallow and low concentration gradient
(figs. 4(c) and (d)), A°A{}(s) ~ 0, and the weak bias
toward the gradient direction is independent of the cell
orientation f, on average. From eq. (16) we see that the
difference in the sign of AP () results in a difference in the
dependence of the variability of the internal polarity 8, on
the cell orientation 5. By considering the maximum like-
lihood estimation (MLE) of the gradient direction, we re-
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cently found that AP (s) > 0 if the MLE is performed only
for the gradient direction given a presupposed steepness,
whereas AP (s) < 0 if the MLE is performed when neither
steepness nor direction is presupposed [15]. By relating our
results to the experimental result mentioned above, the
case of AP (s) > 0 seems more probable, implying that, in
Dictyostelium cells, the limit of the gradient sensing abil-
ity may not be given by the MLE for both steepness and
direction. Together with the above discussion on the in-
terdependence of s and A, this implication on the sensing
ability seems to be consistent with the highly elongated
shapes of Dictyostelium cells under a cAMP gradient [24].
A mechanism that biases the internal polarity to the cell
shape orientation may also be possible, considering the ex-
perimental fact that the non-uniform distribution of some
intracellular processes tends to orient to the leading edge
of the cell. It has been suggested that F-actin at the cell
tip may activate some signaling molecules, which could
give such a mechanism.

6.4 Outlook

Though we have investigated the influence of the cell
morphology only on gradient sensing in this article, our
mathematical formulation based on the Langevin equation
for the tensor representation in eq. (11) and the Fokker-
Planck equation in eq. (13) are applicable to other types
of couplings, such as the direct coupling between the po-
larity g and cell shape S in eq. (25) [19,20,23]. We can
also consider the case when the z-component of {f(S))
in eq. (11) depends on the cell morphology S. Moreover,
by introducing the appropriate interactions between cells,
such as cell adhesions, contact inhibitions and the effect of
secretion of chemoattractant molecules from each cell into
the chemical field, we will be able to investigate collective
behaviors of eukaryotic cells.

Our theory is based on the central limit theorem as in
eq. (3), so the resultant stationary distributions (25), (28),
and (29) are robust for any species of eukaryotic cells as
long as 7p > 7. We expect that our results are applicable
to chemotactic migration of other kinds of eukaryotic cells.

This work has been supported by KAKENHI (23111531).

Appendix A. The equation of the polarity
vector q with cell morphology

In this appendix, we note the details of eq. (11) of the
presented cell motility model with cell deformation.

The Fokker-Planck equation for 6, given by eq. (13)
with egs. (14) and (16) corresponds to the Langevin equa-
tion for q given by eq. (11) with the averaged driving force

(FS0) = {1+ 28() - A(s) [2m- )2 = 1)} (£°)
A1)

and the dispersion

£(t,5(t) = & (¢, S(t) + €., S(1)), (A.2)
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where

§(t,S) = (g(s) + h(s))Wi(t)n (A-3)

and
£L(t,8) = (g(s) — h(s))Wa(t)n L. (A.4)

Here, (fY) is given by eq. (4), Wi(t) is white Gaussian
noise with (W;(t)) = 0 and (W;(t)W;(t")) = d;;0(t — ),
n_ is a unit vector perpendicular to n, i.e. the unit vector
parallel to the minor (short) axis of the cell, f = (0,1)
is the unit vector parallel to the true gradient direction,
and the functions ¢(s) and h(s) are given as the solution
of g(s5)? + h(s)? = quTR[]. + AP (s)] and g(s) - h(s) =
f(?TRAP(S)/Q

We also comment that, from the general point of view
of the coupling of tensors [19,20,23], the influence of the
morphology S on the noisy driving force (f(S)) + £(¢, S)
is given by

(F(S) = [1+aS+b > fiSif; | (f°)+0(S?),
1L,j=T,y

(A.5)

and

£(t,S) = {1 +eS+d > fiSifi+e(SHF
5L,J=T,Y
ersh (X gsad )i e
LI=T,y
+0(5?), (A.6)
with the coefficients a, b, ¢, d, e, r, and u at the lowest
order with respect to S. The nonlinear order terms can
be obtained by the same strategy. The terms with A{!(s)
in the averaged driving force (f) and AP (s) in the noise
term & correspond to the terms with the coefficient b in
eq. (A.5) and cin eq. (A.6), respectively, and the nonlinear
order terms with respect to S. The terms with A§'(s) and
AP (s) come from the nonlinear order terms.
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