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Abstract. Recent experimental, numerical and theoretical advances in turbulent Rayleigh-Bénard convec-
tion are presented. Particular emphasis is given to the physics and structure of the thermal and velocity
boundary layers which play a key role for the better understanding of the turbulent transport of heat and
momentum in convection at high and very high Rayleigh numbers. We also discuss important extensions of
Rayleigh-Bénard convection such as non-Oberbeck-Boussinesq effects and convection with phase changes.

1 Introduction

Turbulent convection is an omnipresent process in Nature
and technology. Many turbulent flows are driven and sus-
tained by temperature differences such as convection in-
side stars and planets [1,2], atmospheric motion [3,4] or
circulation in the ocean [5]. Convection plays an impor-
tant role in heat exchangers and passive cooling devices for
electronic equipments and computer chips [6]. Convective
motion determines also the quality of the indoor air cir-
culation in rooms and passenger cabins [7]. In most cases
the turbulent convective motion is coupled to other phys-
ical processes such as rotation of the frame of reference,
radiative transfer, phase changes and chemical reactions.
In other situations the convection is influenced by elec-
tromagnetic fields, by particles dispersed in the fluid or it
is constrained by the porosity of the medium in which it
evolves.

The simplest paradigm for all the cases above is the
so-called Rayleigh-Bénard convection [8]. An infinitely ex-
tended fluid layer of height H is heated from below and
cooled from above. The horizontal boundary planes at the
top and at the bottom are held at constant temperatures,
Tiop (at z = H) and Thottom (at z = 0), respectively,
such that AT = Thottom — Trop > 0 (see fig. 1). Alterna-
tively, one can prescribe a constant flux of heat across both
boundaries by fixing d7'/dz. The driving force for thermal
convection is the buoyancy. When a fluid parcel becomes
warmer it expands and its mass density decreases. Sup-
pose that the fluid parcel is in a gravitational field and
heating is applied from below such that cold, dense fluid
is on top of warmer, lighter fluid. Then a parcel will rise
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when the buoyancy force can overcome viscous drag and
thermal diffusion. This physics can be summarized in two
dimensionless parameters, the Rayleigh number Ra and
the Prandtl number Pr which are given by
aATH? v
Ra = gas 7 , Pr=—,
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The third parameter in (1) is the aspect ratio I" where
L denotes a characteristic horizontal scale such as the di-
ameter of a cylindrical convection cell. Quantity ¢ is the
gravity acceleration and « the thermal expansion coeffi-
cient. The Rayleigh number quantifies the competition of
upward motion of a fluid parcel due to positive buoyancy
in comparison to drag and diffusion. The Prandtl number
compares the kinematic viscosity v and thermal diffusivity
k of the fluid. In table 1 we summarize a few examples of
turbulent convection and list the corresponding estimates
for the Rayleigh and Prandtl numbers as well as the in-
volved scales. The examples show that a wide range of
parameters is covered which puts a challenge on describ-
ing the convective turbulence. We also indicate that in
most cases convective turbulence is accompanied by other
physical processes as stated already above.

One of the key questions is that of the turbulent trans-
port mechanisms of heat and momentum across the layer,
in other words, how is the turbulent fluid carrying heat
and momentum from the bottom to the top [14,15]. Since
the fluid is confined between rigid or/and impermeable
walls boundary layers of the temperature and velocity
fields will form in the vicinity. The deeper understand-
ing of the transport mechanisms requires thus a deeper
understanding of the physics in these boundary layers. As
being the case in many other wall-bounded flows, the fluid
dynamics is tightly connected to near-wall coherent struc-
tures. Understanding the boundary layer dynamics itself
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Table 1. Examples for convection and estimates of the Rayleigh and Prandtl numbers, Ra and Pr. We also list a typical vertical
scale H of the convection process and a typical aspect ratio I' = L/H both of which should be understood as order-of-magnitude
estimates. In case of the Earth mantle and solar convection the circumferences at mid height have been taken for L.

Ra Pr H r Remark
Mantle convection [9] 107-10° 1023 700 km 54 Creeping flow limit with phase transitions
Deep oceanic convection [10]  10**-10%" 7 1-4km 10>-10®  Ra based on buoyancy flux
Processor cooling device 108 0.7 1-10cm 1 Complex geometry effects
Indoor ventilation 10%-10'° 0.7 1-10m 1-10 Mostly mixed convection
Shallow moist convection [11] 10'8 0.7 2km 102 Vapor and water; Conditionally unstable
Deep moist convection 1022 0.7 10 km 102 Vapor, water and ice; Anelastic limit
Solar convection zone [12,13] 102°-10** 10771072 2x10°km 10 Highly compressible

Fig. 1. The typical Rayleigh-Bénard convection setup as a
cylindrical cell. Two isosurfaces of the temperature are shown:
hot at the bottom for T'//AT = 0.7 in red, cold at the top for
T/AT = 0.3 in blue. Parameters are here: Ra = 10, Pr = 0.7
and I" = 3 (see [26,27] for the corresponding simulations).

thus requires to understand their formation and their sta-
tistical weight for the global transport.

In this colloquium paper we want to review some of the
recent developments in high-Rayleigh number convection.
Significant progress in our understanding of turbulent con-
vection has been obtained in the last years by both, ex-
perimental and numerical studies of turbulent convection.
We want to summarize these results, discuss some possible
extensions towards more complex physical situations and
will give an outlook to some possible future directions in
this vital field of fluid dynamics research. Since we cannot
cover all aspects in detail, we want to point the inter-
ested reader to other recent reviews of turbulent convec-
tion such as the ones by Ahlers et al. [16] on heat trans-
port and large-scale mechanisms, the one by Lohse and
Xia [17] on small-scale properties in turbulent Rayleigh-
Bénard convection. Further recent studies on our subject
can be found in a focus issue [18]. The vast variety of
convective processes makes it impossible to discuss all of
them. We will restrict our following discussion therefore to
the three-dimensional (3D) non-rotating convection case.

Section 2 summarizes the equations of motion, the di-
mensionless parameters and some basic relations that are
a consequence of the equations. In sect. 3, we discuss ex-
isting scaling theories for the global heat and momentum
transfer, in particular for the so-called ultimate regime
at very high Rayleigh numbers. Section 4 gives a short

overview over experimental devices and numerical meth-
ods. In sect. 5, we discuss studies up to Rayleigh number
Ra ~ 10'? with a particular emphasis on structures in
the boundaries and the large-scale circulation. Section 6
summarizes very-high-Rayleigh number experiments and
DNS beyond Ra ~ 10'? and is followed by extensions of
the classical Rayleigh-Bénard convection in sect. 7 and an
outlook in sect. 8.

2 Oberbeck-Boussinesq model

The most general starting point for the equations of mo-
tion in convective turbulence is to take the full set of com-
pressible flow equations containing the balances of mass,
momentum and energy. In the balance of the momentum
density pu;, a volume force density pg; appears with grav-
ity acceleration vector g; = (0,0, —g). The mass density
p(T, p) is connected to the pressure p and the temperature
T by an equation of state, usually the one for an ideal gas
which is given by (R is the specific gas constant)

1dp 1dp 1dT

pdt pdt T dt’ )
In the following, we simplify pg; in two steps as be-
ing relevant for convective motion in planetary atmo-
spheres where the fluid motion is considered to be quasi-
adiabatic [19]. Further discussion is found in [20,21]. The
continuity equation for the mass density p is given by

1dp _ Ou ldp ey d (3)
pdt O pdt ¢, dt

follows when (2) and the adiabatic form of the first law
of thermodynamics are used [19]. Here, ¢, and ¢, are the
specific heats at constant pressure and volume, respec-
tively, and ¢, = ¢, + R. The time derivatives in (3) should
be understood as a substantial derivative. Re-expressed
in characteristic scales and amplitudes this results to (di-
mensionless quantities with a tilde)

p= RpT and thus

and thus Inp,

ou; ug o . = . c,H _ Olnp
- =— | = -Vl i, (4
0%; 2 {81& T h} npt Ty W
where ¢ = /c,RT /¢, is the adiabatic velocity of sound

in an ideal gas. Index h in (4) stands for horizontal terms
in (x,y).
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The first level of simplification is now as follows. If
the characteristic velocity of the convective turbulence
is much smaller than the speed of sound then the first
term on the right hand side can be neglected. This is the
so-called anelastic approximation of thermal convection.
The mass density becomes time-independent and the con-
tinuity equation contains the vertical advection of mass
only [22]. The last term of eq. (4) contains a ratio of scales,
H the vertical scale of convection and L, the outer scale of
pressure variation (in atmospheric context, the height of
the atmosphere). If H ~ L, then eq. (4) can be rewritten
with (3) to

ou;, 1_ 90p

0
_8@- = Euz 0z 7(prefui) ~ 0, (5)

d thus
and thus oz,

where p,f is a reference mass density. In several astrophys-
ical and atmospheric convection flows this approximation
has to be taken into account (see also table 1).

The second level is obtained if additionally H < L,
holds in (4). The convection flow becomes incompress-
ible and thus the Oberbeck-Boussinesq (OB) approzima-
tion [23,24] can be used. In this case all material parame-
ters of the fluid are assumed to be independent of tempera-
ture and pressure, except the mass density which varies at
first order in the buoyancy term (see also ref. [25] for a de-
tailed discussion). Physically this means that the height of
the convection layer is small enough such that small varia-
tions about a hydrostatic equilibrium have to be included
only. As a consequence p(T,p) = p(T) and

dp

T) = p(Tre — T —Tye o
p(T) = p(Tret) + 5T T:T,,ef( £) +
p OV
= re _— T T - Tre ...
Pref = 5T p( £) +

= Pref [1 - a(T - Tref)]’ (6)

with a=(1/V)0V/0T|, = —(1/p)0p/O0T |, being the ther-
mal expansion coefficient at constant pressure. The first
term of (6) contributes to the hydrostatic equilibrium pro-
file which is determined by —Opyet/0x; + prergi = 0. We
see that the OB approximation is tightly coupled to an
incompressible flow and the three-dimensional Boussinesq
equations in Cartesian coordinates are given by

3ui 8u1- 1 ap, aQUi
. j = - T_Tre 12
5 + u, oz, P +v 8:1:? +ag( £)0 (7)
8ui
=0, ®)
orT aT 0T

(9)

ot T og, T aar

where i, j = x,y, z. Here, p/(z,y, 2,t) is the pressure varia-
tion about the hydrostatic equilibrium profile, u;(x, y, z, t)
the velocity field, T'(x,y, z,t) the total temperature field.
Thermal diffusivity & = k/(prercp) contains the thermal
conductivity k. The last term on the right hand side of (7)
is also known as the buoyancy B.
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Characteristic amplitudes can be composed out of the
scales and material constants. These are for example the
so called free-fall velocity Uy = /gaATH or a diffusive
velocity Ug = k/H. Characteristic time scales follow to
a free-fall time Ty = H/U; and T, = H/Uy = H?/k,
respectively. This allows to derive a few relations such as
RaPr = UJ%/UUI2 or Ra/Pr = UJ%HQ/I/Q = Re? where Rej
is a Reynolds number based on free-fall velocity.

In response to parameters Ra, Pr and I', the turbu-
lent transport of heat and momentum is quantified by the
Nusselt and Reynolds numbers, Nu and Re, respectively.
They are given by

T
(usT) 4 — DAL -

Nu = 9z , Re=——.

RAT/H v (10)

The average (-) 4, is taken over planes at fixed z and time.
Velocity U can be Uy or a root-mean-square velocity. The
two contributions in the numerator of (10) are due to the
convective and diffusive heat currents which will be de-
noted as J.(x,t) = u,T and Jy(x,t) = —k0,T. In the ab-
sence of fluid motion, heat can be carried by diffusion only
across the fluid layer which will correspond with Nu = 1.
With the Nusselt number at the bottom (top) plate z = 0
(z = H), which consists of a diffusive contribution only,
one can derive an expression for the thermal boundary
layer thickness in turbulent convection. If one assumes
that O(T)a.+/0%| =0, = —AT/(207) the boundary layer

thickness is given by

H
= —., 11
2Nu (11)

The decomposition of the temperature T into mean and
fluctuations,

o

T(x,t) = (T'(2))a +0(x,1), (12)

where (6(x,%)) 4+ = 0, will be used throughout the text.

3 Scaling theories of turbulent transport

In the following we briefly summarize some predictions
from scaling theories for the turbulent heat and momen-
tum transport. Emphasis is given on which physical as-
sumptions and concepts enter these theories rather than
which particular scaling Nu(Ra, Pr) and Re(Ra, Pr) fol-
lows. A more detailed discussion is found in refs. [14]
and [16] as mentioned already in the introduction. The
latter reference contains a table in which all the scaling
laws Nu ~ RaP and Re ~ Ra” are summarized and the
historical development is outlined. We will focus here to
the most prominent cases.

3.1 Scaling theory by Malkus

One of the oldest theoretical models that aims at pre-
dicting the Nusselt number as a function of the Rayleigh
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number goes back to Malkus [28] based on his own labo-
ratory experiments [29]. He suggested that the marginal
stability argument, which is used to derive the onset of
thermal convection, works also in the turbulent case where
a mean flow configuration provides the “basic” state for
which a perturbation analysis is applied. From this ansatz
he derived a scaling law of

Nu ~ Ra'/3. (13)

Two aspects are worth to be mentioned. First, an expo-
nent of 1/3 follows also if the heat transport is assumed
to be independent of height, in other words, that the two
boundary layers at the top and the bottom do not com-
municate. Second, Malkus discusses in his work also that
for larger Rayleigh numbers a transition from a laminar
to a turbulent boundary layer should be present [28].

3.2 Exact relationships

Two scaling theories of turbulent convection which we will
outline now start with exact relations that can be derived
from the Boussinesq equations. A central role is played by
the kinetic energy dissipation rate €(x,t) and the thermal
dissipation rate er(x,t) which are given by

wo-ie (G
er(x,t) = nz; (gi)Q. (15)

The balances of the turbulent kinetic energy as following
from (7) and of the thermal variance as resulting from (9)
give the following two exact relations:

(e) = IV{—?;(Nu — 1)RaPr~2, (16)
er) = n?{j; Nu, (17)

where the brackets (-) denote a statistical ensemble aver-
age. The following scaling theories are based on specific
assumptions for the physics in the thin thermal and ve-
locity boundary layers. This also means that both rely
on the existence of a large-scale wind that blows steadily
across both plates in the turbulent convection cell. Such
a large-scale circulation has been studied in many labora-
tory experiments and DNS up to Ra ~ 10'2 and will be
discussed further below.

3.3 Scaling theory by Shraiman and Siggia

Shraiman and Siggia assume the existence of a turbulent
boundary layer [14,30]. The following mean downstream

velocity profile is consequently assumed:
UrZ/ 2, if 2 < (7-12)z,,

(18)
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with the von Kéarmén constant & = 0.4; B depends on
the shear flow geometry and was set to 5 in [14]. Here,
Ur = \/Tw/po is the friction velocity with the wall shear
stress which is defined as 7, = poru,/0z|.—0 = povS.
The quantity z, = v/u, denotes the corresponding vis-
cous length scale. For Pr > 1 the thermal boundary layer
will be nested in the velocity boundary layer and thus
boundary layer equation to be solved close to the wall is
(see eq. (18) for the viscous buffer layer)

or

or oT N 0°T
or

Z% =~ Kjw, (19)

Uz (2)
which transforms to f/(n) + (n?/3)f(n) = 0 with a new
similarity variable n = [23S/(kx)]/? and f(n) = T'(n)
with T'=T/AT. As a result one gets

() = T(0) - C / Top(—E e (20)

Consequently, the Nusselt number can be expressed as

(21)

5\ 1/3
Nu="T'(n=0)~ 8%~ ﬁ .
Pr

These relations follow when the OB equations (7)—(9) are
nondimensionalzed by H and x. Equation (16) simplifies

then to ((Va)?) = NuRa for Nu > 1. Furthermore, the
kinetic energy dissipation rate was estimated in [30] with
Pr((Va)?) ~ 100a3. (22)

If we plug (21) and (22) together and eliminate @, then

Nu =~ 0.27Pr~ Y7 Ra?/7, (23)
follows for the global heat transport and
Re ~ 0.14Pr—°/"Ra®/"[F'In(Re) + B],  (24)

for the global momentum transport follows in a similar
way. Equation (24) contains thus logarithmic corrections.

3.4 Scaling theory by Grossmann and Lohse

The central idea of the theory by Grossmann and Lohse
[15] is to split both mean dissipation rates into two con-
tributions each, one from the bulk (Bu) and one from the
boundary layers (BL) so that

(25)
(26)

(€)vit = (€)Bust + (€)BLt,

(er)vit = (€r)Bust + (€7)BL+-

Note that the average () gy, contains bulk volume frac-
tions vp, and v’z, for the viscous and thermal boundary
layers, respectively. For high Ra both are practically one.
Similarly, (-) g+ contains the boundary layer volume frac-
tions vpy = d,/H and vlz; = d7/H (see also eqs. (28)
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to (32)). For the velocity (or viscous) BL a Blasius-type
layer [31] is assumed with a thickness of

H
VRe’

where the length L of the plate is set to be about the
height H (or I' = 1). The prefactor a is obtained by match
with a record of experimental results as discussed in [15,
16]. The original Blasius solution for a two-dimensional
laminar flow over a flat plate gives a =5 [31].

Equations (25) and (26) together with (16) and (17)
and the knowledge of the BL thicknesses set the stage to
derive scaling relations in four basic regimes of turbulent
convection. They consist of the four possible combinations
of bulk and BL-dominated thermal and kinetic energy
dissipation rates. These regimes cover different parts of
the parameter plane that is spanned by the Rayleigh and
Prandt] number (see fig. 3 in [16]). The four contributions
to the dissipation can be estimated as follows:

0y = a

(27)

us 8
(€) Bu,t ~ T~ ﬁReg’ (28)
U2 s, 3
(€)BLt ~ Ve m "~ %365/2, 2
U(AT)? AT)?
(ex) s~ LA AT (30)
AT)? 6§ AT)?
(er)pry ~ i 52) ﬁT - K%PrwRel/Q, (31)
T
AT)? 5 AT)?
(er)pis ' ~ ( 52) ﬁT ~ “(Tz)Prl/?’Re”Q. (32)
T

Estimates (29), (31) and (32) contain the volume fractions
of the BLs. The characteristic velocity U is for example a
root mean square (rms) velocity probing the large-scale
turbulence (and thus the wind) in the system. Further-
more, the derivation of the last two relations makes use
of Pohlhausen’s idea of the passive advection of the tem-
perature by the Blasius flow [31]. In case of Pr > 1 one
has to take the full Blasius profile into account. In case
of Pr < 1, i.e., when the viscous BL is well nested in the
thermal BL, temperature advection can be approximated
by the constant outer velocity.

In an extension of the theory [32] a full functional de-
pendence for the relations Nu(Ra, Pr) and Re(Ra, Pr)
was suggested that incorporates the varying ratio of both
BL thicknesses with respect to each other when the
Prandt]l number is changed, i.e., with (11) and (27) one
obtains 6,/07 = Nu/(2v/Re). Interpolations of the form
f(z) = (1 +2*)~Y/* are used to model the crossover be-
tween the four main different regimes. A second aspect
has to be incorporated, as the Prandtl number grows,
the Reynolds number of the wind will decrease which
would cause 4, to diverge theoretically. Physically this is
prohibited by the fact that the viscous BL cannot grow
beyond H. This introduces an a priori unknown cut-
off Reynolds number Re.. This transition to the satura-
tion of the growth of d, is again modeled by a function
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g(z) = (1 + 2*)~/%. This results in the following set of
equations:

Re?

g(v/Re./Re)

(Nu —1)RaPr=2 = ¢ + coRe?, (33)

2aNu Re,
Nu—1= ReP —
“ Caq| RePrS \/RTCQ< Re>
2aNu Re,
ReP .
+cqRePrf \/RTCQ<V I )

(34)

Equation (33) follows from (16) and (25), eq. (34) from
(17) and (26). The coefficients ¢; to ¢4 and the cut-off
Reynolds number Re. follow when experimental data are
matched by a nonlinear fit. An additional sixth fit param-
eter is the prefactor a from (27). The resulting Reynolds
number dependence was further discussed in [33].
Another modification of the scaling theory was pro-
posed later in [34]: decomposition (26) was replaced by

(er)v,e = (€T)pl,t + (€T)bg 15 (35)

which splits the thermal dissipation rate into contribu-
tions coming from the plumes (pl) and the turbulent back-
ground (bg). Again both terms contain the corresponding
volume fractions. It was expected that the plume contribu-
tions arise mostly from the side walls while the background
part is dominantly in the center of the cell. On this basis,
predictions for the local convective heat flux J. and the
temperature fluctuations 7,.,s were developed and found
to be in agreement with laboratory experiments [35,36]
and recent direct numerical simulations [37].

3.5 Scaling in the ultimate regime of convection
3.5.1 Kraichnan's classical scaling theory

Which global heat and momentum transport do we get if
we increase the Rayleigh number to very large values? On
the basis of classical mixing length arguments [31] which
were adapted by a turbulent boundary layer structure,
Kraichnan derived the following transport laws [38] for the
regime of convection now known as the ultimate regime:

p 1/2
N~ | — RaPr
(R~ PerIn Ra)3
Pr<0.15 (36
Re RaPr—1 1/2
4% ' PerIn Ra
and
RaPr—1/2 1/2
N ~
" |:<I€_1 (PerRes)/21n Ra)?’}
0.15 < Pr <1,
RaPr—3/2 1/2
R ~
¢ [ 7Y (PerRe,)/? lnRa}

(37)
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where Res = u;0yis/v is the constant shear Reynolds num-
ber with d,;s being the thickness of the viscous sub-layer.
Per = u,(d7)dr/k denotes the Péclet number at which
the thermal BL becomes turbulent. This constant is not
known and has to be estimated. The Reynolds number
was here defined as Re = U(H/2)H/(2v) where U is the
rms velocity in the bulk.

We will discuss in brief the derivation of the (36)
as an example. In this case 0, < 7, such that outside
the thick thermal boundary layer, turbulent eddy viscos-
ity and diffusivity determine the dynamics. For distances
o < z < H/2 we can thus assume that [(u- V)u,| ~ gad
from (7) and [(u- V)d| ~ u,d(T(2))/dz from (9) hold.
When power laws for velocity, temperature fluctuation
and mean temperature are assumed, this results in

1/3

—1/3
Uz, rms ™~ 2 P ~ Z / N

Orms (T(2)) ~ =713, (38)
a scaling that was already suggested by Priestley [39]
and which results in a transport law for the heat of
Nu ~ Ra'/3. The shortcoming of this derivation is that
it completely ignores the shear effects which arise when
the velocity boundary layer becomes turbulent in case of
very large Rayleigh numbers. Kraichnan recognized that
once the Reynolds number is sufficiently high a logarith-
mic profile for velocity fluctuations is established. Consid-
ering low Prandtl numbers where the viscous boundary
layer is completely nested in the thermal boundary layer,
0y < 07, the turbulence develops outside the sublayer and
supports the heat transfer. The intensity of the velocity
fluctuations at the edge of the thermal boundary layer is
now estimated by u, and thus the Péclet number is now

taken as 56 5
P@T _ uz( T) T N Ur0T 7
K K

(39)

which is an important point. In the center the heat trans-
port is assumed to be dominated by the convective current
and is approximately given by

1 1
Jc ~ §uz,rmsorms ~ §U0rn7,sa

(40)
with both rms values taken at z ~ H/2. Energetically, a

balance between kinetic and potential energy holds in the

bulk
1 2

iuz,r’ms

1 H
~ §U2 ~ Egozﬁr,ns.
Deriving 0y,,s from (41), inserting it in (40) and recalling
the definition of Nu, leads to an expression for turbulent
convective flows (see also the exact relation (16))

(41)

NuRa = Pr’Re®. (42)

The logarithmic law of the wall (18) can be rewritten to

H/2 1 H/2 1
U(/)Jrln(U(/))zlnReJrB7 (43)
Uy R Ur R
and gives as first approximation u, ~ U(% In Re)~'. Re-
calling now eq. (11) that states o7 = H/(2Nu) and using
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eq. (39) one finds

ur H UH RePr
Nu = ~ o~ 44
“= nPer " anPeriRe ~ 2Perlmie’ Y

which results together with (42) in relation (36) for Nu.
The expression for Re follows the same way. In this last
step, 21n Re ~ In Ra has been applied to get (36).

Kraichnan derived the ranges for the Prandtl numbers
in (36) and (37) from the ranges that should hold for the
thickness scales in his boundary layer models. Interest-
ingly, Nu ~ Ra'/? is a scaling that is derived as a rigorous
upper bound to the turbulent heat transport when apply-
ing variational calculus to the Boussinseq equations (7)
to (9). More details can be found in [40-42] and are also
discussed in [14,16].

3.5.2 Grossmann-Lohse theory for turbulent BL

In case of Pr < 1, the scaling laws Nu ~ (RaPr)*/? and
Re ~ (Ra/Pr)'/? without logarithmic corrections follow
also from the model [15] when (16) and (17) and the bulk
contributions (28) and (30) are taken. In case of Pr > 1
it was shown in [15] that Nu ~ Ra'/? is obtained. Loga-
rithmic corrections cannot appear in this derivation since
they are based on the assumption of a laminar viscous BL.

Only recently, the ansatz (25) was adapted to a turbu-
lent BL [43] by splitting energy dissipation into contribu-
tions of the viscous buffer (vsl) and the logarithmic layer
(i)

(vt = (€ustt + (€)1t (45)
together with the assumption that the logarithmic layers
from the top and bottom fill the whole cell. Again both
averages contain the corresponding volume fractions. Re-
peating estimates similar to (28) and (29) one gets now

O~ ke (1) T (Ret2) 8] a0

uf Zr V3 3 (Ur\?
et~ v 5~ g’ () 47)

where (46) is obtained by averaging the well-known re-
lation (e(z)) = u2/(Rz) along the logarithmic layer up
to z = H/2. The energy dissipation resulting from the
sustained logarithmic layer will dominate and together
with (16) one gets

_92 3 [(Ur 31 Ur
NuRaPr~* ~ Re (U) L In (Re U) + B] . (48)
The second relation for the thermal dissipation rate has to
be worked out. One can expect that the thermal boundary
layer is turbulent too. If we assume that the von Kdrman
constants in the logarithmic laws for flow and temperature
are about the same one can use (cf. (10))

—(Rurz — K) 3<T(Z)>A,t

~ 0z
Nux KAT/H ’

(49)
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and thus

Nu ~ RePr (%)3 E In (Re%) + B] . (50)

The global transport laws for heat and momentum follow
thus for non-asymptotic Pr to

Nu ~ Ra'/?prt/? (%)3 [i In (Re%) + B} , (51)

Re ~ Ra'/?pPr=1/2, (52)
The effective scaling exponent of turbulent heat transfer
which follows for the ultimate regime can be estimated to
0.35 < Bemr < 0.42.

4 Experimental and numerical methods

After the discussion of the scaling theories for the global
transport laws we turn now to a discussion of the results
of measurements and direct numerical simulations. Before
starting, we review in short some methods and parameter
ranges.

4.1 Working fluids and accessible parameter ranges

As shown in table 1, convection flows in Nature and tech-
nology appear frequently at very high Rayleigh number.
Recalling the definition of Rayleigh number in (1), the
parameters one can change are o, AT, H, v, and k. Sys-
tematic changes of H are not easy to realize and often
lead to changes in the aspect ratio I" introducing thus an
additional variation. Moreover, the range of validity of the
Oberbeck-Boussinesq approximation is usually estimated
by [21]

AT < 0.1-0.2, (53)

thus limiting the variations of this parameter. Many ex-
periments at moderate and high Rayleigh numbers have
been performed in water because these experiments al-
low several possibilities of visualization [44-46]. The high-
est Rayleigh numbers reached for convection in water
are those of the group in Hong Kong [46] which reached
Ra = 5 x 10'? at Pr = 4 and those of the group in
Lyon [47,48] in which Ra = 4 x 10'? at Pr = 2 was
obtained. The majority of the laboratory experiments are
conducted in cylindrical cells; some studies have been per-
formed in rectangular convection cells [49-54].

Low-Prandtl number convection requires working flu-
ids such as mercury (Hg). Tsuji et al. [55] performed such
experiments in the range 106 < Ra < 7 x 10'° with
Prandtl number Pr = 0.024. Velocities in mercury have
been measured with ultrasonic techniques.

Convection for Prandtl numbers around unity (in par-
ticular Pr = 0.7) can be established in several working
fluids. One way to change the Rayleigh number without
changing the cell size is to use gases near the critical point
(see also sect. 7.1). In this case the physical parameters of
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the fluid such as kinematic viscosity, thermal diffusivity
and thermal expansion coefficient can be varied by chang-
ing the distance to the critical point.

Several gases have been used at ambient temperatures:
argon Ar [56,57], nitrogen No [56-58], helium He [56,59],
ethane CoHg [60], sulfur hexafluoride SFg [56,58,61,62],
and air [63]. Globally, the range 60 < Ra < 105 of
Rayleigh numbers has been spanned with gases.

When helium is cooled down to a few kelvins (the crit-
ical point is at 5.19K for a pressure of 2.27 bar) the ad-
vantages of this working fluid become manifold: first of
all low-temperature experiments benefit from a very good
thermal isolation because of the cryogenic vacuum. Sec-
ond, very poor thermal capacity of the metal together
with a very large thermal diffusivity allow a short re-
sponse to temperature variations at the plates. The first
experiment with low-temperature helium was done by
Threlfall [64] in 1975 which covered a range of Rayleigh
between 60 < Ra < 10°. Afterwards numerous other ex-
periments were performed for an increasingly large range
of Rayleigh numbers revealing a complex behavior and
probably a strong dependence on the boundary conditions
which will be discussed in detail below. The highest ac-
cessed Rayleigh number of Ra = 10'7 is still the one in
the laboratory experiment by Niemela et al. [65].

An extreme case in terms of system size is occupied
by the actually largest thermal convection laboratory ex-
periment in the world, known as the “Barrel of Ilmenau
(BOI)” with a height and diameter of up to seven me-
ters [63]. The working fluid is air at ambient temperature
and pressure. Convection in the BOI can span a range of
108 < Ra < 2 x 10'2 and aspect ratio 100 > I > 1. While
global quantities such as Nu are not easy to measure, one
has full access to the boundary layers close to the top and
bottom plates which will be discussed in detail in sect. 5.3.

4.2 Direct numerical simulations

Direct numerical simulations discretize the equations of
motion on a spatio-temporal grid and resolve all features
of the turbulent flow down to the smallest physical scale
which is on average the Kolmogorov length ny for Pr <
1 or the Batchelor scale ng = nx/ VPr for convection
at Pr > 1. Nearly all present three-dimensional DNS of
the Boussinesq equations (7)—(9) at higher Rayleigh and
finite Prandt]l numbers are based on one of the following
numerical techniques:

— Second-order finite-difference scheme on a staggered
non-equidistant computational grid for cylindrical cell
[66,67].

— Fourth-order finite-volume method on non-equidistant
computational grid using the Chorin ansatz for sus-
taining incompressibility for cylindrical and rectangu-
lar cells [68].

— Spectral element method using Legendre polynomials
for arbitrary geometries [69-71].

— Pseudospectral method with periodic side boundaries,
such as in [72,73].
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Beside this list of 3D DNS, simulations in a two-dimen-
sional setting using fourth-order finite-difference meth-
ods [74,75] should be mentioned.

A resolution criterium for the mean grid spacing A in
DNS has been discussed first by Grétzbach [76]. His crite-
rion is a translation of the resolution requirement in pseu-
dospectral simulations of box turbulence, which is given
by kmazx = V2N /3 > 1 (with N = 27/A), to the
present case. It states that!

1/4

. = (V3 /{€)) Pr<1,

mg = m(ve/(e)'/*,

A< (54)

Pr>1.

Recent DNS showed that this criterion is not sufficient in
particular for the thin boundary layers close to the plates.
In refs. [27,77,78] new criteria have been suggested which
incorporate the strong vertical variation of gradients and
thus of the kinetic energy dissipation rate. Based on Bla-
sius theory the following estimates for 10¢ < Ra < 100
were suggested for the number of grid points Ny, inside
the thermal and viscous boundary layer [78] (Pr = 0.7):

NE; >0.35 x Ra®1'5, N%; > 0.31 x Ra™'5.  (55)
If the boundary layers become turbulent this criterium
might not be sufficient anymore. It is immediately clear
that these constraints on the resolution slow down the
progress towards higher Rayleigh numbers which can be
made in DNS. Currently, DNS for cylindrical cells with
I' = 1/2 can reach Ra = 2 x 102 [79]. Since the numerical
effort grows with I'> when larger aspect ratio cells are
considered, recent DNS at I' = 1 achieved Ra = 3 X
10'° only, but requiring almost the same number of grid
points [80] as the former case for I' = 1/2.

5 Experiments and simulations for Ra < 10'2
5.1 Nu-Ra scaling

In fig. 2 we summarize the results of the dependence
Nu(Ra) for several recent experiments in cylindrical cells.
Data are given in a compensated plot NuRa~'/3 versus
Ra. For an ensemble of older data, we also refer here to
the reviews [14,16]. The first impression is that the data
which we summarized in this figure scatter. Several points
should be mentioned:

— Data points have been obtained for different experi-
mental conditions. Different materials for the plates
and the side walls were used.

— The experiments were conducted at partly different
aspect ratios varying between 0.23 and 20.

! Grotzbach used in his original work [76] the so-called
Corrsin scale ne = v3/4/(e)'/* in case of Pr > 1. It has to be
replaced by the Batchelor scale ng since an increasing fraction
of temperature filaments is advected in the viscous-convective
range when Pr increases.
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Fig. 2. Heat transport as a function of the Rayleigh number.
Data are shown in compensated power law plot for several ex-
periments: cyan circles for [44,45] (0.23 < I' < 6, Pr = 4.38),
green triangles for [46] (0.67 < I' < 20, Pr = 4). Both series
involve finite conductivity corrections of plates and side walls.
Furthermore, black asterisks are for [48] and orange squares
for [59]. These data contain finite conductivity corrections of
the side walls. Magenta diamonds are for [57], black circles for
DNS [79] (I' = 0.23, 0.5 < Pr < 10), and the blue circles
for [79] (I' = 1/2, Pr = 0.7). The red solid line represents
the curve as obtained from the Grossmann-Lohse theory based
on (33) and (34).

— Different systems of thermal insulation and different
feedback controls of heating and cooling at the top
and bottom plates have been used.

— The presence of side walls is a non-negligible problem
for all experiments at smaller aspect ratios. They will
always have a small, but non-zero conductivity and
heat capacity. The first-order effect of the thermal con-
ductivity has been calculated and modeled in refs. [81,
82] and also discussed in DNS by Verzicco [83]. Those
corrections are differently calculated, but lead to very
close values for the side-wall corrections of up to three
percent. The corrections are based on the fact that a
part of the heat flux is injected into the flow through
the lateral walls. All the data measured contain one of
the two proposed side-wall corrections depending on
the authors.

It is yet an open point if further effects exist that may in-
fluence the flow and thus the heat transfer measurements.
For example, thermal plumes might get locked in some
special configuration due to slight temperature inhomo-
geneities at the plates which might affect the overall ther-
mal dissipation. Such effects might become increasingly
important in the very high-Rayleigh-number regime, as
we will discuss later.

Another important issue is the behavior of the large-
scale circulation (LSC) that is always established in a
closed convection cell, at least for the values of Rayleigh
numbers discussed here. When convection sets in, plumes
of the same type (cold or hot) have the tendency to cluster
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giving rise to a large-scale flow [84]. It has been found in
experiments [85] and DNS [27] that the morphology of
the large-scale circulation depends on the form of the cell
and the aspect ratio, particularly at intermediate Rayleigh
numbers. For example in a cell with aspect ratio of one
essentially one LSC roll is expected. If the container is
perfectly cylindrical and no symmetry-breaking mecha-
nism exists this roll shows a slow precession which has
been discussed in [16]. If the cell has an aspect ratio larger
or smaller than one, two or more circulation rolls can be
present next or on top of each other, respectively. The
large-scale circulation can switch between these states (see
e.g. [67,85-87] or the review [16]). The importance of the
recirculation zones at the edges of the cell is another point
that might become important in particular for smaller as-
pect ratios.

The answer to the question of whether the LSC influ-
ences the Nusselt number seems to be yes, but the influ-
ence is decreasing with increasing Rayleigh number. While
DNS at Ra = 107 observe variations of up to 10% when
the LSC structure changes, very recent measurements of
Weiss and Ahlers [86] found a variation of about 1.6% in
the Nusselt number between one-roll and two-roll state for
Ra = 10'2,

Small changes of order of 2% have been also found
when tilting the cell in [47,85]. These are evidently con-
sequences of the action of gravity on the large scale flow.
While the authors in ref. [47] suggest that gravity can fix
a one-roll state, Xi and Xia [85] suggest that once the flow
is locked the frequency of plumes is reduced. In [88] a bi-
modality of the Nusselt number of about 7% was found
for 108 < Ra < 101, 0.73 < Pr < 10 and I" = 1/2. Roche
et al. [88] also suggest that this difference is linked to the
coexistence of one-roll and two-rolls states. The difference
is here larger than in [86] which itself was larger than the
one measured in [85]. We also remark, as noted in [86],
that not in all the experiments the two-roll flow has been
found. It is therefore possible that external conditions as
walls or thermal symmetry breaking can lock the structure
of the flow. Xia suggested [89] furthermore that the influ-
ence of the Prandtl number has to be taken into account.
As a final remark, we can stress that the effect is small for
sufficiently high Rayleigh numbers. The smallness of the
effect is not really surprising; it is in good agreement with
several other measurements [50,90-92] in which the large
scale flow has been disturbed or clearly suppressed and in
which the Nusselt number has been found to vary by at
most 5%.

Summarizing the figure, we can nevertheless state that
the different data sets agree rather well, keeping in mind
that we have a compensated plot. The largest difference is
about 20%. Given the measurement comparisons in many
other turbulent flows this underlines a significant progress
which has been obtained in the past decade on the ex-
perimental side. The data underline clearly that the 1/3
power law is not really satisfactory for the Rayleigh num-
ber range. The figure also reports the expression of the
Grossmann-Lohse theory [15] (see (33) and (34)) with the
coefficients calculated for I' = 1 and a fit of the data of [93]
and [94], as reported in [16]. We conclude that the fit works
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quite well taking into account the diversity of experimen-
tal data which are reported here. The advantage of the
scaling theory is that it can combine crossovers between
different parameter regimes and scalings which would not
be possible with simple power laws. None of the states in
the present range of Rayleigh numbers reflects a “pure”
power law scaling. Coefficients ¢; to ¢4 calculated from
other data at larger aspect ratios would be certainly in-
teresting.

5.2 Local near-wall structures and global circulation
5.2.1 Thermal plumes and streamwise streaks

As in all other wall-bounded turbulent flows, characteristic
near-wall structures are observed in turbulent convection.
The most important ones are the thermal plumes, frag-
ments of the thermal boundary layer which detach per-
manently from the cold and the hot plate and move into
the bulk of the cell which is accompanied by a broadening
of these structures due to diffusion and mixing by turbu-
lent fluid. Plumes are the coherent structures that carry a
large fraction of the heat into the convection layer. Their
extension into the bulk depends on Pr and Ra. Higher Pr
favor plumes with narrow stems which can reach far into
the bulk due to the small diffusivity. Hot and cold plumes
do not collide, but groups of hot (or cold) plumes merge
and give life to the large scale flow, the LSC. A fraction
of the plumes (filaments) can thus travel from one plate
to the other along the lateral side walls and transport
heat. Among the first who investigated their typical ver-
tical structure in experiments are Spangenberg and Row-
land [95] and later Sparrow, Husar and Goldstein [96].
Figure 3 shows a plume visualization made for convection
in air at Ra = 1.3 x 10'° in the boundary layer of the
Barrel of Ilmenau.

Although the thermal plumes can be experimentally
visualized today in several ways, quantitative criteria to
extract plumes are yet an open problem. Several criteria
have been suggested which are based on thresholds of cer-
tain quantities. These could be the temperature [97], the
vertical velocity [98] or the skewness of the temperature
derivative [99]. Plume extraction is also possible by local
measurement of the thermal dissipation rate [100]. Nu-
merical experiments by Shishkina and Wagner [101,102]
compared several criteria based on the thermal dissipa-
tion rate er or the local heat current Jr = J. + Jy (see
eq. (10)). The following criteria have been suggested:

— Threshold on the temperature 7. This would extract
the red colored hot filaments in fig. 4 (top)

— Threshold on the product of thermal dissipation rate
and temperature [101], erT.

— Local maxima of a conditional mean thermal dissipa-
tion [102], which is given by

erH (T, Tit1)) At
(H(Th, Tio1)y A

with a temperature window composed by two Heavy-
side functions H(Ty, Ti+1) = H(T—Tx) —H(T —Tk41).

P

(56)
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Fig. 3. Vertical snapshot of a thermal plume that detaches
from the boundary layer in the Barrel of Ilmenau. The red
bottom area is the heating plate. The viscous boundary layer
thickness ¢, is indicated by the horizontal line and the symbol
“§”. The Rayleigh number is Ra = 1.3 x 10*° and the Prandtl
number is Pr = 0.7. Visualization has been made with DEHS
particles, the same which are used for particle image velocime-
try. (Figure from Ronald du Puits, TU Ilmenau, Germany.)

— Positive values of convective heat flux, based on the
temperature fluctuations [52,26], u.6 > 0.

All these criteria allow to decompose the turbulent vol-
ume into a plume-dominated fraction V,; and a rest, the
turbulent background Vg4, which we mentioned already
at the end of sect. 3.4 (see also [34]). The numerical sim-
ulations show that with increasing Rayleigh number the
plume volume fraction decreases while the background in-
creases [101].

On the basis of such a decomposition several geomet-
ric analyses were performed [102] such as the length of
the plumes, the thickness or their diameter. Parallel to
this effort, the morphological evolution of thermal plumes
has been studied in detail using the thermochromic-liquid-
crystal technique for convection in water up to Ra =
8 x 1019 [103,104]. A second series of experimental studies
was focussed on the plume structure for different Prandtl
numbers of Pr = 0.7, 5.2 and 602 and for Rayleigh num-
bers between 10° < Ra < 10! [54,105].

The main findings from the structural analysis can be
summarized as follows: The skeleton of plumes is mostly
composed of sheet-like plumes (see also fig. 4 (top)). At
the connection points of this skeleton the sheet-like plumes
get convoluted. Here, they can evolve into mushroom-type
plumes which are associated with a strong vertical vortic-
ity component w, = 0,uy — dyu, and a strong local up-
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Fig. 4. Horizontal cut at the thermal boundary layer thickness
at z = 6. DNS are at Ra = 3x10'°, Pr = 0.7and I" = 1 [80].
Data are exactly the same as in fig. 5. The top figure shows
the temperature field T', the bottom figure the streamlines in
a view from the top. The mean direction of the flow is from
the lower left to the top right in the bottom panel.

ward flow into the bulk as found for Pr = 5.4 in [102] and
Pr = 0.7 in [106]. The detachment of the thermal plumes
is accompanied by a three-dimensional velocity dynam-
ics [80]. With increasing Rayleigh number, experiments
and DNS demonstrate that the area occupied by individ-
ual plumes decreases while their number increases which is
in line with a growing fragmentation of the thermal plumes
and increasing instability of the boundary layer. In [104] it
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is found that geometric measures such as length £, width
W, area A = LW and perimeter P = 2(L + W) are log-
normally distributed. For Pr ~ 5 Zhou and Xia [104] re-
port the relations

N, ~ 1.4 Ra®?9003 N, ~0.41 Ra"%*0:93  (57)
where N; and NV, are the numbers of sheet-like and mush-
room-like plumes, respectively. Puthenveettil et al. [54]
found in their measurements that

Ny ~ Ra'/?, (58)
in combination with a weak Prandtl number dependence.
Indeed, one can see that both experiments end with scal-
ing exponents close to the direct Nusselt number determi-
nation with respect to the Rayleigh number. However, the
number of plumes cannot give directly the correct scaling
Nu(Ra). The determination of the heat flux and thus the
Nusselt number would require a weighting by their volume
fraction and their intensity, u.6.

Much less effort has been spent on the analysis of
coherent structures of the velocity field close to the
walls since they are less easily accessible. Furthermore, a
large-scale circulation which varies spatially and in mag-
nitude complicates such an analysis significantly. Zoc-
chi et al. [107] reported wavy structures in the bound-
ary layer from their water experiments. Later Haram-
ina and Tilgner [108] reported streaky flow structures as
they would be generated by pairs of streamwise counter-
rotating vortices in a non-normal amplification mecha-
nism. They visualized these structures by dye for convec-
tion in a rectangular water tank where the large-scale cir-
culation was probably locked. They also showed that sim-
ilar mechanisms are at work as they are well-known from
plane shear flows and isothermal boundary layers [109].
Such studies will to our view become more relevant as one
has to understand the transitional behavior of the bound-
ary layer for increasing Rayleigh number much better. Fig-
ure 5 displays streamwise flow structures which have been
aligned with the instantaneous direction of the LSC. The
red isocontours indicate that the flow is mostly acceler-
ated in comparison to the mean. This might be related to
the active role of the temperature which comes here into

play.

5.2.2 Spatial structure of large-scale circulation

We started to discuss the role of the large-scale circulation
(LSC) on the global transport already in sect. 5.1. In the
last years, both experiments and DNS, have investigated
its spatial structure in a detailed way (see also [16] and
references therein for further studies). Particle image ve-
locimetry measurements in cylindrical convection cells re-
vealed how the thermal plumes synchronize their emission
and how they organize to a LSC [110]. The coherent large-
scale organization of the flow was detected by velocity time
series taken instantaneously at different side wall locations
at z = H/2. The large-scale circulation evolves together
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Fig. 5. Visualization of streamwise flow structures inside the
boundary layer. The horizontal cut is done at the thermal
boundary layer. Contours of the horizontal velocity fluctua-
tions along the instantaneous LSC direction are shown. Red
for u; = +028U; and blue for u) = —0.34U;. Data are exactly
the same as in fig. 4.

with smaller recirculation zones close to the side walls.
They have been visualized in detail in cells with I" = 1/2
in DNS by Verzicco and Camussi [67] for Pr = 0.7 and in
experiments by Sun et al. [111] for Pr = 5.3. The latter
measurements detected also a stochastic azimuthal mo-
tion of the LSC. This permanent change of the mean di-
rection of the LSC is accompanied by a irregular temporal
variation of its mean velocity magnitude. This is also the
outcome of very recent high-resolution DNS by Wagner
et al. [112] and Shi et al. [80] in which access to the full
three-dimensional velocity field is given. These oscillations
have been also measured earlier in the BOI [113].

In order to determine a mean orientation over a lim-
ited time interval, Brown and Ahlers [116] suggested an
indirect way via the temperature measurement at several
points at the side wall. Temperature is then fitted by a
function T'(x,,) = Acos((2rm/Ny) + ¢rsc) where Ny is
the number of azimuthal nodes possible with the finite
number of probes and m = 1... Ny. The phase shift ¢1,gc
characterizes the mean orientation of the LSC over a fi-
nite time interval. As stated above, all DNS [77,112,80]
showed that this orientation can fluctuate strongly. Wag-
ner et al. [112] provided therefore a comparison of five
different functions to determine finite-time interval aver-
age of ¢rsc which were for example based on the local
heat flux J. + Jy or the azimuthal vorticity component
and found that the heat flux criterion works best. More-
over the LSC is found to evolve on different time scales.
There is a fast mode that is associated with the looping in-
side the cell. This motion can be interrupted by cessations
and flow reversals as studied by statistical models e.g. in
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refs. [114-117]. Petschel et al. [118] and Mishra et al. [119]
studied such reversals on the basis of primary flow modes
as obtained from their DNS data sets. Furthermore, the
mean directions of flow at the top and bottom are not the
same, suggesting a circulation roll with a combination of
torsion and an off-centre sloshing (see e.g. [85]). On top
of these fast variations a quasi-adiabatic slow mode exists
which is characterized by a slow change of the orienta-
tion angle of the LSC. This variation can be obtained by
averaging over several loop times and was observed in [80].

The LSC is always a full three-dimensional flow obey-
ing a significant cross-flow component (see the flow snap-
shot in the bottom panel of fig. 4) as long as it is not con-
strained to a slim rectangular cell as in the experiments
by Xia and co-workers (see e.g. [53]).

All the studies show that the LSC provides already a
richness of flow features which will certainly affect the dy-
namics in the boundary layers. Simulations allow also to
quantify the amount of heat that is carried with the LSC.
Bailon-Cuba et al. [27] and van der Poel et al. [87] showed
in simulations that the change in the LSC configuration
causes jumps in the Nusselt number, in particular for the
smaller aspect ratios, i.e., the range where the majority
of the laboratory experiments are conducted. In [27], a
systematic variation of the scaling exponents in the Nu-
Ra scaling was detected. The studies suggest also that
the jumps in the Nusselt number become smaller for in-
creasing Ra (see also our discussion above in 5.1). Exper-
iments and DNS indicate that the circulation velocity of
the LSC decreases with increasing Rayleigh which can be
attributed to an increasing fragmentation of the plumes,
the main driver of the LSC. Additional systematic studies
are however necessary to characterize the phenomenon.
Furthermore, a convection flow at larger Pr helps to di-
minish the jumps in Nu [87].

5.3 Boundary layer dynamics

Although the importance of the boundary layer is recog-
nized already for a long time, its detailed vertical structure
is not easily accessible with a sufficiently high resolution
for Ra > 10%, both, in experiments and DNS. Among the
first experiments on the thermal boundary layer structure
we mention Chilla et al. [49] and Belmonte et al. [56]. Ve-
locity boundary layers over a certain range of Rayleigh
numbers have been measured first by Xin et al. [120] and
Adrian [121]. Measurements of boundary layer profiles be-
yond Ra ~ 10'° require large experimental devices such
as the BOI for the convection in air [63] or high-resolution
particle image velocimetry for convection in water [53].
Recently, these boundary layer studies focused on com-
parisons of the measured mean profiles of velocity and
temperature with those from Prandtl-Blasius-Pohlhausen
theory [31] of forced convection (since there is a prescribed
outer flow) and those from natural convection [122,123].
The classical boundary layer theories rely in both cases
on a two-dimensional and steady flow. In the Prandtl-
Blasius-Pohlhausen model the temperature is additionally
assumed to be passively advected and pressure gradients
are zero. The active nature of the temperature field is
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incorporated in the natural convection case and fluid mo-
tion is initiated by pressure differences. Within the nat-
ural convection BL framework models for the individual
plume dynamics have been suggested, e.g. [124]. However,
a shear flow across the plates is absent in those plume
models. Perturbative expansions from both limiting cases
to the so-called mixed convection have been done in [125,
126]. These extensions remain two-dimensional models.

Mean velocity profiles in the boundary layer yield de-
viations from the predicted laminar Blasius profiles [127—
129] when they are analyzed in the classical way. Du Puits
et al. [127] concluded from their work that the deviations
from the Blasius shape arise due to the thermal plumes
which permanently detach from the thermal boundary
layer. Direct numerical simulations (DNS) by van Reeu-
wijk et al. [130] for Rayleigh numbers up to 10® support
deviations from a Blasius boundary layer. They compared
the vertically integrated horizontal pressure gradient with
the shear stress at the edge of the BL. This pressure term
is not zero as in the Blasius case.

However, different analyses and experimental condi-
tions can improve the agreement with the Prandtl-Blasius-
Pohlhausen theory

— A dynamical rescaling with an instantaneously defined
boundary layer thickness incorporates the temporal
fluctuations of the boundary layer [129,131,80]. The
instantaneous thicknesses 6, (t) and d7(t) are defined
as the intersection points between the linear slope to
the profile taken at the wall and the tangent at first
maximum of the profile.

— Quasi-two-dimensional cells [129] and two-dimensional
DNS [128,131] constrain the large-scale circulation (see
also 5.2.2) to a plane and suppress their full three-
dimensional dynamics, in particular the oscillations of
the orientation. This will also result in a better agree-
ment with the classical boundary layer theory.

— The higher the Prandtl number of the working fluid
the better the thermal boundary layer is nested in the
velocity boundary layer and the less the permanent
detachment of thermal plumes disrupts the velocity
boundary layer dynamics at fixed Rayleigh [129).

The scaling of both thicknesses with respect to the Ray-
leigh number comes however close to the predictions
from the classical boundary layer theories. Such compar-
ison requires the additional determination of the relation
Re(Ra, Pr,I') in order to relate the obtained scaling with

the theories for forced and natural convection. Wagner

et al. [112] report scalings of 67 ~ Ra~0-289%0:003 and

8y ~ Ra=0:238+0:009 for P — 0.7, I' = 1 and Rayleigh
numbers up to 10°. Lam et al. [132] verified a dependence
§o/H ~ 0.65Ra=16Pr024 for a cylindrical cell I’ = 1,
with 6 < Pr < 1027 and 10® < Ra < 10'°. More re-
cent experiments in a narrow rectangular cell by Sun et
al. [53] revealed 6,/H =~ 4.95Ra=2"001 and §p/H =~

6.10Ra~0-32+0-05 for Pr = 4.3 and 10° < Ra < 10'°. We
can see that different cell geometries and different Prandtl
numbers can affect the scaling. This is a further support
for the fact that the LSC structure, which itself is sen-
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Fig. 6. Normalized boundary layer thicknesses of temperature,
or(r), and velocity, d,(r), across the whole convection cell.
Data are from a DNS by Wagner et al. [112] for Ra = 10°,
I'=1, and Pr=0.786. They are normalized by ér=H/(2Nu)
and the most probable velocity BL thickness, respectively. They
are obtained by time averaging for each r in the plane aligned
with the LSC.

sitive to geometry and aspect ratio, is important for the
dynamics in the BLs.

Recent high-resolution DNS of the boundary layer dy-
namics [80,112] brought further insights on the 3D struc-
ture close to the walls. As already said above, both works
showed that the LSC is a three-dimensional flow in the
cylindrical cell. The horizontal components of the pres-
sure gradient are strongly fluctuating in the whole convec-
tion cell. The probability density functions of dp/dr and
r~10p/0¢ yield fatter tails when determined in the bound-
ary layers in comparison to the bulk [80]. The boundary
layer thicknesses taken in a plane which is aligned with the
LSC grows in the mean downstream direction as shown for
the data taken from [112] in fig. 6. Such significant vari-
ations of the thickness of both boundary layers have also
been detected in water experiments [133,134]. This implies
that all velocity BL measurements depend very sensitively
on the position at which they are taken. There is also no
indication that the profiles grow with §, ~ 7'/2 as in the
Blasius case. To summarize, the numerical studies up to
Ra ~ 10'° show three-dimensional and time-dependent
boundary layers with a local dynamics that can be di-
vided into short sequences of a plume detachment and a
re-laminarized post-detachment dynamics [80].

On top of these aspects which we have discussed so
far, one has to keep in mind that the transitional char-
acter of the boundary layers increases as the Rayleigh
number grows. Recent DNS demonstrated actually that
the dynamical rescaling of the thermal boundary layer
works increasingly insufficient when Ra grows which indi-
cates that the temporal fluctuations in the boundary layer
become increasingly important [135]. For Rayleigh num-
bers beyond 102, logarithmic temperature profiles have
been detected close to the side-walls very recently which
seem to indicate that the turbulent regime of the BLs is
reached [136].

5.4 Role of roughness

The importance of the boundary layer dynamics for the
Nusselt number is also clearly shown by experiments
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in which roughness has been introduced at the plates.
Roughness effects are indeed important for all practical
situations, either for industrial applications or for convec-
tion in Nature: an atmospheric boundary layer is rarely
found over smooth surfaces. Several experiments with dif-
ferent kinds of roughness have been realized in the past
years. All results agree on one point: the presence of rough-
ness increases the Nusselt number drastically compared
to the smooth-plate situation. The way how the Nusselt
number increases seems to depend on the particular kind
of roughness and the range of accessible Rayleigh num-
bers. We report the works done in the recent years and
we refer to [137] for further past studies. All the experi-
ments presented here were conducted in cylindrical cells.

In the work of Du and Tong [137] roughness is estab-
lished by pyramids of height hg in cells of I" = 1 and
1/2. Roughness was varied within 0.08 < ho/H < 0.45
for 108 < Ra < 10'°. The Nusselt number increased by
76%, but the exponent of the scaling law Nu ~ Ra%?°
was unchanged with respect to the case of smooth plates.
It should be noted here that an increase by 76% is much
larger than what can be expected from the increased sur-
face at the plates. Roche et al. [138] used triangular-
shaped grooves for both plates and the walls. When the
thermal boundary layer thickness 7 is of the same order
of magnitude as the roughness height, a transition of the
heat transport law towards Nu ~ Ra'/? develops. They
attributed this finding to a triggered transition to turbu-
lence in the boundary layers —the Kraichnan regime [38].
Later Qiu et al. [139] applied the same kind of rough-
ness as Du and coworkers (now machined directly into the
plates). They found an increase of the Nusselt number by
60%, but now with a scaling of Nu ~ Ra®37, i.e., different
from the smooth case. The authors attributed the differ-
ences to the thermal properties of the plates as linked to
different material (copper in [139] instead of brass in [137])
and the differences in the fabrication of the rough plates.

The most recent experiments have been realized in
Lyon for 10° < Ra < 10'2 for I' = 0.5 and 2.5. In this
case, the cell had asymmetric plates. The top plate was
smooth while the bottom plate was rough. The roughness
is obtained by small cubes with ho/H = 0.01 or 0.2. Such
experiment allows to test the influence of roughness and
the independence of both boundary layers at the plates
simultaneously. Thanks to the measurement of the bulk
temperature it is possible to define independently the two
boundary layers. The convection at the smooth plate was
found to be in very good agreement with previous mea-
surements in the same cell with two smooth plates (see
fig. 2). A 1/3 scaling law for Nu(Ra) is found, at least
for the highest Rayleigh numbers. For the rough plate the
situation is completely different and shows that the two
plates can be considered as being independent. When the
thermal boundary layer thickness d1 is of the same order
as the roughness height hg, the heat flux begins to in-
crease as Nu o Ra'/?. The global heat flux becomes larger
at higher Rayleigh numbers because of the increased ex-
change surface. It seems also to be clear from those results
that the Nusselt number is completely determined by the
local behaviour of the boundary layer.
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The reasons for this transition to enhanced heat tran-
sort are still not clear. Two processes can be involved:
a transition to turbulence of the boundary layer as pro-
posed by [138] or an increase of plume production due
the interaction between the inner flow and circulations at
roughness elements. By repeating the experiment in a cell
of H = 20 cm and a Reynolds number being ten times
smaller, the authors find the same transition, again for
ho =~ é7. This result seems to favor the second hypothe-
sis. When 7 became sufficiently small the typical law of
a smooth plate has to be found. In ref. [137] hg is always
greater than d7 which rationalizes the unchanged scaling
exponent of the rough plate case. As an open point remain
the differences with [139] which operates in the same range
as [137].

Finally, we mention DNS by Shiskina and Wagner [140]
for a two-dimensional cell for Ra < 108. They show that
an increase of the surface which is linked to an increasing
roughness cannot explain the augmented value of the Nus-
selt number. Up to Ra = 108, the Nusselt number is in-
creased, but the scaling law Nu(Ra) remains unchanged.
The parameter hg is the length which characterizes the
roughness and hg/H seems to be a supplementary non-
dimensional parameter that characterizes the problem.
The lateral distance between the small obstacles could also
play a significant role as suggested in [140]. The influence
of this spacing has never been tested experimentally in
RB cells.

5.5 Bulk flow without boundary layers

One point, which was also investigated in the last
years, is the possibility to separate the dynamics of
the boundary layer and the bulk in experiments. For
bulk-dominated convective turbulence, power laws (see
sects. 3.5.1 and 3.5.2) have been suggested which have
a simple physical interpretation: the heat and momentum
transport is a purely inertial process. To verify this hy-
pothesis, it is necessary to have a bulk flow independent
from the thermal boundary layer. In this case, a sustained
temperature gradient which is necessary to drive convec-
tion, cannot be concentrated in the boundary layers. It
has to be a mean gradient over the whole flow. The dimen-
sionless parameters have consequently a slightly different
definition compared to (1):

L 92 oT/0z L*
- VK

; (59)

and
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(60)

where @ is the injected power and L is a typical length
that depends on the flow.

One possibility is to use DNS [141] in which a flow in
a box with periodic boundary conditions is sustained in
convective motion by the application of a constant mean
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gradient. Caution is then necessary for the amplification
of the motion with respect to the vertical direction [142].
In these simulations the heat transport is completely in-
ertial and Nu ~ (RaPr)'/? has been found. From the ex-
perimental point of view boundaries cannot be completely
avoided because a container for the fluid is necessary. Two
experiments have approached this ideal situation: a salt
driven channel flow developed in Bangalore and a thermal
convective channel developed in Lyon. The first experi-
ment was realized by Cholemari et al. [143,144] in a verti-
cal pipe connecting two chambers in which a difference of
salt concentration is imposed at the beginning of the ex-
periment. The Schmidt number is Sc¢ = 670, such that the
situation is equivalent to a high- Pr flow, the aspect ratio
is I' = 1/9 and the tube has a circular cross section. In this
case the equivalent of Nusselt number cannot be directly
measured. It is inferred from the measurement of the con-
centration fluctuations using the equivalent of eq. (16).
The flow is completely mixed by colliding plumes result-
ing in large horizontal velocity fluctuations. The mean ve-
locity is found to be equal to zero. The experiments ob-
tained 258 < Re < 545 and 7.5 x 107 < Ra < 3.34 x 108.
The equivalent of a Rayleigh number can be calculated by
taking (1/p)0p/0z instead of a0T/dz. Scale L is now the
pipe diameter. Again, Nu ~ Ra'/? and Re ~ Ra'/? as
predicted for a bulk flow.

The second experiment by Gibert et al. [145-147] is
inspired by [148] and conducted in a channel connecting
two chambers, a hot at the bottom and a cold at the top.
In this way, the channel is fed continuously with hot and
cold fluid and maintained in a stationary convection state.
The working fluid is water with a Prandtl number varying
between 4 < Pr < 6. Two successive channels have been
used in this experiment. They have a square cross-section
and I' = 1/2 and 1/4. The Nusselt number is determined
from the injected power into the flow and the direct mea-
surement of the temperature gradient inside the channel as
given in (60). The experiment showed a particular large-
scale flow organization. Hot and cold fluid streams in form
of columns along one side of the channel in each case and
changes sides spontaneously. Therefore an intrinsic length
L, = (6%)'/2/0.T is defined. This length is equal to hor-
izontal size of the channel for Re < 600 and grows as
log Re afterwards. All the parameters in (59) and (60)
are now based on this length and 10° < Ra < 4 x 107
and 150 < Re < 3500. By conditioning the analysis to
one counter stream flow configuration, it was found that
Reynolds stress and mean shear stress differ from zero.
Evidently an unconditioned average gives zero Reynolds
stress and zero shear. The detected transport laws are
again

Nu ~ Ra'/?prt/?, Re ~ Ra‘/?Pr=1/2 (61)
in agreement with the results from scaling theories. An
open point is the behaviour of the new length scale L,
and its dependence on the Reynolds number. Schmidt et
al. [149] simulated recently a circular pipe (as in [143]),
but with a thermal transport as in [145] applying periodic
boundary condition at the top and bottom. The DNS show



Eur. Phys. J. E (2012) 35: 58

[=e)
DD
10%
(0]
o
fo 4L
%10 i
z
10°%
b
»
10° . : : . : ; ;
10 10° 10®° 10 10° 10° 10" 10" 10”

Ra

Fig. 7. Reynolds number (cyan symbols), and the product
NuPr (magenta symbols) as a function of the Rayleigh num-
ber for several channels setups. Triangles denote DNS data
of [149] for 0.125 < I" < 0.5. Circles denote data of [147] and
squares stand for data of [144]. The solid line indicates the
generic power law Ra'/?. The length scale in [147] has been
normalized in order to have the same definition as in [144] for
small Reynolds number.

the existence of a non-stationary dynamics at low Rayleigh
number and larger aspect ratio. Complete mixing is ob-
tained when the aspect ratio is decreased as in [144]. They
also found a scaling (61) showing that the lateral bound-
ary layers at the side walls do not affect the heat transfer.
All data which are reported in fig. 7 are in very good
agreement, showing that the absence of top and bottom
boundaries leads to a more “universal” situation for the
scaling laws. This kind of flow seems to be an interest-
ing example for studies of turbulent thermal convection
without boundary layers and could have implications for
processes in the ocean or the atmosphere.

5.6 Lagrangian studies of thermal convection

The Lagrangian perspective in which statistical proper-
ties of turbulence are sampled along the trajectories of
fluid particles provided qualitatively new insights into the
relation between flow structures and extreme statistical
events, in particular for the case of homogeneous isotropic
turbulence (see [150] for a comprehensive review). In ther-
mal convection, Lagrangian studies allow to study the lo-
cal mechanisms of the turbulent transport which are con-
nected with the strongly varying thermal plumes. Such
studies require to measure temperature and velocity at
once and were pioneered with small neutrally buoyant
temperature sensors which were optically tracked in a wa-
ter convection cell at Ra = 3 x 10'° and measured the
temperature [52,151] (see fig. 8). Thus positive correla-
tions between the vertical velocity and temperature fluc-
tuations, u,f > 0, could be monitored while the probe
circulates with the mean wind through the cell. As we
discussed in sect. 5.2.1 this is one way to detect plumes.
Only recently, a second series of Lagrangian convec-
tion experiments using particle tracking velocimetry was
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conducted in a water cell for 6 x 10% < Ra < 10! [152]. Ni
et al. [152] showed that turbulence conditions in the cen-
ter of the convection cell are comparable to homogeneous
isotropic turbulence by probing the Heisenberg-Yaglom re-
lation for the acceleration variance [153,154]. This relation
is given by

€)3/2 e

(a?) = aOTl/2 = aoﬁPr(Ra Nu)3/2,

2 (62)
where (16) has been used. Their prefactor ag when plotted
as a function of the Taylor microscale Reynolds number
Ry was consistent with numerical and other laboratory
experiments. Here, Ry was obtained by a measurement of
the kinetic energy dissipation and the velocity fluctuation
directly in the cell center.

The inhomogeneity of turbulent convection is mani-
fest when lateral and vertical tracer pair dispersion are
compared as in DNS with periodic side boundaries for
I' = 2,4 [73,106]. Since the vertical dispersion is lim-
ited by the height of the cell, horizontal dispersion takes
over when the diffusive regime is approached for very
large times. The latter resembles qualitatively the prop-
erties which are known from three-dimensional box tur-
bulence [155] supposed that the convection cell has a suf-
ficiently large aspect ratio [156]. Both, experiments [152]
and DNS [73] demonstrated that the horizontal acceler-
ations yield PDFs, p(ay/azrms) and p(ay/ay rms), that

have fatter tails than the PDF of the vertical accelera-
tion component, p(a,/a; ms). The latter component, a,,
is connected with the plume detachment which can thus be
considered as a gradual process which has been discussed
already above.

The experimental and numerical studies [52,156] in
cylindrical convection cells showed that the Lagrangian
convective heat current J.(x,t) = u,T(x(t; X0, %0),t) and
thus the normalized upward Lagrangian local heat trans-
port

Nup =1+ —2 . 0(x(t: %0, ¢ ), t)

ur, = +K,ATUZ (X(,X(), 0)sY)

fluctuates strongly and can even obtain negative values
as shown in fig. 8(c) where Nur(t) is plotted. The cor-
responding PDF is strongly skewed to the positive am-
plitudes. The resulting mean over the whole particle en-
semble and time, (Nur(t))p ., corresponds with the Nus-

selt Nu which is usually determined from the Eulerian
fields [156].

(63)

6 Experiments and simulations for Ra > 10'?

As table 1 indicates, most geo- and astrophysical convec-
tion processes are associated with Rayleigh numbers be-
yond 10'2. The hope of the physicists is to find an asymp-
totic regime of high-Rayleigh-number convection in the
Boussinesq approximation (see sect. 3) which can be re-
lated to at least some of those applications of thermal
convection in Nature. As pointed out in the last sections
already, this ultimate regime of convection is connected
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Fig. 8. Lagrangian studies of turbulent Rayleigh-Bénard convection in a cell of the form of a parallelepiped with dimensions
40 x 40 x 10cm at a Rayleigh number Ra = 3 x 10'° [52]. (a) Trajectory of probe in the cell colored by the temperature which
varies between 27 °C and 31 °C (see color bar). (b) Photography of the Lagrangian temperature probe before closing the capsule
with a diameter of 21 mm. It shows the antenna (A), the radio frequency emitter (B), the battery (C), and the on-off switch
(D). (c) Time series of Nup(t) as defined in eq. (63) taken from the experiment [52].

Table 2. List of experiments at very high Rayleigh numbers in
alphabetic order with respect to location. The highest Rayleigh
numbers have been obtained usually for the smallest aspect
ratios. All cells are cylindrical. All the helium experiments are
at low temperature. The last experiment was designed to study
non-Boussinesq convection as discussed in sect. 7.1.

Location Ra Fluid I Ref.
Brno 107-10'*  He 1 [170]
Chicago 10°-10'®  He 1/2,1, 6.7 [157,158]
Eugene 107-10""  He 1/2 [65]
Trieste 10°-10'*  He 1,4 [163]
Gottingen 10210 SF¢ 1 [58,62]
Grenoble  10°-10*  He 0.23,1/2,1 [92,160]
Rehovot ~ 10°-10'®  SFg  1/2,1 [61]

to a transition to turbulent boundary layers for the flow
and the temperature [38]. While DNS just start to en-
ter the range of Ra ~ 10'? [79], several experiments have
been conducted at such high Rayleigh numbers as listed
in table 2.

From experimental point of view, the results reveal a
complicated picture and indicate that a unique univer-
sal regime is not easy to reach as shown in fig. 9. We
summarize all the high-Rayleigh-number experiments in
low-temperature helium together with the measurements
in compressed SFg and the DNS of [79].

A first inspection confirms what was said previously: a
good agreement for Rayleigh number less than 10'2? (about
20% of difference between the data) is observable. Larger
differences up to about 100% arise for larger Rayleigh
numbers which might be triggered by different flow states.
To understand the complexity behind both panels better,
we discuss the measurements in their “historical” appear-
ance. All data are obtained again in cylindrical cells. In
1989, measurements started in Chicago for a very large
range of Rayleigh numbers, first for I = 1 [157] and
10 < Ra < 10! followed by I' = 0.5,6.7 [158] and
109 < Ra < 10, Scaling laws Nu o< Ra® with 8 ~ 0.287
only slightly dependent on I' were obtained. The corre-
sponding data shown in the graph are for I' = 1/2 where
the material parameters of helium have been recalculated
as in [92].

Measurements in Grenoble followed for I' = 1/2 and
10 < Ra < 10 [159,160]. The experiments used a spe-
cial home-made thermocouple detector in order to mea-
sure the difference of temperature between the plates
directly with a precision of 10 uK. It also allowed to
cover a very large range of Rayleigh numbers with the
same density. The measurements agreed with the ones
in Chicago up to Ra = 7 x 10'!; afterwards a transi-
tion to a state of enhanced heat transport was detected
which followed a scaling of Nu ~ Ra®3%. This power law
is compatible with Kraichnans asymptotic law including
logarithmic corrections as in eq. (37) and the Grossmann-
Lohse prediction (51). Interestingly, the measurements in
Chicago showed a similar multi-stability at about the
same Rayleigh number. There it was observed that they
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Fig. 9. Top: heat transport as a function of the Rayleigh number in a compensated power law plot. Experiments and DNS at
very high Ra are collected: green triangles pointing to the right for Chicago at I' = 1/2 [157,158] with wall corrections [92];
orange triangles pointing upward for Grenoble [160] corrected for the finite conductivity of the walls. Red squares are for
Grenoble experiments [92] at I" = 1. Black triangles pointing to the left are for Brno [170] corrected for the wall conductivity.
Magenta circles stand for Goéttingen [62,58]. Blue circles are for DNS [79] at Pr = 0.7 and I" = 1/2; black circles for Pr = 2 and
I' = 0.23. Cyan diamonds stand for Eugene (Oregon) [65] with wall corrections and brown diamonds for Trieste at I" = 1 (wall
correction included). See also table 2. Bottom: heat transport as a function of the Rayleigh number in a compensated power law
plot. The experiments with different limit conditions were all realized in Grenoble. Red diamonds are for new measurements
in the same cell as Chavanne et al. [160], here given for comparison. Green circles are for side walls covered with paper, cyan
squares for a flange cell, and blue triangles pointing to the right for a cell with I" = 0.23 [92].
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go erratically toward an enhanced transport state. How-
ever, for Ra > 10'? data from the experiment in Chicago
followed a branch below an effective scaling exponent of
8 =0.38.

Further cryogenic helium experiments followed in Eu-
gene (Oregon) [65] in a cell of H = 1m for 107 < Ra <
10'7 with a power law Nu ~ Ra®3! covering a range of ten
orders of magnitude of the Rayleigh number. Those data
were successively recalculated in order to take the effect
of wall conductivity into account [161] which resulted in a
new scaling exponent of § = 0.323 in agreement with [57]
(data in fig. 2). The experiment was reassembled in Tri-
este for I' = 1 and I" = 4 [162,163]. The data of I' = 1
showed a transition to enhanced transport for Ra > 10'2.
For I' = 4, such transition can also be observed, but in
a range outside the validity of the OB approximation (cf.
eq. (53)). We wish to note that a transition to turbulence
in the BL is not necessarily affected by non-Boussinesq
effects, both effects can co-exist. New measurements for
I' =1 and 4 found a hysteresis in the Nu(Ra) graph [164]
in combination with a saturation towards a 1/3-scaling at
high Rayleigh numbers. This hysteresis was attributed to
a non-Boussinesq effect not documented before. An alter-
native interpretation is here possible: a transition to tur-
bulent BLs is followed by a non-Boussinesq effect which
suppresses a crossover to an enhanced heat transport at
very high Rayleigh numbers. Hystereses of global quan-
tities in closed flows have been recently reported in a
counter-rotating turbulent von Kédrmén flow [165] and in
Rayleigh-Bénard experiments with asymmetric plates: a
smooth plate on the top and a rough one at the bot-
tom [48]. The authors of [164] give arguments against
this interpretation. The large-scale Reynolds number is
too small at their value of Ra to cause a transition to tur-
bulence in the boundary layers. We will get back to this
point later.

Roche et al. conducted recently a series of experiments
in helium to test the sensitivity of heat transport with re-
spect to boundary conditions. They used convection cells
with brass plates in order to investigate the influence of
the thermal conduction of the plates [166], with thick lat-
eral walls, with external heating which destroys the small
recirculation patterns in the corner of the cell, with obsta-
cles to test the impact of the large scale flow, and with pa-
per along the side wall [92]. All the modifications affected
the Rayleigh number at which the system crosses over into
the ultimate transport regime. They had a small impact
on the scaling exponent 4. Only two remarkable changes
were obtained. In the cell with paper along the lateral
walls, in which an enhanced heat capacity can be inferred,
the transition is shifted towards Ra ~ 10'? and the scaling
exponent is smaller. The threshold depends additionally
on the aspect ratio which took values of I" = 0.23,1/2 and
1 in the series. Very roughly the transition Rayleigh num-
bers varies as Ra ~ I'~2, i.e., the smaller I" the higher
the threshold for the same Prandtl number, here Pr ~ 1.
Those last findings underline to our view the subtle influ-
ence of the lateral walls. Gautier and Roche [167] studied
also the fluctuations in the boundary layer indirectly via
measuring local fluctuations at the plate for low temper-

Eur. Phys. J. E (2012) 35: 58

atures. When compared with temperature fluctuations in
the bulk, they found that both follow the same power law
as a function of Ra up to the transition threshold. After-
wards, the temperature fluctuations in the boundary layer
increased significantly.

Measurements in the “Uboot” of Géttingen [62] with
SFg were conducted in a cell of I' = 1/2 and H = 2.2m.
They show a good agreement with the recalculated mea-
surements of [161] up to Ra = 10'3 followed by a transition
towards the ultimate regime and a scaling of Nu ~ Ra®-3%
as in the Grenoble measurements and compatible with
Kraichnan law including the logarithmic corrections [38]
(sect. 3.5.1) and the Grossmann-Lohse model for the tur-
bulent BL [43] (sect. 3.5.2). However the prefactor of the
power law differed strongly between both experiments.
Two further findings of the experiment should be men-
tioned. The transition threshold changes slightly when the
external temperature changes. Furthermore, they obtain
a state of very low conductivity when the cell is not com-
pletely sealed with respect to the outer reservoir (open
sample) [58]. Both findings show clearly that the transi-
tion is very sensitive to external conditions for the very
high Rayleigh numbers.

One line of argumentation for a transition to the ul-
timate regime at Ra > 10'2 is based on the fact that a
shear Reynolds number has to be exceeded for which a
transition to a turbulent boundary layer can be triggered
or for which a turbulent boundary layer is sustained [162,
62,164]. Such a shear Reynolds number can be defined in
several ways, either as Res = u,d,/v [38] or as

_Us,

14

*
Re;,

(64)

in ref. [15]. Definition (64) is relevant here. However it
leaves several possibilities for the definition:

— Quantity U can be a root-mean-square velocity in the
bulk or for the whole cell or the mean wind velocity at
the edge of the boundary layer.

— Thickness §, can be interpreted as dgg, the thickness
of the BL at which the streamwise velocity recovers
99% of the original inflow velocity, as the displacement
thickness d; or as the momentum displacement thick-
ness do. For the classical Blasius theory, these three
thicknesses differ already by a factor of more than
7 [31] and they are not measurable in all existing very-
high-Rayleigh-number experiments.

On top of this, the transition Reynolds number can
take different values. Preston concluded from his mea-
surements that sustained turbulence over a flat plate re-
quires Re* = Udy/v > 320 [168]. In [169] a threshold
Re* = Udy/v = 420, in [31] ReX = Udy/v = 520 is ref-
erenced. These numbers are still above shear Reynolds
numbers that would correspond to Ra ~ 10''. However
they have been obtained for a canonical flat plate bound-
ary layer flow, while the BL in turbulent convection will be
permanently disrupted by thermal plumes as we discussed
in sect. 5.3. This might trigger a transition to turbulence
at lower Reynolds numbers. Moreover it is also possible
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that the ultimate regime corresponds to a situation in
which a coherent LSC becomes very weak, which would
be consistent with the finding of [86] that the large scale
flow seems to lose is strength with increasing Rayleigh
number.

The behavior with respect to the Prandtl number for
Ra < 10'2 have been discussed in several works as summa-
rized in [16]. The results are in good agreement with the
Grossmann-Lohse model [15]. At very high Rayleigh num-
bers the Prandtl number dependence seems to be more
subtle. First we state that predictions (36) and (37) from
Kraichnan [38] and (51) and (52) from Grossmann and
Lohse [43] report different scaling laws with respect to
finite Pr. In recent experiments in Grenoble, Pr was sys-
tematically varied in different cells [92]. The transition
to enhanced transport appears for Pr ~ 1 with a very
weak Prandtl number dependence. Measurements in Tri-
este show the transition for Pr ~ 1, but at a higher
Rayleigh number. The measurements in Gottingen ob-
serve the transition at higher Ra with a nearly constant
Pr ~ 0.7. From this perspective the measurements are
not in contradiction to each other. If the LSC triggers the
transition to the ultimate regime small Pr could be fa-
vorable, if it is linked to velocity fluctuations inside the
BL the Prandtl number could have a more complicated
influence.

Most recently a further helium experiment in Brno
[170] was conducted. In this cell of I' = 1 no transition
towards an ultimate regime has been found. The scaling
continues as Nu ~ Ra'/3 up to Ra = 4.6 x 10'3. Those
points are realized in the same range of Pr as the mea-
surements in Trieste and at the same distance from the
critical point as stressed by the authors which challenges
the non-Boussinesq arguments in [162,163].

In the graph of fig. 9(a) DNS of Stevens et al. [79]
for I' = 1/2 are also reported. They show no evidence
of a transition to the ultimate regime at Ra ~ 10'2. In
ref. [77] the authors show that sufficiently high grid reso-
lutions are necessary near all walls in order to determine
the Nusselt number correctly (see also the discussion in
sect. 4.2). In turn one could thus conclude from these DNS
that imperfect adiabatic side walls might have an influ-
ence on the transition. Further DNS for I" = 0.23 and
several Prandtl numbers have been also conducted [79].
The Nusselt number is in very good agreement with the
corresponding measurements in Grenoble for Pr = 0.7,
but gives a higher value at Pr = 2. To summarize here,
we see that the present experiments give no unique pic-
ture at the very high Rayleigh numbers and show a high
sensitivity with respect to boundary conditions.

7 Beyond the classical Rayleigh-Bénard case

As we already stated in the introduction (see table 1),
many convective flows in Nature and technology go be-
yond the simplest case, the OB regime of Rayleigh-Bénard
convection. In the last part of this review, we therefore
discuss two extensions in more detail which have obtained
growing interest in the last years. In sect. 7.1, we present
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recent attempts to investigate deviations from the OB
model [23,24] which has been presented in sect. 2. In
sect. 7.2, phase changes are incorporated into the OB
model which lead to statistical properties that differ also
from those of the OB case.

7.1 Non-Oberbeck-Boussinesq effects

Two pathways lead to non-Oberbeck-Boussinesq (NOB)
effects in turbulent convection. In gases, this path is re-
lated to deviations from the incompressibility limit. The
anelastic approximation (5) is a first weak compressibility
effect which is for example incorporated in atmospheric
convection that exceeds layers of height H ~ 2 km. Stron-
ger compressibility effects and thus large variations of the
fluid properties can arise when the working fluids are op-
erated in the vicinity of their critical points as done in
helium [171], in ethane [172], or in SFg [61].

The latter experiment by Burnishev and Steinberg [61]
is of particular interest since it reports the absence of a
property that is usually assigned with NOB convection
—the breaking of the up-down-symmetry. While in [171,
172] the deviation of the centre temperature from the alge-
braic mean, Tief = (Thottom + Ttop)/2, is observed, Burni-

shev et al. [61] report a high-Rayleigh-number NOB con-
vection with symmetric temperature profiles and a scaling
Nu ~ Ra? which is comparable to the experiments in the
OB limit at same Ra (see sect. 6). The data yield however
a very strong dependence on the Prandtl number, most
probably due to a strongly enhanced thermal expansion
coefficient a.

For the second path as being relevant for liquids, strong
NOB effects arise almost solely from a sensitive tempera-
ture dependence of material constants. Compressibility ef-
fects are subdominant and for corresponding experiments,
we refer to [173] for glycerol and [174] for water. Following
Gray and Giorgini [21], the linear temperature dependence
of the mass density is then generalized to a polynomial of
order M resulting to

M

,O(T) = Pref 1-— Z ak(T - Tref)k )
k=1

(65)

i.e., a1 = «, ap = 0 for k > 1 refers to the OB case
as given by eq. (6). Similarly one has to proceed for the
other material parameters such as «, v, k, and k. The ref-
erence temperature is then the centre temperature Ty =
(Thottom + Trop)/2. Numerically, the effect of such tem-
perature dependence as given in (65) was studied in two-
dimensional DNS with expansions up to M = 5 [75] and
more recently in three-dimensional DNS up to M = 7 [175]
for glycerol at Pr = 2500.

The understanding of the breaking of the up-down
symmetry is in the focus of most studies on NOB convec-
tion. Several models have been suggested to understand
the asymmetry of the centre temperature and thus the
asymmetry of the boundary layers at the top and bottom
better, e.g., phenomenological models by Wu and Libch-
aber [171] or boundary layer models by Ahlers et al. [174].
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In [174] it is found that the extension of the Prandtl-
Blasius BL theory to NOB convection which uses v(T')
and k(T') in water agrees with the experiments. The ap-
proach worked however less well for cases with very strong
temperature dependence of the material parameters such
as for a(T) in ethane [60] or all material parameters in
glycerol [175].

A different route was taken in DNS by Sameen et
al. [176] at Pr = 0.7 and Ra = 2 x 10® using the full set
of compressible equations of motion. In this study, depen-
dencies of the material parameters were implemented one
at a time as monotonically increasing or decreasing func-
tions with respect to T'. Such procedure, which is possible
only in numerical simulations, allows to disentangle the
importance of different material parameters for the NOB
effects on heat transport and the asymmetry of tempera-
ture profile. Monotonically decreasing k(7T") and «(T) di-
minish Nu while a monotonic nonlinear decrease of p(T")
increases Nu since the temperature feedback on the flow
via the buoyancy term is amplified. The effect of v(T) was
however small.

This compact overview indicates one thing: the NOB
effects depend very sensitively on the particular working
fluid. Particular material parameters can dominate in one
fluid, but are subdominant in another one. Clearly, we
are still far away from a complete understanding of this
variety of NOB effects.

7.2 Convection with phase changes

Atmospheric and many technological convection flows are
associated with phase changes. Two topics have to be
combined then which are already complicated in their
own, the physics of turbulent flows and transport and the
highly nonlinear thermodynamics of phase changes. Phase
transitions are associated with latent heat releases during
condensation or evaporative cooling —local sources and
sinks of heat which drive additional local fluid motion.
In the examples presented below phase changes will addi-
tionally break the up-down-symmetry in turbulent convec-
tion, thus introducing NOB-like effects into the convection
flow. Experimentally, convection experiments with phase
changes pose further challenges as the condensate is dom-
inantly forming at the plates such as in the two-phase
experiments with homogeneous nucleation [177].

7.2.1 Bubbly convection and boiling

In chemical and power engineering, boiling processes are of
central interest. Boiling is accompanied by the formation
of bubbles which can be described on different ways. In
refs. [178,179], the impact of vapor bubbles on the heat
transfer has been studied by modeling them as inertial
point particles which can grow and shrink and act back
thermally and mechanically on the flow. The effect of the
bubbles on the flow depends on the Jacob number which
relates sensible heat to the latent heat.

Ja — Ppr(Thot - ﬂat) ,
oL

(66)
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with the mass density of the liquid p; and of the vapor
pv, the saturation temperature of the liquid Ty, and the
latent heat L. The DNS that modeled the bubbles in the
Lagrangian frame of reference showed that for small Jacob
numbers the convection flow is stabilized. With increasing
Ja the bubbles enhance the turbulent heat transport sig-
nificantly. The breaking of the up-down symmetry of the
convective heat flux and the bubble distribution across the
cell was analyzed in [179], the impact of the vapor bub-
bles on the velocity fluctuations and the dissipation rates
in [180].

An alternative route was taken by Biferale et al. [181]
very recently. The application of the Lattice Boltzmann
method allows to track bubbles as finite-size particles
with deformations. The simulations confirmed the findings
of the microbubble convection studies and demonstrated
that the local latent heat release enhances the intermit-
tency of the temperature fluctuations.

7.2.2 Moist convection and clouds formation

The most prominent example for moist convection is the
formation of clouds in the atmosphere. Clouds are still
the biggest source of uncertainty for more reliable climate
prognoses [182]. A deeper physical understanding of cloud
feedbacks can be achieved by reducing the complexity and
disentangling different processes in order to quantify their
importance and separate impact. This is done here by
discussing some possible extensions of the classical (dry)
Rayleigh-Bénard convection to moist convection case in
the anelastic or OB regime which are given by eqs. (5)
and (8), respectively. Moist convection requires to mon-
itor the balances of vapor content, liquid water droplets
(and even ice particles) beside the temperature. This set
of equations is thus larger than the original OB equations.
When warm clouds are discussed ice can be neglected and
we are left with two components only, vapor and water.

The buoyancy B in atmospheric convection is given in
its general form by [19]

PT7(Im(Il»P — Pref
B(Tv%nqlap):_g ( P f) )
re

(67)

with T being now the (potential) temperature and ¢, =
Pv/Pdry, @i = pi/pdry the mixing ratios of water vapor and
liquid water, where pgry is the mass density of dry air.
Equation (67) is a generalized form that is added to the
momentum equation. In single-phase convection it sim-
plifies to B = ag(T — Tye) as already given in eq. (7).
Without rain, the liquid water and vapor are permanently
converted into each other, but their sum, the so-called to-
tal water mixing ratio ¢; = ¢, + ¢;, remains conserved.
This can be used to simplify the model further. Several
Boussinesq or anelastic models of moist convection have
been discussed in recent years. The different levels of com-
plexity are manifest in different levels of simplification for
the buoyancy (67).

In the Boussinesq or anelastic moist Rayleigh-Bénard
model [183-185] the (potential) temperature is substituted
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by the equivalent (potential) temperature and the addi-
tional impact of the liquid water on the buoyancy of the
air parcels is included. This results in

B(T, Qv QZ) =g [Q(T - Tref) + §(QU - QU,ref) - QI] ) (68)
where £ = R,,/Rq— 1 with the gas constants for vapor and
dry air, R, and R, [183]. The temperature equation (9)
has to be extended by a latent heat release source term
due to condensation of water. Furthermore, two additional
scalar advection equations for ¢, and ¢; have to be added
to the set of equations of motion. Additionally, a micro-
physical model is necessary that determines the condensa-
tion rate. Alternatively, Euler-Lagrangian models can be
set up in which the water content is treated as an ensemble
of inertial point-like droplets and the liquid water content
is thus “discretized” [183].

If one limits the studies to the OB case, a further level
of simplification can be obtained. We can simplify the
equation of state B(T,¢;) to a piecewise linear function
of the state variables, T and ¢, at both sides of the phase
boundary [186,187] at a given height z. This procedure
still preserves the most important property, the discon-
tinuity of the derivatives of the buoyancy with respect
to the state variables. Potential temperature T and total
water content g; can afterwards be linearly recombined to
two new buoyancy fields that represent, in a nutshell, the
unsaturated vapor or the liquid water in the convection
system. These are the dry and moist buoyancy field, D
and M, which are given by

0B 9B
b= T'=Thet) + 5 - — Giret); (69
or qi“),z( ) o9 T(u),z(qt exet); (69)
0B OB
M - ar T - Tre + a9, - re . 70
or qi‘”,z< 2 Jq; T(S),z(qt Gexet)- (70)

Due to the linearization all partial derivatives are con-
stants, but of different magnitude for the unsaturated (u)
and saturated (s) sides of the phase boundary. The satura-
tion condition which determines if liquid water or unsatu-
rated vapor is present follows by the explicit relation [187]
B(D, M, z) = max(M, D — N2z), (71)
where N2 = g(I, — I's)/Tret is the square of the Brunt-
Vaisala frequency which contains the dry and moist adia-
batic lapse rates, I, and I's. Equation (68) determines the
saturation at each spatio-temporal point explicitly. The
air parcel is saturated whenever M > D — N2z [187].
Two advection diffusion equations for D and M have
to be solved instead of a temperature equation in the dry
OB case. There are now four equations of motion and the
saturation condition (68) that describe the problem. The
number of system parameters is five, a Prandtl number
Pr, a dry and a moist Rayleigh number, Rap and Ray,
and two parameters that prescribe the amount of liquid
water (or a deficit) at the top and bottom plane. One can
run this model in two fundamentally different states of tur-
bulent moist convection: the linearly unstable regime [188]
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and the conditionally unstable regime [189]. These two
regimes start from different equilibria and result in the two
main regimes of low cloud formations —stratocumulus-
type convection in the former and cumulus-type convec-
tion for the latter. They are illustrated in fig. 10. In the
linearly unstable regime, both buoyancy fields are unsta-
bly stratified such as the temperature in the original OB
case. Consequently, Rap > 0 and Ray; > 0. In the condi-
tionally unstable regime, unsaturated air is however stably
stratified and thus Rap < 0 and Raja; > 0. Convection
patterns become then localized and isolated and do not fill
the whole layer as seen in fig. 10 (right). Moist convection
in the conditionally unstable regime has some parallels
with wall-bounded shear flows, e.g. with respect to the
transition to turbulence [190,191].

A further level of simplification is achieved if unsat-
urated and saturated air (with cloud droplets) are com-
bined in a scalar mixture fraction field y similar to react-
ing species in turbulent combustion. The buoyancy is now
prescribed as a function B(x) [192]. In this case, one equa-
tion for the scalar field x has to be solved together with the
momentum balance, i.e., the mathematical structure is
identical to our original set of OB equations (7)—(9). This
model has been successfully used to study entrainment of
clear warm air at the top of closed stratocumulus cloud
layers in high-resolution DNS [192]. It also demonstrated
that turbulent entrainment processes are eventually de-
termined by molecular diffusion. Both approaches [187]
and [192] show that cloud dynamics at different scales can
be described successfully on the level of the Boussinesq
approximation by means of simplified DNS models that
avoid parametrizations of the turbulence. It is also clear
that these models have their limits. With a view to at-
mospheric convection, radiative transfer —an important
driver of cloud formation processes— was therefore re-
cently included for both cases.

8 Outlook

Turbulent Rayleigh-Bénard convection is perhaps one of
the best studied fundamental flows in fluid mechanics. It
has been an important example to study flow stability,
pattern formation processes, and to test various concepts
of nonlinear dynamics. As a turbulent flow it contains
shear flow dynamics, anisotropies, and coherent structure
formation close to the walls and (nearly) isotropic turbu-
lence in the bulk. The temperature is an active driver of
the dynamics at the boundaries while it behaves closer to
a passive scalar field in the bulk. The amount of specific
details on this flow which have been collected in the past
decade is impressive. At the end of this review we want to
discuss a few open points which are to our view important
for further progress.

1) We have seen that all the experimental studies for
the largest accessible Rayleigh numbers seem still to de-
pend on specific details of the setup such as material prop-
erties of the working fluid, side wall conditions, aspect ra-
tios of the cells. This means that at very high Rayleigh
number this system is extremely sensitive to boundary
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Fig. 10. View from the top onto a moist convection layer in two different regimes. Left: stratocumulus cloud-like regime in
which dry and moist air is unstably stratified. Right: cumulus cloud-like regime in which the dry air is stably stratified and the
moist air unstably stratified. The latter is also known as the conditionally unstable regime of convection. The blue isosurfaces
denote strongly downwelling air, the red isosurfaces strongly upwelling air. The transparent gray isosurface shows the clouds.
The DNS in the layer with an aspect ratio I = 32 is horizontally resolved with 4096 grid points and vertically with 129. The
Rayleigh numbers are Ra < 107 in both cases (see [188,189)] for details).

conditions. Side walls are not “innocent”. But what is the
ideal situation —an adiabatic or a conductive wall? There
are certainly no side walls in atmospheric or solar convec-
tion to mention only two applications as stated in table 1.
However, side wall effects are important in other applica-
tions such as indoor ventilation. Moreover, boundary con-
ditions at the top and bottom of the atmosphere or in the
Earth mantle can be a combination of prescribed fluxes
and amplitudes. Two ways can be followed both in exper-
iments and numerical simulations: try to avoid or diminish
side boundaries effects and /or try to take all boundaries as
precisely as possible into account. In the first case, it will
be helpful to conduct more studies at higher aspect ratios
—the only way to suppress the influences of side walls on
the plume dynamics and the large-scale circulation. The
second way is even more challenging (particularly from
the theoretical point of view), but it is probably the only
hope to understand the high-Rayleigh-number dynamics.
We are aware of the fact that this puts additional chal-
lenges on experiment and DNS. Further complementary
Lagrangian studies will be helpful here to understand the
turbulent transport in this complex system.

2) The key to understand the transition to the ultimate
regime of convection lies in the boundary layer dynamics.
We are just beginning to unravel details of their complex
behavior and dynamics as well as their interaction with
the large scale flow. Our physical picture of the global
turbulent transport is mostly based on highly idealized
two-dimensional laminar boundary layer models for forced
and natural convection. These models seem to work well
when we compare the scaling of the boundary layer thick-

nesses vs. Ra with the measurements up to Ra ~ 10'2.
One has to be however cautious if the idealized models
are still reliable when it comes to understand the details
of the transition to the turbulent state in the BL that is
connected with the crossover to an ultimate regime of en-
hanced transport. Perhaps it is helpful here to study the
active role of the temperature field in a boundary layer
that is more complex than the classical models but less
complex than the BL in a turbulent convection cell.

3) Recent parallels to another fundamental flow sys-
tem, the turbulent Taylor-Couette flow between two con-
centric cylinders, can help to understand the ultimate
regime in Rayleigh-Bénard convection better [193-196].
The reason for this hope is that the Taylor-Couette sys-
tem seems to proceed to the ultimate state in a somehow
more direct way since the shear flow is directly generated
and not initiated via the buoyancy forces due to temper-
ature differences.

4) It would be desirable to have further high-Rayleigh
number studies at different Prandtl numbers such that
the detailed interplay between the thermal and velocity
boundary layer can be better understood.

5) As we have mentioned at the beginning, Rayleigh-
Bénard convection is a simple paradigm for convection
flows. In reality they are combined with other physical
phenomena. Therefore we believe that extensions of Ray-
leigh-Bénard convection in the OB frame are necessary
and helpful to understand the real flows. This does not
mean that one has to jump immediately to the full level of
complexity of such a convection problem, e.g. in the atmo-
sphere or Sun. We think that it is useful to add complexity
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incrementally, test out the limits of these new models, and
to proceed afterwards to the next level. We could mention
only a few examples and had to leave out many others,
such as magnetoconvection or indoor ventilation. We are
convinced that turbulent Rayleigh-Bénard convection will
remain an exciting field for fundamental and applied fluid
dynamics research in the next years.
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