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Abstract. Based on the Canham-Helfrich free energy, we derive analytical expressions for the shapes of
axisymmetric membranes consisting of multiple domains. We give explicit equations for both closed vesicles
and almost cylindrical tubes. Using these expressions, we also find the shape of a tube attached to a
spherical vesicle. The resulting shapes compare well to numerical data, and our expressions can be used
to easily determine membrane parameters from experimentally obtained shapes.

1 Introduction

Membranes compartmentalize the interior of eukaryotic
cells, and separate the inside world from the outside. They
are also essential for many cellular processes like signal-
ing, trafficking and nutrient uptake, and provide a plat-
form for physical and chemical interactions between pro-
teins [1]. A key component of many such processes is the
shape of the membrane, which is either determined intrin-
sically by its composition, or by the external influence of
proteins and molecular motors. A typical example is endo-
cytosis, where several membrane-associated proteins work
together to split off a small vesicle with a specific com-
position from a large membrane [2–5]. Another example
is the extraction of long membrane tubes from organelles
like the endoplasmic reticulum by motors walking on the
cell cytoskeleton [6]. Both intrinsic membrane shapes and
the effect of the application of forces on them have been
studied extensively. One line of study focuses on artifi-
cial membrane systems consisting of a mixture of choles-
terol and two other lipids, resulting in a rich phase be-
havior, including the separation into liquid-ordered (Lo)
and liquid-disordered (Ld) domains [7–11]. Such domains
have been visualized and studied by many groups in recent
years [12–18]. Based on the Canham-Helfrich free energy
for lipid bilayer membranes [19,20], and the associated
shape equations [21–23], several analytical and numerical
results on the relation between the shape and composi-
tion of membranes have been obtained on the stability
and budding of vesicles with domains [24–26], and recently
also for their shapes [14,17].
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Another line of study focuses on the application
of a point force on a membrane vesicle, resulting in
narrow membrane tethers or tubes pulled from the
vesicles. In such experiments the surface tension of
the membrane in the vesicle is usually controlled using
pipette aspiration [27–29]. Tubes are often pulled using
micropipettes [30] or optical tweezers [31], but also by
molecular motors [32–35]. Several attempts have been
made to study the effect of a point force on a large mem-
brane vesicle theoretically [36–39], resulting in analytical
expressions for small deformations [37,38] as well as
for almost-cylindrical long tubes pulled from these vesi-
cles [39]. Recent experimental results also show sorting of
multi-component bilayer membranes due to the curvature
imposed by tube pulling [40–43], as well as protein sorting
due to their spontaneous curvature [43], and domain
nucleation at the neck connecting the tube to its mother
vesicle [44]. The shape equations for tubular membranes
with multiple domains have been solved numerically [44,
45] and approximate expressions based on linearizations of
the associated shape equations have also been found [46].

In this paper we study membranes consisting of two
different domains in two specific settings: 1) a closed mem-
brane vesicle and 2) an almost cylindrical tube. As out-
lined above, both have been studied numerically in the
past; here we complement those results by deriving ana-
lytical expressions for the shape of the membrane. To do
so, we first write the shape equation in terms of a single
unknown variable: the tangent angle ψ for vesicles, and
the radius r for tubes. In both systems, earlier results are
based on linearizations of both ψ and r [14,39]. By first
eliminating one of those and only linearizing afterwards,
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we eliminate one linearization step, but still obtain shape
equations that may be solved in closed form for realis-
tic boundary conditions. These solutions permit analyti-
cal analysis of nontrivial shapes, some of which were pre-
viously only accessible with numerical methods. For vesi-
cles, this approach leads to a refinement of our earlier re-
sults [14]. For tubes, we retrieve the decaying oscillations
found before [37–39,46]. Moreover, we use the analytical
expression for the shape of a tubular membrane to obtain
an approximation of the shape of a tube connected to a
spherical vesicle, complementing the known analytical and
numerical results.

2 Shape equation

The energy associated with the curvature of a membrane is
given by the Canham-Helfrich free energy, which includes
all contributions of membrane curvature up to second or-
der [19,20]. We assume the membrane to be inextensible
and hence the total surface area of the membrane to be
conserved, which we ensure by adding a Lagrange multi-
plier (commonly interpreted as the surface tension σ) to
the free energy. We can also add a Lagrange multiplier for
the total volume enclosed by the membrane (interpreted
as the pressure difference across the membrane p) and an
external force f . For a single-component membrane with
bending modulus κ and Gaussian modulus κ̄, the free en-
ergy is then given by

F =
∫ (κ

2
(2H − C0)2 + κ̄K + σ

)
dA + pV − fL, (1)

where H is the mean curvature and K the Gaussian cur-
vature, A and V are the membrane’s area and enclosed
volume, C0 its spontaneous curvature, and L is the ex-
tension in the direction in which the force is applied. For
a single-component closed membrane, the Gauss-Bonnet
theorem tells us that the integral over K is a constant. In
multi-component membranes, it integrates to a constant
plus a boundary term [47].

It is well known that the infinite tube under external
tension is a surface which minimizes the Canham-Helfrich
free energy [37,38,48]. We will show this below from the
shape equation associated with the free energy (1). More
directly, we can also use the argument of Derényi et al. [37]
to relate the radius and applied force for a stable tube to
the membrane’s material parameters. For a tube of length
L and radius R we find from (1)

Ftube = 2πRL

[
κ

2

(
1
R

− C0

)2

+ σ

]
+ πpR2L − fL. (2)

In equilibrium, the bending modulus (which favors a large
radius) and the surface tension (which favors a small area,
and hence a small radius) have to balance. We find the
equilibrium radius R0 and force f0 by taking derivatives
of Ftube with respect to R and L and equating them to

zero, resulting in

0 = σ̄ − 1
2R2

0

+
1
2
C2

0 + p̄R0, (3)

f0

2πκ
=

p̄

2
R2

0 +
R0

2

(
1

R0
− C0

)2

+ σ̄R0, (4)

where σ̄ = σ/κ and p̄ = p/κ. We note that eq. (3) is
the derivative of eq. (4) with respect to R0. For the case
f = 0 these equations were first given by Ou-Yang and
Helfrich [21]. For the special case that p = C0 = 0, eqs. (3)
and (4) simplify to [37]

R0 =
√

κ

2σ
, (5)

f0 = 2π
√

2κσ . (6)

This simple argument gives the correct values of R0 and
f0, but also has a major shortcoming: the free energy as
given in eq. (2) is marginally unstable to the unphysical
mode of uniform (de)swelling of the entire cylindrical tube.
As was shown by Powers et al. [38], a more careful analysis
shows that membrane tubes are in fact stable to arbitrary
small perturbations, a result we also find as part of our
analysis in sect. 4.

Another minimizer of the Canham-Helfrich free energy
at vanishing force is a sphere. Following the same proce-
dure as above, we write for the free energy

Fsphere = 2πκR2

(
2
R

− C0

)2

+ 4πR2σ +
4
3
πpR3, (7)

from which we find the equilibrium condition

pR2 + 2σR − κC0(2 − C0R) = 0. (8)

Equation (8) was also first given by Ou-Yang and Hel-
frich [21], who also showed that for low pressures the
sphere is a stable solution of the shape equation, although
for higher pressures it is not. We will only consider the
low-pressure case here. For the case of vanishing sponta-
neous curvature, eq. (8) simplifies to the condition that the
pressure difference across the membrane must be given by
the Laplace pressure, p = −2σ/R.

From the Canham-Helfrich free energy (1), we can ob-
tain a general shape equation, the solutions of which are
the extrema of F . The derivation of this general shape
equation is rather lengthy but conceptually straightfor-
ward, and was first carried out by Ou-Yang and Hel-
frich [21]. For axisymmetric shapes, such as our tubes and
vesicles, the general shape equation reduces to an ordinary
differential equation. We parameterize our shape with the
contact angle ψ(s), where s is the arc length (see fig. 1
for the coordinates used). The coordinates r(s) (distance
to the rotation axis) and z(s) (distance along the rotation
axis) are related to ψ(s) by the geometric relations

ṙ(s) = cos ψ(s), (9)
ż(s) = − sin ψ(s), (10)
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Fig. 1. Coordinate systems used. (a) Coordinates on a closed
vesicle. (b) Coordinates on a tubular membrane.

where the dot denotes a derivative with respect to the
arc length s. We can also express the mean and Gaussian
curvatures in terms of ψ (dropping explicit dependencies
on s)

2H = ψ̇ +
sin ψ

r
, (11)

K =
sinψ

r
ψ̇. (12)

Substituting (11) and (12) into the shape equation de-
rived by Ou-Yang and Helfrich [21] gives us the axisym-
metric shape equation

...
ψ = −2 cos ψ

r
ψ̈ − 1

2
ψ̇3 +

sin ψ

r
ψ̇2 +

1
2

sin ψ

r
(ψ̇ − C0)2

+
1
2

(
sin ψ

r
− C0

)2

ψ̇ +
1 − 2 sin2 ψ

r2
ψ̇ +

σ

κ
ψ̇

−cos2 ψ + 1
2r3

sin ψ +
σ

κ

sinψ

r
+

p

κ
. (13)

As was shown by Zheng and Liu [49], eq. (13) can be
written as a total derivative, which can be integrated to
give an equivalent second-order differential equation for
ψ(s)

ψ̈ cos ψ = −1
2
ψ̇2 sinψ − cos2 ψ

r
ψ̇ +

sin ψ

2

(
sinψ

r
− C0

)2

+
cos2 ψ

r2
sin ψ +

σ

κ
sinψ +

p

2κ
r − 1

2πκ

f

r
. (14)

Substituting a tubular shape (r = R0 and ψ = π/2) into
eq. (14) we again obtain eq. (4), and substituting them
into eq. (13) gives eq. (3), in accordance with the observa-
tion we made above that eq. (3) is simply the derivative
of eq. (4) with respect to the tube radius R0. We also find
from both eqs. (13) and (14) that in the absence of a force
a sphere of any radius R is a solution, provided eq. (8) is
satisfied.

In an alternative approach, we can derive the axisym-
metric shape equation (14) by writing the energy func-
tional (1) as an integral over a Lagrangian, and performing

variational analysis, as detailed by Jülicher et al. [22,23].
The advantage of the latter approach is that it can be eas-
ily extended to membranes containing multiple domains,
and also gives the boundary conditions at their common
edge [23]. Equation (14) holds within the bulk of any con-
tinuous piece of membrane, i.e., in any piece where the
material constants are the same throughout. At bound-
aries between coexisting phases 1 and 2, the Lagrangian
derivation of (14) gives four boundary conditions: conti-
nuity of r and ψ, and two more complicated conditions for
ψ̇ and ψ̈ (expressions below are for a boundary at s = 0):

lim
ε↓0

(
κ2ψ̇(ε) − κ1ψ̇(−ε)

)
= −(Δκ + Δκ̄)

sin ψ0

r0

+κ2C0,2 − κ1C0,1, (15)

lim
ε↓0

(
κ2ψ̈(ε) − κ1ψ̈(−ε)

)
= (2Δκ + Δκ̄)

cos ψ0 sinψ0

r2
0

−(κ2C0,2 − κ1C0,1)
cos ψ0

r0

+
sin ψ0

r0
τ. (16)

Here ψ0 and r0 are the values of ψ and r at the boundary,
Δκ = κ2 − κ1, Δκ̄ = κ̄2 − κ̄1, and τ is the line tension at
the boundary.

3 Closed vesicles

We first study closed-vesicle solutions of the axisymmetric
shape equation (14). For a single-component membrane,
the shape is determined by the ratio of the membrane’s
surface area and enclosed volume. The optimal solution,
i.e., the solution with the minimum total bending energy
for a given total membrane area, is a sphere, which also
encloses the maximum volume given the total area. For
smaller, but fixed, enclosed volumes, solutions include el-
lipsoids and the biconcave shapes found in red blood cells.
Because lipid bilayer vesicles are permeable to water on
long time scales, any single-component membrane vesicle
left to relax long enough will eventually end up with a
spherical shape.

The equilibrium shape of two-component vesicles is not
spherical if there is a line tension present at the bound-
ary between the two domains. In that case, the equilib-
rium shape is determined by a balance between the bend-
ing modulus (which drives the system towards a spher-
ical shape) and the line tension (which favors a short
boundary line). For approximately equal-sized domains
and appropriate values of the material parameters, the re-
sulting shape is a snowman-like vesicle with two almost
spherical domains connected by a narrower “waist” or
“neck” [9,12,14]. We will derive an approximate analyt-
ical expression for the shape of these vesicles from the
shape equation (14). Since there is no external force in this
case, we set f = 0. Moreover, as in the case of a single-
component membrane, for the spherical parts to be stable,
eq. (8) must be satisfied in each of the two domains, which
means that the pressure, surface tension and spontaneous
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curvature terms in eq. (14) cancel. The resulting differen-
tial equation for the contact angle ψ does not depend on
any material parameters, which thus only influence the
shape because of the boundary conditions. Within the
bulk of each of the domains, far away from the bound-
ary, the shape of the vesicle should approximately be a
sphere of radius R, so ψ(s) ∼ s/R and r(s) ∼ R sin(s/R).
To meet the boundary conditions, we will perturb these
spherical “bulk solutions” and write ψ(s) = s/R + δψ(s).
It is not obvious how this perturbation carries over to r(s).
Earlier approaches therefore also linearized r(s); instead
we eliminate r(s) by isolating it from eq. (14), differen-
tiating the resulting expression and using the geometric
relation ṙ = cos ψ (eq. (9)). First rewriting (14), we have

r2(2ψ̈ cos ψ + ψ̇2 sin ψ)

+r(2 cos2 ψψ̇) − (cos2 ψ + 1) sin ψ = 0, (17)

from which we get two solutions for r(s)

r(s) =
− cos ψψ̇

2ψ̈ + ψ̇2 tan ψ

±

√
ψ̇2 sec2 ψ + 2ψ̈ tan ψ(1 + cos2 ψ)

2ψ̈ + ψ̇2 tan ψ
. (18)

Because the sphere is only a solution of eq. (18) when we
use the plus sign in front of the square root, we drop the
equation with the minus sign. Differentiating the remain-
ing equation with respect to s and using eq. (9), we get a
third-order nonlinear differential equation for ψ

0 =
(
2 cos ψψ̇

...
ψ − 6 cos ψψ̈2 − sin ψψ̇2ψ̈ + sec ψψ̇

)

·
√

ψ̇2 sec2 ψ + 2ψ̈ tan ψ(1 + cos2 ψ)

−2 tan ψ(1 + cos2 ψ)ψ̈
...
ψ + 2(3 − 4 sin2 ψ)ψ̇ψ̈2

+(sin2 ψ + tan2 ψ − 2 sec2 ψ)ψ̇2
...
ψ

−(1 + 2 sin2 ψ) tan ψψ̇3ψ̈ − sec2 ψψ̇5. (19)

We now use the expansion ψ(s) = s/R + εδψ(s) and
expand up to linear order in ε. In doing so, we assume
that the derivatives of δψ are of the same order as δψ it-
self. Carrying out the expansion, we find a much simpler
third-order linear differential equation for δ

...
ψ

0 = 3 cos(s/R)δψ̈ + R sin(s/R)δ
...
ψ, (20)

where δψ̇(s) = dδψ(s)/ds and δψ̈(s) and δ
...
ψ(s) similarly

defined. Equation (20) can be integrated directly, resulting
in an expression for δψ̈

δψ̈(s) = A csc3
( s

R

)
, (21)

with A an integration constant which has dimension 1/R2,
and in which we absorb the expansion coefficient ε. Inte-
grating again, we get

δψ̇(s) =
AR

2
log

[
tan

( s

2R

)]
− AR

2
cos(s/R)
sin2(s/R)

+ b, (22)

where b is another integration constant. Because the in-
tegral of b gives a term that scales with s, it gives a con-

stant contribution to the term s/R in ψ(s); we therefore
set b = 0. A final integration gives us δψ(s)

δψ(s) =
AR2

2

{
1

sin(s/R)
+ i log

(
tan

( s

R

))

·
[
log

(
1 − i tan

( s

2R

))
− log

(
1 + i tan

( s

2R

))]

+ i
[
Li2

(
i tan

( s

2R

))
− Li2

(
−i tan

( s

2R

))]}

+d, (23)

with d a third integration constant and Lin(z) the poly-
logarithm (also known as Jonquière’s function), defined as

Lin(z) =
∞∑

k=1

zk

kn
, (24)

for z ∈ C. The combination of the two logarithms in (23),
as well as that of the two polylogarithms, is real for our
region of interest (0 < s < πR, see fig. 1a). The function
δψ(s) goes to infinity at both ends of this interval and has
a minimum at the center s = πR/2. We therefore assume
the vesicle to be a perfect sphere for 0 ≤ s ≤ πR/2, and
given by ψ(s) = s/R + δψ(s) for πR/2 ≤ s ≤ s∗, where
the boundary with the other domain is at s = s∗ < πR.
This choice fixes the value of the integration constant d
because now δψ(πR/2) should vanish, which gives

d = −AR2

2
(1 − 2G), (25)

where G is Catalan’s constant, with numerical value ∼
0.91596559.

Having found expressions for δψ(s) and δψ̇(s), we can
also find an expression for r(s). To do so, we first expand
the geometric relation (9) and then integrate it. As the
starting point of the integration we take the same reference
point s0 = πR/2 as we did for δψ(s), at which point r(s) =
R. We then find

r(s) = R +
∫ s

s0

cos
(

s′

R
+ δψ(s′)

)
ds′

= R sin
( s

R

)
+ R

[
δψ(s′) cos

(
s′

R

)]s′=s

s′=s0

−R

∫ s

s0

δψ̇(s′) cos
(

s′

R

)
ds′

= R sin
( s

R

)
+ R cos

( s

R

)
δψ(s) − AR3

2
cot

( s

R

)

−AR3

2
sin

( s

R

)
log

(
tan

( s

2R

))
, (26)

where we first expanded the cosine and then used partial
integration. In exactly the same fashion we also find an
expression for z(s)

z(s) = z0 + R cos
( s

R

)
− R sin

( s

R

)
δψ(s)

−AR3

2
cos

( s

R

)
log

(
tan

( s

2R

))
, (27)

where z0 = z(s0).
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Fig. 2. Shape of a closed vesicle with two domains. Panel (a) shows ψ(s), with dashed lines indicating ψ(s) of a sphere with the
same radius. Panels (b) (cross-section) and (c) (revolution plot) show the actual shape of the axisymmetric vesicle, (r(s), z(s)).
Note that the bottom part (with the lower bending modulus) curves towards the top part near the boundary, and that the two
parts of the ψ(s) plot are not symmetric.

Using the expressions for r(s), δψ(s) and its deriva-
tives given above, we can find the shape of a vesicle with
two domains with different material parameters from the
boundary conditions (15) and (16), as well as continu-
ity of r(s) and ψ(s) at the boundary. Writing down the
four boundary conditions for the general solution given
by eqs. (23) and (26), we find that we have six unknowns:
the values of the total arc length s∗i , the domain radius Ri

and the dimensionless small parameter AiR
2
i for each do-

main (i = 1, 2). To get a closed system, we can there-
fore choose any two of the six unknowns, and solve for
the other four, although there may not be solutions for
every possible choice. Example plots of resulting shapes
are given in fig. 2, for which we chose values for the
radii R1 and R2 and solved for the values of s∗i and
AiR

2
i .

The fact that our shapes are not completely fixed by
the set of equations is to be expected, because we did not
specify parameters such as the total area or enclosed vol-
ume. These are of course fixed in experiment, which allows
one to determine (in principle) any two of the six unknown
parameters of our system by directly measuring e.g. the
domain areas (because of the relation between the pres-
sure, spontaneous curvatures and surface tensions given
by eq. (8), the enclosed volume is then fixed). One possi-
ble approach is to measure the two values of s∗ directly by
measuring the total arc length of the domains. However,
a much simpler and more reliable approach is to measure
the values of the two radii R1 and R2. This can simply be
done by fitting a sphere to the upper and lower parts of
a snowman-shaped vesicle with two domains. Given these
values we are then left with four equations and four un-
knowns, for any set of the material parameters. There are
only two material parameters that play a role in the de-
termination of the shape of the vesicle: the line tension τ
and the difference in Gaussian moduli Δκ̄. We can there-
fore use this method to fit the shape of the vesicle, and
extract value for the line tension and difference in Gaus-

sian modulus, as we have done before using a simpler
model [14]. Experiments are commonly carried out using
Giant Unilamellar Vesicles, or GUVs, which have typical
radii of 10–100μm. For such large vesicles the assump-
tions that go into our approach are easily justified. The
vesicles are indeed almost indistinguishable from spheres
far away from the domain boundary (see e.g. experimen-
tal data in [12,14]). Moreover, they are smooth near the
boundary, and deviate from the spherical shape very lit-
tle even there, which means that δψ is indeed small. Our
approach would break down for much smaller vesicles, for
two possible reasons. One is that the deviations may be-
come large compared to the size of the vesicle itself, mak-
ing a linearized approach invalid. The second reason is
more fundamental and has to do with the basic energy
balance that results in the snowman shape of bidomain
vesicles. In these vesicles, the line tension on the bound-
ary tends to contract the “neck” between the two domain,
thus shortening the boundary length. On the other hand
the bending energy of both domains tends to expand the
neck, making the overall shape vesicle more like that of a
sphere and thus lowering the total mean curvature. The
tradeoff between these two is characterized by a lenth scale
known as the invagination length ξ = κ/τ , first introduced
by Lipowsky [24]. For domains with a radius much smaller
than the invagination length, the bending term in the en-
ergy is dominant. The shape of small multi-domain vesi-
cles will therefore not be like our snowman vesicle, but
simply a sphere.

4 Tubes

Suppose we have a tubular membrane with Lo and Ld

domains on it. Within the bulk of those domains, the re-
spective pieces of the tube will approximately be the ideal
tube with radii and forces determined by their bending
moduli and surface tensions, and given by eqs. (3) and (4)
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for R0 and f0. For a patterned tube to be stable, the forces
in both domains have to be equal. For the special case that
p = C0,1 = C0,2 = 0 this gives two simple observations;
first that the simple relation

κoσo = κdσd (28)

holds, and second that, if κo �= κd, then the radii of the
different tube domains are different. Close to the bound-
ary between the two domains the shape will therefore de-
viate from the cylindrical tube. Shapes for the tube in
such boundary regions were first calculated numerically
by Allain et al. [45], and more recently also by Heinrich
et al. [44]. An approximate analytical expression for the
deviation of a tube from a perfect cylinder, for instance
because of the presence of a domain boundary, was first
given by Božič et al. [39]. For completeness we briefly re-
produce their argument here, where for simplicity we again
set p = C0 = 0. We first re-parametrize from the arc
length s to the z-coordinate using eq. (10), and next ex-
pand r(z) around R0, writing r(z) = R0+u(z). If we more-
over assume that the deviations from ψ = π/2 are very
small, we can also write sin ψ = 1 and cos ψ = dr(s)

ds =
− sin ψ(z)dr(z)

dz = −du(z)
dz . Denoting derivatives to z by

primes, we similarly find ψ′(z) = u′′(z), ψ′′(z) = u′′′(z),
and ψ′′′(z) = u′′′′(z). Substituting back into the third-
order shape equation (13), and taking only terms linear in
u(z) and its derivatives, we get the simple equation

R4
0u

′′′′(z) + u(z) = 0. (29)

The solution of eq. (29) is a sum of two exponentially
decaying oscillations. As shown by Derényi et al. [37],
these two oscillations can be interpreted as being asso-
ciated with the two ends of a finite tube pulled from a
vesicle: one end attached to the vesicle, the other closed.
Campelo et al. [46] used these solutions in combination
with the boundary conditions (15) and (16) to predict the
shape of two-component tubes. One possible complication
of this approach is that it involves two linearizations, one
for r(z) and another one for ψ(z). As we will show be-
low, a different approach allows us to eliminate one of the
linearizations, resulting in a different differential equation
for the deviation from the tube, but with similar exponen-
tially decaying oscillations as solutions.

The basis of our approach is that we no longer pa-
rameterize the tube with the contact angle ψ, but simply
by its radius as a function of arc length, r(s), and elimi-
nate ψ from the shape equations, similarly to the way we
eliminated r in the previous section. Using the geometric
relation (9), we can translate ψ and its derivatives into ex-
pressions in r and its derivatives. First taking derivatives
of (9), we find

ṙ = cos ψ, (30)

r̈ = − sin ψψ̇, (31)
...
r = − sin ψψ̈ − cos ψψ̇2. (32)

We can invert these to express functions and derivatives
of ψ in terms of r and its derivatives

cos ψ = ṙ, (33)

sin ψ =
√

1 − ṙ2, (34)

ψ̇ = − r̈√
1 − ṙ2

, (35)

ψ̈ = − 1√
1 − ṙ2

(
...
r +

ṙr̈2

1 − ṙ2

)
. (36)

We substitute (33)–(36) back into the shape equation (14).
We then find a nonlinear third-order differential equation
in r

0 = ṙ
...
r +

ṙ2r̈2

1 − ṙ2
− 1

2
r̈2 +

ṙ2r̈

r
+

ṙ2

r2
(1 − ṙ2)

+
1 − ṙ2

2

(√
1 − ṙ2

r
− C0

)2

+ σ̄(1 − ṙ2)

+
(

p̄r

2
− f

2πκr

) √
1 − ṙ2, (37)

where as before σ̄ = σ/κ and p̄ = p/κ. The boundary
conditions translate to continuity of r and ṙ, and

lim
ε↓0

(
κ2r̈2(ε) − κ1r̈1(−ε)

)
= (Δκ + Δκ̄)

1 − ṙ2
0

r0

−(κ2C0,2 − κ1C0,1)
√

1 − ṙ2
0 , (38)

and

lim
ε↓0

(
κ2

...
r 2(ε) − κ1

...
r 1(−ε)

)

+
ṙ0

1 − ṙ2
0

lim
ε↓0

(
κ2r̈2(ε)2 − κ1r̈1(−ε)2)

= −(2Δκ − Δκ̄)
ṙ0(1 − ṙ2

0)
r2
0

− 1 − ṙ2
0

r0
τ

+(κ2C0,2 − κ1C0,1)
ṙ0

√
1 − ṙ2

0

r0
, (39)

for the second and third derivatives. Here r0 and ṙ0 are
the values of r and ṙ at the domain boundary, and the
subscripts 1 and 2 indicate the two domains.

In general the parts of the tube which correspond
to the different domains will have unequal stable radii,
and thus the tube gets deformed near the domain bound-
ary. Moreover, even with identical radii, but a nonzero
line tension τ or difference in Gaussian modulus Δκ̄, the
boundary conditions will distort the shape near the do-
main boundary as well. To find the perturbed shapes, we
make an expansion of r(s) around the stable radius R0

(with the appropriate R0 for each domain)

r(s) = R0 + εδr(s). (40)

Substituting (40) into (37), the O(1) term reproduces
eq. (4) and thus vanishes by construction. Moreover, by
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Fig. 3. Example tubes with two domains. (a) Two domains with different material parameters (κo = 1.25κd), but no difference
in Gaussian moduli (Δκ̄ = 0) and no line tension at the domain boundary (τ = 0). Note the remarkable shape at the boundary
with a horizontal tangent line, and the slight deviation of the tube radius just before and after the boundary. These features are
also found in numerical solutions of the shape equation (14) [45]. (b) Two domains with different material parameters (again
κo = 1.25κd), with a nonzero difference in Gaussian moduli and also a nonzero line tension at the domain boundary. The
nonzero boundary contributions allow the high-curvature part associated with the boundary to move into the domain with the
lower bending modulus, reducing the total energy. Consequently the tube shows a slight bulge near the boundary. (c) Revolution
plot of the actual (r, z) shape of the tube shown in (b). In these plots p = C0,1 = C0,2 = 0.

eqs. (3) and (4), the O(ε) term vanishes as well, so the
r = R0 solution is indeed stable, as we claimed in sect. 2.
To second order in ε we find the equation which will give
us the linear perturbation δr(s)
(

1
R4

0

+
p̄

R0

)
δr2 +

(
2C0

R0
+ p̄R0

)
δṙ2 − δr̈2 + 2δṙδ

...
r = 0,

(41)
where δṙ represents the derivative of δr(s) with respect to
s, and so on. To simplify eq. (41), we first introduce two
dimensionless parameters

α ≡ 1 + p̄R3
0, (42)

β ≡ −p̄R3
0 − 2C0R0, (43)

so we can express (41) as

α

R4
0

δr2 − β

R0
δṙ2 − δr̈2 + 2δṙδ

...
r = 0. (44)

Equation (44) can be solved by using the ansatz δr(s) =
eλs, which results in a simple fourth-order equation for λ

λ4 − β

R0
λ2 +

α

R4
0

= 0. (45)

From eq. (45) we find for λ2

λ2 =
1

R2
0

(
β

2
± 1

2

√
β2 − 4α

)
≡ 1

R2
0

ρ±, (46)

which means that we have four solutions: λ = ±√
ρ±/R0.

The perturbation δr(s) is therefore again a sum of two
exponentially decaying oscillations. For infinite tubes, the
solutions with positive real part represent exponentially
growing perturbations, which we discard. The two solu-
tions with negative real part can be combined into a single
solution, which is an exponentially damped oscillation.

In the special case that p = C0 = 0, we get ρ± = ±i,
so λ = 1

R0
√

2
(±1± i), and the resulting expression for r(s)

is given by

r(s) =
√

κ

2σ
+ e−μs

(
a sin(μs) + b cos(μs)

)
, (47)

where μ =
√

σ/κ = 1/(R0

√
2), and a and b (which should

both be O(ε)) are set by the boundary conditions. An
example plot of a tubular membrane with two domains is
shown in fig. 3.

In the more general case that only p = 0 (which is often
true in experimental setups, because tubes are connected
to large vesicles), we can also find simple expressions for
R0, f0 and λ. To do so, we write C0 = γ/R0, and find
from eqs. (3) and (4)

R0 =

√
(1 − γ2)κ

2σ
=

(
2σ

κ
+ C2

0

)−1/2

, (48)

f0 = 2πκ
1 − γ

R0
= 2πκ

(√
2σ

κ
+ C2

0 − C0

)
. (49)

For λ we find from eq. (46) after some algebra

λ =
1

R0

√
2

(
±

√
1 − γ ± i

√
1 + γ

)
, (50)

with R0 now given by eq. (48). For r(s) we find in this
case

r(s) =

√
(1 − γ2)κ

2σ
+ e−μ−s

(
a sin(μ+s) + b cos(μ+s)

)
,

(51)
where μ± = 1

R0
√

2

√
1 ± γ, and a and b as before set by the

boundary conditions.
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As shown by eqs. (48) and (49), the effect of a spon-
taneous curvature is to lower both the equilibrium radius
and the equilibrium force of a membrane tube. Moreover,
as shown by eq. (51), the presence of a spontaneous cur-
vature does not change the qualitative shape of a tube
near a domain boundary, but does increase both the de-
cay length (μ−) and the frequency (1/μ+) of the associ-
ated oscillations.

Unlike the closed vesicles, the tubes have no free pa-
rameters to adjust, because the equilibrium radii of the
two tubes are determined by the material parameters. We
thus have four equations (the four boundary conditions)
for four unknowns (the amplitudes ai and bi of the sine and
cosine part in eqs. (47) and (51), i = 1, 2). Because the ra-
dius of a tube is already small (tens of nanometers), and
the deviations of the tubular shape close to the domain
boundary are small compared to their radius, they will be
hard to detect directly in experiment. Tubes are therefore
not a useful experimental tool to determine parameters
that only come in as boundary conditions: the line ten-
sion τ and the difference in Gaussian moduli Δκ̄. How-
ever, because forces can be measured with high precision,
and because many proteins have spontaneous curvatures
comparable to the inverse radius of a tube, measurements
on tube extension forces are useful potential probes for
the effects of spontaneous curvature. Recent experimen-
tal results show that proteins can indeed spontaneously
sort in an environment with different curvatures, and are
moreover facilitating lipid sorting as well [42,43].

We note that our calculations predict that when the
spontaneous curvature becomes comparable to the inverse
of the tube radius, the oscillations near the domain bound-
ary become large compared to the radius as well. Our re-
sults are therefore no longer strictly valid for values of γ
close to 1. However, we do observe that as γ gets larger, the
tube shrinks while the relative importance of the oscilla-
tions grows. The oscillations may therefore play an impor-
tant role in the eventual instability and breakup of multi-
domain tubes, which would thus occur sooner for tubes
with spontaneous curvature (or containing proteins with
an appropriate spontaneous curvature) than for tubes for
which the spontaneous curvature vanishes.

As an application of the results derived above, we con-
sider the experimentally more realistic case of a finite tube
pulled from a large vesicle. Because the radius of the tube
(of the order of tens of nanometers) is much smaller than
that of the vesicle (typically several tens of micrometers),
the tube will hardly perturb the vesicle shape a distance
several times the tube radius away from the neck that
connects the two. We simply assume the vesicle has a per-
fectly spherical shape beyond that point and smoothly
connect it to the tube. Our approach breaks down for
short tubes, and can therefore not be used to describe
tube formation, but can be used to obtain the shape of al-
ready formed tubes. Moreover, we consider the case that
the force applied at the tip of the tube is distributed over a
disk-shaped area (as is the case in actual experiments, e.g.,
when pulling on an attached bead with optical tweezers),
rather than a point force. At the tip we therefore impose
the boundary condition that the tangent line to the mem-

brane in the (z, r) plane must be vertical. At the vesicle
end we simply impose that the tube connects smoothly to
the vesicle. Because we now impose boundary conditions
at both ends of the tube, we need to use all four solutions
of eq. (45), where now one exponentially damped oscilla-
tion will start at the tube tip (where the force is applied),
and the other at the junction with the vesicle, as shown
earlier by Derényi et al. [37]. Again specializing to the case
that p = C0 = 0, we then obtain

r(s) =
√

κ

2σ
+ e−μs

(
a1 sin(μs) + b1 cos(μs)

)

+e−μ(s0−s)
(
a2 sin(μ(s0 − s)) + b2 cos(μ(s0 − s))

)
,

(52)

where s0 is the total arc length of the tube. Because in
our approach we write r(s) as a function of arc length, we
can easily connect to any axisymmetric vesicle shape.

We connect our tube to a large vesicle with given bend-
ing modulus κ and controlled surface tension σ. We put
the boundary between the vesicle and the tube at s = 0 as
before. For given vesicle and tube radii we then have five
unknowns: the parameters a1, a2, b1, and b2 from eq. (52),
and the position of the point s = 0 with respect to some
fixed point on the vesicle (typically the opposite pole),
the latter following from the condition that the vesicle
must be closed. Two unknowns are fixed by the conditions
that at the tube tip (s = s0): the radius must vanish, so
r(s0) = 0, as must the tangent angle, so ψ(s0) = 0, which
gives ṙ(s0) = −1 by eq. (34). The remaining three un-
knowns allow us to impose equality of r(s) and its first
two derivatives at the connection point between the tube
and the vesicle. In order to also match higher-order deriva-
tives we should use a higher-order expansion for r(s), and
also allow for perturbations of the vesicle itself. Matching
up to second order we find solutions that compare well
to earlier numerical results, in particular also showing a
local narrowing of the tube just before it connects to the
vesicle. An example plot is shown in fig. 4.

In this paper we have found approximate solutions for
the shapes of axisymmetric membranes. In order to find
these solutions, we first wrote the shape equation in terms
of the single variable appropriate to the shape we are inter-
ested in. We then found the approximate shape by lineariz-
ing the resulting single-variable equations. Using this ap-
proach, instead of directly linearizing the shape equation,
we eliminated one linearization step, which is an improve-
ment of earlier results, and makes our results mathemat-
ically rigorous. We found shapes for two-component vesi-
cles and tubes, and also the shape of a single-component
vesicle-tube system. We have indicated how these results
may be used to extract material parameters from exper-
imental measurements on the different systems. The line
tension τ between two domains and the difference Δκ̄ in
their Gaussian moduli can be obtained by directly com-
paring the experimentally observed shape of closed bi-
component vesicles to the expressions we have given here.
In particular Δκ̄ is hard to measure by other methods.
Measurements on the force-extension curves of membrane
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Fig. 4. Example of a tube connected to a spherical vesicle. Here the vesicle radius is 100R0 and the tube length is 50R0, with
R0 the radius of the tube; also p = C0,1 = C0,2 = 0. (a) r(s) from the neck connecting the tube to the vesicle to the tube tip,
showing the characteristic narrowing of the tube at the neck, and widening next to the tip. (b) Large-scale shape of a tube
connected to a spherical vesicle in (z, r) coordinates. (c) Revolution plot of panel (b).

tethers can be used as a probe for spontaneous curva-
ture in the membrane, in particular when the membrane
contains proteins. We have shown that the presence of a
domain boundary in a membrane tube causes decaying
oscillations in the tube radius close to the boundary, and
how the presence of a spontaneous curvature changes this
observation. In particular, we observe that if the sponta-
neous curvature becomes comparable to the inverse of the
radius of the tether, then these oscillations may play a
role in the stability of the tether, causing it to break up
sooner than one would expect without the presence of the
oscillations.
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