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Abstract. The thermally assisted detachment of a self-avoiding polymer chain from an adhesive surface
by an external force applied to one of the chain-ends is investigated. We perform our study in the “fixed
height” statistical ensemble where one measures the fluctuating force, exerted by the chain on the last
monomer when a chain-end is kept fixed at height h over the solid plane at different adsorption strength
ε. The phase diagram in the h-ε plane is calculated both analytically and by Monte Carlo simulations.
We demonstrate that in the vicinity of the polymer desorption transition a number of properties like
fluctuations and probability distribution of various quantities behave differently, if h rather than f is used
as an independent control parameter.

PACS. 82.35.Gh Polymers on surfaces; adhesion – 64.60.A- Specific approaches applied to studies of phase
transitions – 62.25.+g Mechanical properties of nanoscale systems

1 Introduction

The properties of single polymer chains at surfaces have
received considerable attention in recent years. Much
of this has been spurred by new experimental tech-
niques such as atomic force microscopy (AFM) and op-
tical/magnetic tweezers [1] which allow one to manipulate
single polymer chains. Study of single polymer molecules
at surfaces, such as mica or self-assembled monolayers,
by Atomic Force Microscopy (AFM) method provides a
great scope for experimentation [2–8]. Applications range
from sequential unfolding of collapsed biopolymers over
stretching of coiled synthetic polymers to breaking indi-
vidual covalent bonds [9–11].

In these experiments it is customary to anchor a poly-
mer molecule with one end to the substrate whereas the
other end is fixed on the AFM cantilever. The polymer
molecule can be adsorbed on the substrate while the can-
tilever recedes from the substrate. In so doing one can
prescribe the acting force in AFM experiment whereas
the distance between the tip and the surface is measured.
Conversely, it is also possible to fix the distance and mea-
sure the corresponding force, a method which is actually
more typical in AFM experiments. From the standpoint of
statistical mechanics these two cases could be qualified as
f -ensemble (the force is fixed while the fluctuating chain-
end height is measured) and as h-ensemble (h is fixed while
one measures the fluctuating f). Recently these two ways
of descriptions as well as their interrelation were discussed
for the case of a phantom polymer chain by Skvortsov et

a e-mail: bhattach@mpip-mainz.mpq.de

al. [12]. In recent papers [13,14] we studied extensively a
single-tethered self-avoiding polymer adsorption on a solid
substrate with an external force applied to a free chain’s
end in the f -ensemble.

In the present paper we consider the detachment pro-
cess of a single self-avoiding polymer chain, keeping the
distance h between the free chain’s end and the substrate
as the control parameter. We derive analytical results for
the main observables which characterize the detachment
process. The mean value as well as the probability distri-
bution function (PDF) of the order parameter are pre-
sented in close analytical expressions using the Grand
Canonical Ensemble (GCE) method [14]. The basic force-
height relationship which describes the process of polymer
detachments by pulling, that is, the relevant equation of
state for this system is also derived both for extendible as
well as for rigid bonds and shown to comply well with our
Monte Carlo simulation results. We demonstrate also that
a number of properties behave differently in the vicinity
of the phase transition, regarding which of the two equiva-
lent ensembles is used as a basis for the study of systems’s
behavior.

2 Single-chain adsorption: Using distance as a
control parameter

2.1 Deformation of a tethered chain

Before considering the adsorption-desorption behavior of
a polymer in terms of the chain-end distance h, we first
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examine how a chain tethered to a solid surface responds
to stretching. This problem amounts to finding the chain
free end probability distribution function (PDF) PN (h),
where N is the chain length, i.e., the number of beads.
The partition function of such a chain at fixed distance h
of the chain-end from the anchoring plane is given by

Ξtail(N,h) =
μN

3

Nβ
l0PN (h), (1)

where β = 1 − γ1 and the exponent γ1 = 0.680 [15].
Here μ3 is a model-dependent connective constant (see,
e.g. ref. [15]). In eq. (1) l0 denotes a short-range charac-
teristic length which depends on the chain model. Below
we discuss the chain deformation within two models: the
bead-spring (BS) model for elastic bonds and the freely
jointed bond vectors (FJBV) model where the bonds be-
tween adjacent beads are considered rigid.

2.1.1 Bead-spring model

The form of PN (h) has been discussed earlier [16,17] and
later used in studies of the monomer density in polymer
brushes [18]. Here we outline this in a way which is ap-
propriate for our purposes. The average end-to-end chain
distance reads RN = l0N

ν , where l0 is the mean distance
between two successive beads on a chain and ν ≈ 0.588
is the Flory exponent [19]. The short-distance behavior,
h � RN , is given by

PN (h) ∝
(

h

RN

)ζ

, (2)

where the exponent ζ ≈ 0.8. For the long-distance
behavior, h/RN � 1, we assume, following ref. [18],
that the PDF of the end-to-end vector r is given by
des Cloizeaux’s expression [20] for a chain in the bulk:
PN (r) = (1/RN ) F (r/RN ), where the scaling function
F (x) ∝ xt exp[−Dxδ], and the exponents t = (β − d/2 +
νd)/(1 − ν), δ = 1/(1 − ν). Here and below d denotes
the space dimensionality. One should emphasize that the
presence of a surface is manifested only by the replace-
ment of the universal exponent γ with another univer-
sal exponent γ1 (as compared to the pure bulk case!).
By integration of PN (r) over the x and y coordinates
while h is measured along the z-coordinate, one obtains
PN (h) ∝ (h/RN )2+t−δ exp[−D(h/RN )δ]. As the long-
distance behavior is dominated mainly by the exponential
function while the short-distance regime is described by
eq. (2), we can approximate the overall behavior as

PN (h) =
A

RN

(
h

RN

)ζ

exp

[
−D

(
h

RN

)δ
]

. (3)

A comparison of the distribution, eq. (3), with our simu-
lation data is shown in fig. 1. The constants A and D in
eq. (3) can be found from the conditions:

∫
PN (h)dh = 1

and
∫

h2PN (h)dh = R2
N . This leads to

A = δ

[
Γ

(
1 + ζ

δ

)]−(1+ζ)/2 [
Γ

(
3 + ζ

δ

)]−(1−ζ)/2

, (4)

Fig. 1. Probability distribution PN (h) of chain-end positions h
above the grafting plane for a polymer with N = 128 monomers
at zero strength of the adsorption potential ε = 0.0. In the inset
the MC data for PN (h) (solid black line) is compared to the
theoretic result, eq. (3). Dashed line denotes the expected slope
of ζ ≈ 0.78 of the probability distribution for small heights.

and

D =
[
Γ

(
3 + ζ

δ

)]δ/2 [
Γ

(
1 + ζ

δ

)]−δ/2

, (5)

where δ ≈ 2.43 and ζ ≈ 0.8. One gets thus the estimates
A ≈ 2.029 and D ≈ 0.670.

The free energy of the tethered chain with a fixed dis-
tance h takes on the form Ftail(N,h) = −kBT ln Ξtail

(N,h), where kB denotes the Boltzmann constant. By
making use of eqs. (1) and (3), the expression for the force
fN , acting on the end monomer when kept at distance h
is given by

fN =
∂

∂h
Ftail(N,h) =

kBT

RN

[
δD

(
h

RN

)δ−1

− ζ

(
RN

h

)]
.

(6)
One should note that at h/RN � 1 we have h ∝
RN (RNfN/kBT )1/(δ−1) which, after taking into account
that δ−1 = 1 − ν, leads to the well-known Pincus de-
formation law: h ∝ l0N(l0fN/kBT )1/ν−1 [21]. Within the
framework of this approximation the (dimensionless) elas-
tic energy reads Uel/kBT = −N(l0fN/kBT )1/ν . In result
the corresponding free energy of the chain tail is given by

Ftail

kBT
= −N

(
l0fN

kBT

)1/ν

− N ln μ3. (7)

Equation (6) indicates that there exists a height h0 =
(ζ/δD)1/δRN over the surface where the force fN changes
sign and becomes negative (that is, the surface repulsion
dominates). According to eq. (6) the force diverges as
fN ∝ −kBT/h upon further decrease of the distance h.

2.1.2 Freely jointed chain

It is well known [19] that the Pincus law, eq. (6), de-
scribes the deformation of a linear chain at intermediate
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force strength, 1/Nν � l0fN/kBT ≤ 1. Direct Monte
Carlo simulation results indicate that, depending on the
model, deviations from Pincus law emerge at h/RN ≥ 3
(bead-spring off-lattice model) [22], or h/RN ≥ 6 (Bond
Fluctuation Model) [23]. In such “overstretched” regime
(when the chain is stretched close to its contour length)
one should take into account that the chain bonds cannot
expand indefinitely. This case could be treated within the
simple freely jointed bond vectors (FJBV) model [22,24]
where the bond length l0 is fixed. In this model the force-
deformation relationship is given by

fN =
kBT

l0
L−1

(
h

l0N

)
, (8)

where L−1 denotes the inverse Langevin function L(x) =
coth(x) − 1/x and l0 is the fixed bond vector length.
We discuss the main results pertaining to the FJBV
model in appendix A. The elastic deformation en-
ergy reads Uel/kBT = −(l0fN/kBT )

∑N
i=1〈cos θi〉 =

−N(l0fN/kBT )L(l0fN/kBT ), where θi is the average po-
lar angle of the i-th bond vector (see appendix A). Thus
the corresponding free energy of the chain tail for the
FJBV model reads

Ftail

kBT
= −NG

(
l0fN

kBT

)
− N ln μ3, (9)

where we have used the notation G(x) = xL(x) =
x coth(x) − 1. Now we are in a position to discuss the
pulling of the adsorbed chain controlled by the chain
height h.

2.2 Pulling controlled by the chain-end position

Consider now an adsorbed chain when the adsorption en-
ergy per monomer is sufficiently large, ε ≥ εc, where εc

denotes a corresponding critical energy of adsorption. Be-
low we will also use the notation ε = ε/kBT for the dimen-
sionless adsorption energy. The problem of force-induced
polymer desorption could be posed as follows: how is the
process of polymer detachment governed by the chain-end
position h? Figure 2a gives a schematic representation of
such a system, and the situation in a computer experi-
ment, as shown in the snapshot fig. 2b, is very similar.

As is evident from fig. 2a, the system is built up from
a tail of length M and an adsorbed portion of length
N − M . The adsorbed part can be treated within the
GCE approach [14]. In our earlier treatment, ref. [14], it
was shown that the free energy of the adsorbed portion
is Fads = kBT (N − M) ln z∗(ε), where the fugacity per
adsorbed monomer z∗(ε) depends on ε and can be found
from the basic equation

Φ(α, μ3z
∗) Φ(λ, μ2wz∗) = 1. (10)

The so-called polylog function in eq. (10) is defined as
Φ(α, z) =

∑∞
n=1 zn/nα and the connective constants μ3,

μ2 in three- and two-dimensional space have values which

Adsorbed part Tail

h

M

N − M
fM

(a)

(b)

Fig. 2. (a) Schematic graph of an adsorbed polymer chain,
partially detached from the plane by an external force which
keeps the last monomer at height h. The total chain is built up
from a tail of length M and an adsorbed part of length N −M .
The force fM acting on the chain-end is conjugated to h, i.e.,
fM = ∂Ftail/∂h. (b) A snapshot from the MC simulation: N =
128, h = 25.0, ε = 4.0 and 〈f〉 = 6.126.

are model dependent [15]. The exponents α = 1 + φ and
λ = 1 − γd=2 where φ ≈ 0.5 is the crossover exponent
which governs the polymer adsorption at criticality, and
in particular, the fraction of adsorbed monomers at the
critical adsorption point (CAP) ε = εc. The constant
γd=2 = 1.343 [15]. Finally w = exp(ε) is the additional
statistical weight gained by each adsorbed segment.

In equilibrium, the force conjugated to h, that is, fM =
∂Ftail/∂h, should be equal to the chain resistance force
to pulling fp = (kBT/l0)F(ε) (where F(ε) is a scaling
function depending only on ε), i.e.,

fM =⎧⎪⎪⎨
⎪⎪⎩

kBT
RM

[
δD

(
h

RM

)δ−1

−ζ
(

RM

h

)]
=fp, for BS model,

kBT
l0

L−1
(

h
l0M

)
= fp, for FJBV model.

(11)

The resisting force fp holds the last adsorbed monomer
on the adhesive plane (see again fig. 2a whereby this
monomer experiences a force fM ). One should empha-
size that the force fp stays constant in the course of the
pulling process as long as one monomer, at least, is ad-
sorbed on the surface. Thus fp corresponds to a plateau
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on the deformation curve (force f vs. chain-end position
h). The adsorbed monomer (see fig. 2) has a chemical po-
tential, μads = ln z∗, which in equilibrium should be equal
to the chemical potential of a desorbed monomer in the
tail, μdes = ∂(Ftail/kBT )/∂N . The expression for Ftail de-
pends on the model and is given either by eq. (7) for the
BS model or by eq. (9) in the case of FJBV model. Taking
this into account, the condition μads = μdes leads to the
following “plateau law” relationship

l0 fp

kBT
=

⎧⎨
⎩
|ln[μ3z

∗(ε)]|ν , for BS model,

G−1 (|ln[μ3z
∗(ε)]|) , for FJVB model,

(12)

where G−1(x) stands for the inversion of the function
G(x) = x coth(x) − 1. One should note that eq. (12) co-
incides with eq. (3.16) in ref. [14] which determines the
detachment line in the pulling controlled by the applied
force. Close to the critical point εc, the plateau force fp

goes to zero. Indeed, since in the vicinity of the criti-
cal point ln[μ3z

∗(ε)] ∝ −(ε − εc)1/φ (see ref. [14]), and
G−1(x) ≈ (3x)1/2, one may conclude that fp ∝ (ε− εc)ν/φ

for the BS model and fp ∝ (ε − εc)1/2φ for the FJVB
model.

One can resolve eq. (11) with respect to M (taking
into account that h � RM ), and arrive at the expression
for the tail length

M(h, ε) =

⎧⎪⎨
⎪⎩

h
l0

(
kBT
l0fp

)1/ν−1

, for BS model,

h
l0

[
L

(
l0fp
kBT

)]−1

, for FJVB model,
(13)

where the force at the plateau, fp, is described by eq. (12).
If for the degree of adsorption one uses as an order pa-
rameter the fraction of chain contacts with the plane,
n = Ns/N , where Ns is the number of monomers on the
surface, one can write [14]

n = − 1
kBTN

∂

∂ε
(Fads + Ftail) , (14)

where Fads and Ftail are free energies of the adsorbed
and desorbed portions of the chain, respectively. The
free energy Fads = kBT [N − M(h, ε)] ln z∗(ε), whereas
Ftail = kBTμdesM(h, ε) (recall that μdes is the chemical
potential of a desorbed monomer). After substitution of
these expressions in eq. (14) and taking into account that
in equilibrium μads = μdes (the sequence of operations is
important: the derivation with respect to ε to be followed
by the condition μads = μdes), one gets

n = −
[
1 − M(h, ε)

N

]
∂ ln z∗(ε)

∂ε
, (15)

i.e. the order parameter n is defined by the product of
monomer fraction in the adsorbed portion, 1 − M/N ,
and the fraction of surface contacts in this portion,
−∂ ln z∗/∂ε. The expressions for the order parameter can

be recast in the form

n =
∣∣∣∣∂ ln z∗(ε)

∂ε

∣∣∣∣

×

⎧⎪⎨
⎪⎩

1 − h
c1l0N

(
kBT
l0fp

)1/ν−1

, for BS model,

1 − h
c2l0N

[
L

(
l0fp
kBT

)]−1

, for FJVB model.
(16)

Here c1 and c2 are some constants of the order of unity.
As one can see from eq. (16), the order parameter de-

creases linearly and steadily with h/N . This behavior is
qualitatively different from the abrupt jump of n when the
pulling force f is changed as a control parameter. In sect. 5
we will show that this predictions is in a good agreement
with our MC findings. The transition point on the n vs. h
curve corresponds to total detachment, n = 0. The corre-
sponding distance h will be termed a “detachment height”
hD. The dependence of hD on the adsorption energy ε can
be obtained from eq. (16) where n is set to zero, i.e.

hD

l0N
=

⎧⎪⎨
⎪⎩

(
l0fp
kBT

)1/ν−1

, BS model,

L
(

l0fp
kBT

)
, FJVB model,

(17)

where again fp as a function of ε is given by eq. (12).
The line given by eq. (17), is named “detachment line”. It
corresponds to an adsorption - desorption polymer tran-
sition which appears as of second order since this order
parameter n goes to zero continuously as h increases. One
should emphasize, however, that this “detachment” tran-
sition has the same nature as the force-induced desorption
transition [14] in the f -ensemble where the pulling force f ,
rather than the distance h, is fixed and used as a control
parameter. This phase transformation is known to be of
first order.

It is easy to understand (cf. with eq. (13)) that the
condition M(h, ε) = N corresponds to the detachment
line as well as to a terminal point of the force plateau. It
can be seen in the MC - simulation results in sect. 5, fig. 8.

3 Probability distribution P(K) of the number
of adsorbed monomers

The grand canonical ensemble (GCE) method, which has
been used in our recent paper [14], is a good starting point
to calculate the probability distribution function P (K) of
the adsorbed monomers number K. According to this ap-
proach, the GCE partition function of an adsorbed chain
has the form

Ξ(z, w) =
∞∑

N=1

∞∑
K=0

ΞN,K zN wK =
V0(wz) Q(z)

1 − V (wz) U(z)
,

(18)
where z and w = exp(ε) are the fugacities conjugated to
chain length N and to the number of adsorbed monomers
K, respectively. In eq. (18) U(z), V (wz) and Q(z) denote
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the GCE partition functions for loops, trains and tails,
respectively. The building block adjacent to the tethered
chain end corresponds to V0(wz) = 1+V (wz). It has been
shown [14] that the functions U(z), V (wz) and Q(z) can
be expressed in terms of polylog functions, defined in the
paragraph after eq. (10), as U(z) = Φ(α, μ3z), V (wz) =
Φ(1 − γd=2, μ2wz) and Q(z) = 1 + Φ(1 − γ1, μ3z), where
μ3 and μ2 are 3d and 2d connective constants respectively.
By making use of the inverse Laplace transformation of
Ξ(z, w) with respect to z (see, e.g., [25]) the partition
function (canonical with respect to the chain length N) is
obtained as

ΞN (w) =
∞∑

K=0

ΞN,K wK = exp[−N ln z∗(w)], (19)

where z∗(w) is a simple pole of Ξ(z, w) in the complex z-
plane given by equation V (wz∗)U(z∗) = 1, i.e. by eq. (10).

The (non-normalized) probability for the chain to
have K adsorbed monomers is P (K) ∝ ΞN,K eεK =
exp[−F(K)/kBT ], where F(K) is the free energy at given
K. It is convenient to redefine the fugacity w as w → ξw,
(as well as wc → ξwc) where ξ is an arbitrary complex
variable. Then the probability P (K) can be found as the
coefficient of ξK in the function ΞN (ξw) expansion in pow-
ers of ξ. Therefore

P (K)=exp[−F(K)/kBT ]=
1

2πi

∮
exp[−N ln z∗(ξ w)]

ξK+1
dξ,

(20)
where the contour of integration is a closed path in the
complex ξ plane around ξ = 0 (see, e.g., [25]). To esti-
mate the integral in eq. (20) we use the steepest-descent
method [25].

For large N the main contribution to the integral in
eq. (20) is given by the saddle point ξ = ξ0 of the integrand
which is defined by the extremum of the function g(ξ) =
− ln z∗(ξ w) − [(K + 1)/N ] ln ξ, i.e., by the condition

K + 1
ξ0

= − N
∂ ln z∗

∂ξ

∣∣∣∣
ξ=ξ0

. (21)

The integral is dominated by the term exp[−N ln z∗

(ξ0w) − (K + 1) ln ξ0]. Another contribution comes from
the integration along the steepest-descent line. As a result,
one obtains

P (K) ∝ exp[−N ln z∗(ξ0 w) − (K + 1) ln ξ0]√
N

[(
N
K

) [
∂ ln z∗

∂ξ

]2

ξ=ξ0

− ∂2 ln z∗

∂ξ2

∣∣∣
ξ=ξ0

] . (22)

The validity of the steepest-descent method is ensured
by the condition of the large second derivative Ng′′(ξ0),
which yields

Ng′′(ξ0) = N

[(
N

K

) [
∂ ln z∗

∂ξ

]2

ξ=ξ0

− ∂2 ln z∗

∂ξ2

∣∣∣∣
ξ=ξ0

]
� 1.

(23)
A more explicit calculation whithin this method can be
performed in the vicinity of the critical point ε = εc.

3.1 PDF of the number of adsorbed monomers close
to the critical point of adsorption

In this case the explicit form of ln z∗ is known [14] and
after the redefinition of the fugacity, w → ξw, reads

ln z∗(ξw) = −a1(w − wc)1/φξ1/φ − ln μ3, (24)

where a1 is a constant of the order of unity. The critical
adsorption fugacity wc = exp(εc) is defined by the equa-
tion

ζ(α) Φ(1 − γd=2, μ2wc/μ3) = 1, (25)

with ζ(x) denoting the Riemann zeta-function.
By using eq. (24) in eq. (21), one arrives at the expres-

sion for the saddle point

ξ0 =
(

K

N

)φ
a2

w − wc
, (26)

where a2 = (φ/a1)φ. Using eq. (24) and eq. (26) in eq. (22)
then yields the expression for PDF

P (K) ∝ [(w − wc)ea2 ]K
(

K

N

)−φK−1/2
μN

3

N1/2
. (27)

For reasonably large K and after normalization, one ar-
rives at the final expression for the PDF:

P (K) =
ηK

C(η)KφK
, (28)

where we have introduced the usual adsorption scaling
variable η = b1(w−wc)Nφ (b1 is a constant of the order of
unity; see, e.g., [26]) as well as the normalization constant
C:

C(η) =
N∑

K=1

ηK

KφK
. (29)

One can readily see that the width of the distribution
increases with w or with ε. To this end, one may directly
calculate the variance of fluctuation as follows:

(K−K)2 =−N
∂2 ln z∗(w)
∂(ln w)2

∝ Nw(w/φ−wc)(w−wc)1/φ−2,

(30)
where the expression for ln z∗(w) given by eq. (24) (where
also ξ = 1) has been used. Taking into account that φ ≈
0.5, it becomes clear that the variance really grows with w.

The validity of the steepest-descent method is ensured
by the condition eq. (23). Using eq. (24) and eq. (26),
this criterion holds when N(w−wc)2(K/N)1−2φ � 1. We
recall that φ ≈ 0.5, so that (w−wc)N1/2 � 1. As a result,
the criterion becomes

N−1/2 � (w − wc) � 1. (31)

In the deep adsorption regime this condition might be
violated. Nevertheless, the steepest-descent method still
could be used there provided that the appropriate solution
for z∗(w) (see eq. (10)) is chosen.
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3.2 The regime of deep adsorption

In the deep adsorption regime we should use the solution
for z∗(w) which was also discussed in ref. [14]. Namely, in
this case

z∗(w) ≈ 1
μ2w

[
1 −

(
μ3

μ2w

)1/(1−λ)
]

. (32)

With eq. (32) the mean value K = −N∂ ln z∗(w)/∂ ln w
can be written as

K

N
= 1 − 1

1 − λ

(
μ3

μ2w

)1/(1−λ)

, (33)

thus K tends to N with w growing as it should be. The
variance of the fluctuations within the GCE then becomes

(K − K)2 = −N
∂2 ln z∗(w)
∂(ln w)2

=
N

(1 − λ)2

(
μ3

μ2w

)1/(1−λ)

,

(34)
i.e., the fluctuations decrease when the adsorption energy
grows. Comparison of this result with the result given by
eq. (30) leads to the important conclusion that the fluc-
tuations of the number of adsorbed monomers first grow
with ε, attain a maximum, and finally decrease with in-
creasing surface adhesion ε. The position of the maximum
reflects the presence of finite-size effects, however, as the
chain length N → ∞, this maximum occurs at the CAP.

Consider now the steepest-descent treatment for the
deep adsorption regime. With eq. (32) (after the rescaling
w → ξw) in eq. (21), the saddle point becomes

ξ0 = b2

(
μ3

μ2w

)(
1 − K

N

)−(1−λ)

, (35)

where b2 = (1 − λ)−(1−λ) (recall that 1 − λ = γd=2 =
1.343). The main contribution comes from the exponential
term in eq. (22) which is given by

exp [−N ln z∗(wξ0) − (K + 1) ln ξ0] =

(μ2w)N

(
b2μ3e1−λN1−λ/μ2w

)N−K

(N − K)(1−λ)(N−K)
. (36)

For N − K � 1 the expression for the non-normalized
PDF takes the form

P (K) ∝
(
b3μ3N

1−λ/μ2w
)N−K

(N − K)(1−λ)(N−K)
, (37)

where b3 is a constant of the order of unity. Normalization
of this distribution yields

P (K) =
χN−K

R(χ)(N − K)(1−λ)(N−K)
, (38)

where the parameter χ = b3(μ3/μ2w)N1−λ and the nor-
malization constant

R(χ) =
N−1∑
K=1

χN−K

(N − K)(1−λ)(N−K)
. (39)
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Fig. 3. (a) Probability distribution function of the number
of chain contacts with the grafting plane, K, for different de-
grees of adhesion ε and no pulling force f = 0 as follows from
eqs. (28) and (38). The variance of P (K) is shown in the inset
for different ε. (b) The same as in (a) for ε = 1.75 and dif-
ferent heights of the chain-end h. The change of the variance
〈K2〉 − 〈K〉2 with h is shown in the inset.

The validity condition, eq. (23), in the deep adsorption
regime (after substitution of eq. (32) into eq. (23)) requires

(N − K)3/2−λ � (μ3/μ2w)N1−λ, (40)

i.e., K should not be very close to N . In fig. 3a we show
the PDF of the number of chain contacts, P (K), for a free
chain without pulling and several adsorption strengths of
the substrate. One can readily verify that visually the
shape of P (K) resembles very much a Gaussian distri-
bution for moderate values of εc ≈ 1.7 < ε < 6.0. The
PDF variance goes through a sharp maximum at ε � εc

and then declines, as expected from eq. (34).
One should note that in the f ensemble (where the

force f and not the distance h acts as a control pa-
rameter [14]) the order parameter n = K/N undergoes
a jump at the detachment adsorption energy εD. This
means that N(∂2 ln z∗/∂ε2)εD

= −(∂K/∂ε)εD
→ −∞.

Thus at the detachment point the variance of the fluc-
tuations (K − K)2 = −N(∂2 ln z∗/∂ε2)εD

→ ∞, which
practically means that for chains of a finite length the
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distribution at ε = εD becomes very broad, in sharp con-
trast to eq. (34). This has indeed been observed in our
MC simulation results (see fig. 12 in ref. [14]).

3.3 P(K) distribution in the subcritical regime w < wc

of underadsorption

In the subcritical regime, w < wc, the fraction of adsorbed
points (order parameter) n = K/N = 0, in the thermo-
dynamic limit. Nevertheless, K �= 0 and one can pose
a question about the form of PDF P (K). At w < wc

the solution for z∗(w) (the simple pole of Ξ(z, w) in the
complex z-plane) does not exist because V (wz)U(z) < 1
(see eq. (18)). However, the tail GCE partition function
Q(z) = 1+Φ(1−γ1, μ3z) ∝ Γ (γ1)/(1−μ3z)γ1 has a branch
point at z = 1/μ3 (see eq. (A 11) in ref. [14]) which governs
the coefficient at zN , i.e., the partition function ΞN (w).
The calculation (following sect. 2.4.3 in ref. [25]) yields

ΞN (w) =
1 + Φ(λ, μ2w/μ3)

1 − ζ(α) Φ(λ, μ2w/μ3)
μN

3 Nγ1−1, (41)

where λ = 1−γd=2 and we have also used that at z = 1/μ3

the loop and train GCE partition functions are U(1/μ3) =
Φ(α, 1) = ζ(α) and V (w/μ3) = Φ(λ, μ2w/μ3), respec-
tively. This expression has a pole at w = wc (cf. eq. (25))
which yields the coefficient of wK , i.e. ΞN,K . Recall that
ΞN (w) =

∑∞
K=0 ΞN,KwK , so that P (K) ∝ ΞN,KwK . Ex-

pansion of the denominator in eq. (41) around w = wc

reveals the simple pole as follows:

ΞN (w) =
[1 + 1/ζ(α)] μN

3 Nγ1−1

ζ(α) Φ(−γd=2, μ2wc/μ3)

(
wc

wc − w

)
. (42)

In (42) we have used the relationship x(d/dx)Φ(1 −
γd=2, x) = Φ(−γd=2, x). The coefficient of wK , i.e., ΞN,K ,
is proportional to w−K

c . Therefore P (K) ∝ (w/wc)K =
exp[−(εc − ε)K]. Taking the normalization condition∑N

K=0 P (K) = 1 into account, the final expression for
P (K) can be recast in the form

P (K) =
1 − exp[−(εc − ε)]

1 − exp[−N(εc − ε)]
exp[−K(εc − ε)], (43)

i.e., P (K) has a simple exponential form. The calculation
of the average K =

∑N
K=0 KP (K) leads to the simple

result K = [exp(εc − ε) − 1]−1 ≈ 1/(εc − ε), i.e., K → ∞
at ε → εc. On the other hand, we know that K = Nφ

at ε = εc. In order to prevent a divergency at ε = εc, one
should incorporate an appropriate cutoff in the PDF given
by eq. (43). With this the distribution is given by

P (K) =
1 − exp[−(εc − ε + 1/Nφ)]

1 − exp[−N(εc − ε + 1/Nφ)]

× exp[−K(εc − ε + 1/Nφ)]. (44)

Thus the expression for the average number of adsorbed
monomer has the correct limit behavior, i.e.,

K =
1

εc − ε + 1/Nφ
. (45)

3.4 Probability distribution function P(K) in the
h-ensemble

Eventually we examine how the fixed chain-end height h
affects the PDF of the number of contacts K. To this end,
we refer again to fig. 2a where an adsorbed chain with
a fixed last monomer height h is depicted. The adsorbed
chain consists of a tail of length M and of an adsorbed
part with N −M beads. One should bear in mind that M
is a function of the control parameters h and w = exp(ε)
given by eqs. (12) and (13). The partition function of the
adsorbed part is then given by

ΞN (w)=
N∑

K=0

ΞN,KwK = exp {−[N − M(h,w)] ln z∗(w)} ,

(46)
where we took into account that the free energy of
the adsorbed portion is given as Fads = kBT [N −
M(h,w)] ln z∗(w) (see sect. 2.2).

As mentioned above, the PDF P (K) ∝ ΞN,K wK , so
that by means of rescaling w → ξw and wc → ξwc the
PDF can be found as the coefficient of ξK , i.e.,

P (K) =
1

2πi

∮
exp {−[N − M(h, ξw)] ln z∗(ξw)}

ξK+1
dξ.

(47)
As well as before, the steepest-descent method can be used
to calculate the integral in eq. (47). However, in this case
the calculations are more complicated and we have rele-
gated most of them to appendix B. As may be seen there,
the saddle point equation cannot be solved analytically in
general case but could be treated iteratively for relatively
small heights h.

One can readily see that for h = 0, eq. (B.7) reduces
to eq. (28). The PDF, following from eq. (B.7) is shown
in fig. 3b for ε = 1.75 and several values of the height h.
It can be seen that the curve for h = 0 coincides with the
curve for ε = 1.75 in fig. 3a as it should be. Evidently, both
the mean value K and K2 − K

2
decline with growing h.

4 Monte Carlo simulation model

We use a coarse-grained off-lattice bead-spring model [27]
which has proved rather efficient in a number of polymers
studies so far. The system consists of a single polymer
chain tethered at one end to a flat impenetrable struc-
tureless surface. The surface interaction is described by a
square well potential,

Uw(z) =

{
ε, z < rc,

0, z ≥ rc.
(48)

The strength ε is varied from 2.0 to 5.0 while the inter-
action range rc = 0.125. The effective bonded interaction
is described by the FENE (finitely extensible nonlinear
elastic) potential:

UFENE = −K(1 − l0)2ln

[
1 −

(
l − l0

lmax − l0

)2
]

, (49)
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with K = 20, lmax = 1, l0 = 0.7, lmin = 0.4. The non-
bonded interactions between monomers are described by
the Morse potential:

UM (r)
εM

= exp(−2α(r−rmin))−2 exp(−α(r−rmin)), (50)

with α = 24, rmin = 0.8, εM/kBT = 1. In few cases,
needed to clarify the nature of the polymer chain resis-
tance to stretching, we have taken the non-bonded inter-
actions between monomers as purely repulsive by shifting
the Morse potential upward by εM and removing its at-
tractive branch, VM (r) = 0 for r ≥ rmin.

We employ periodic boundary conditions in the x-y
directions and impenetrable walls in the z direction. The
lengths of the studied polymer chains are typically 64, and
128. The size of the simulation box was chosen appro-
priately to the chain length, so for example, for a chain
length of 128, the box size was 256 × 256 × 256. All sim-
ulations were carried out for constant position of the last
monomer z-coordinate, that is, in the fixed height ensem-
ble. The fluctuating force f , exerted on the last bead by
the rest of the chain, was measured and average over about
2000 measurements. The standard Metropolis algorithm
was employed to govern the moves with self-avoidance au-
tomatically incorporated in the potentials. In each Monte
Carlo update, a monomer was chosen at random and a
random displacement attempted with Δx, Δy, Δz chosen
uniformly from the interval −0.5 ≤ Δx,Δy,Δz ≤ 0.5. If
the last monomer was displaced in z direction, there was
an energy cost of −fΔz due to the pulling force. The tran-
sition probability for the attempted move was calculated
from the change ΔU of the potential energies before and
after the move was performed as W = exp(−ΔU/kBT ).
As in a standard Metropolis algorithm, the attempted
move was accepted, if W exceeds a random number uni-
formly distributed in the interval [0, 1].

As a rule, the polymer chains have been originally
equilibrated in the MC method for a period of about
5 × 105 MCS after which typically 500 measurement runs
were performed, each of length 2 × 106 MCS. The equili-
bration period and the length of the run were chosen ac-
cording to the chain length and the values provided here
are for the longest chain length.

5 Monte Carlo simulation results

In order to verify the theoretical predictions, outlined in
sect. 2, we carried out extensive Monte Carlo simulations
with the off-lattice model, defined in sect. 4. In these sim-
ulations we fix the end monomer of the polymer chain
at height h above the adsorbing surface, and measure
the (fluctuating) force, needed to keep the last bead at
distance h, as well as the corresponding fraction of ad-
sorbed monomers n. These computer experiments are per-
formed at different strengths ε of the adsorption potential,
eq. (48). In figs. 4a,b we compare the predicted depen-
dence of the order parameter n on the (dimensionless)
height h/l0N at several values of 2.0 ≤ ε ≤ 5.0 with the
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Fig. 4. (a) Order parameter (fraction of adsorbed monomers)
n variation with changing height h/l0N of the fixed chain-
end for polymers of length N = 128 and different adsorption
strength ε/kBT . (b) Variation of n with ε/kBT for different
fixed positions of the chain-end h/l0N as is seen from MC
data. Insets show the resulting n-ε relationship at several fixed
heights h.

results from MC simulations. Note that the critical point
of adsorption εc ≈ 1.69, so we take our measurements
above the region of critical adsorption. Typically, both in
the analytic results, fig. 4a, and in the MC data, fig. 4b,
for N = 128, one recovers the predicted linear decrease of
n with growing h. Finite-size effects lead to some rounding
of the simulation data (in fig. 4b these effects are seen to
be larger for N = 64 than for N = 128) when n → 0 so
that the height of detachment hD is determined from the
intersection of the tangent to n(h) and the x-axis where
n = 0. Evidently, with growing adsorption strength, ε, a
larger height hD is needed to detach the polymer from
the substrate. Thus, one may construct a phase diagram
for the desorption transition, which we show in fig. 5. The
theoretical prediction is given by eq. (17).

In the insets of fig. 4a,b we also show the variation
of the fraction of adsorbed segments n with adsorption
strengths ε for several heights 20 ≤ h ≤ 50 of a chain with
N = 128. It is evident that, apart from the rounding of the
MC data for n at n → 0, one finds again a pretty good
agreement between the behavior, predicted by eq. (15),
and the simulation results.
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Fig. 5. Phase diagram showing the dependence of the criti-
cal height of polymer detachment from the substrate, hD/l0N ,
with the relative strength of adsorption (ε − εc)/kBT , where
εc/kBT is the critical point of adsorption at zero force. The
theoretical curves follow eq. (17).

The gradual change of n in the whole interval of pos-
sible variation of h suggests a pseudo-continuous phase
transition, as pointed out in the end of sect. 2, eq. (16).
Of course, if h is itself expressed in terms of the mea-
sured pulling force, one would again find that n changes
abruptly with varying f at some threshold value fD, indi-
cating a first-order transformation from an adsorbed into
a desorbed state of the polymer chain.

It has been pointed out earlier by Skvortsov et al. [12]
that while both the fixed-force and the fixed-height en-
sembles are equivalent as far as the mean values of ob-
servables such as the fraction of adsorbed monomers and
other related quantities are concerned, this does not apply
to some more detailed properties like those involving fluc-
tuations. Therefore, it is interesting to examine the fluc-
tuations of the order parameter, n, for different values of
our control parameter h, and compare them to theoretical
predictions for P (K) from sect. 2. First we compare the
order parameter distribution P (n) for zero force, fig. 6, ob-
tained from our computer experiment, to that, predicted
by eqs. (28, 38, 44), and displayed in fig. 3a. It is evi-
dent from fig. 6 that for free chains at different strengths
of adhesion there is a perfect agreement between analyt-
ical and simulational results. For rather weak adsorption
ε = 1.3 ± 1.6 < εc = 1.67 in the subcritical regime, one
can verify from fig. 6 that P (n) gradually transforms from
nearly Gaussian into exponential distribution, as expected
from eq. (44). For ε > εc the distribution width grows and
goes through a sharp maximum in the vicinity of εc, and
then drops as ε increases further —compare insets in fig. 6
and fig. 3a.

Let us consider now PDF in the presence of pulling. In
fig. 7a we display the distribution P (n) measured in the
MC simulations for different heights h and constant ad-
sorption energy ε = 3.0. One can readily verify from our
results that far enough from the detachment line, h < hD,
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Fig. 6. PDF of the order parameter (fraction of contacts with
the plane) for different adsorption strength ε at zero force. The
critical adsorption point (CAP) εc ≈ 1.67. The change of the
variance 〈n2〉 − 〈n〉2 with varying ε is displayed in the inset.

the shape of P (n) looks like Gaussian and that the second
moment, 〈(Δn)2〉, remains unchanged with varying height
h. Of course, when h → hD, the maximum of P (n) shifts
to lower values of n. Only in the immediate vicinity of hD,
where n → 0 and the fluctuations strongly decrease, one
observes a significant deviation from the Gaussian shape
—cf. the inset in fig. 7a. The latter is illustrated in more
detail in fig. 7b where we show the measured variation of
the second moment, 〈(Δn)2〉, and that of the third mo-
ment, 〈(n−〈n〉)3〉 with increasing height h. The deviation
from Guassinity in P (n), measured by the deviation of
the third moment from zero, is localized in the vicinity of
the detachment height hD. The corresponding theoretical
prediction for the relatively weak adsorption strength is
depicted in fig. 3b. It can be seen that with increasing h
the almost Gaussian distribution tends to a Poisson-like
one. Also the fluctuations decrease with h in accordance
with MC findings.

The force f , exerted by the chain on the end-monomer,
when the latter is kept at height h above the surface, is
one of the main properties which can be measured in ex-
periments carried out within the fixed-height ensemble.
Note that f has the same magnitude and opposite sign,
regarding the force, applied by the experimentalist. The
variation of the force f with increasing height h is shown
in fig. 8a for several values of the adsorption potential
2.0 ≤ ε ≤ 5.0. In fig. 8a we distinguish between two con-
tributions in the total force f , acting on the end bead. The
first stems from the quasi-elastic forces of the bonded in-
teraction (FENE) whereas the second contribution is due
to the short-range (attractive) interactions between non-
bonded monomers (in our model the Morse potential).
A typical feature of the f -h relationship, namely, the ex-
istence of a broad interval of heights h where the force
remains constant (a plateau in the force) is readily seen in
fig. 8a. With growing strength of adsorption ε the length
of this plateau as well as the magnitude of the plateau
force increase. Note that, for ε = 0, no plateau whatso-
ever is found. Upon further extension (by increasing h)
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Fig. 7. (a) Probability distribution P (n) of the order param-
eter n (i.e., the fraction of adsorbed monomers) for N = 128
and ε = 3.0 at different heights of the chain-end h over the
grafting plane. In the inset we show P (n) at the detachment
line hD = 54.3. (b) Variation of the second and third cen-
tral moments of P (n) with h. The maximum of 〈(n− 〈n〉)3〉 is
reached at h = hD.

of the chain, the plateau ends and the measured force
starts to grow rapidly in magnitude —an effect, caused by
a change of the chain conformation itself in the entirely
desorbed state.

A closer inspection of fig. 8a reveals that the non-
bonded contribution to f , which is generally much weaker
than the bonded one, behaves differently, depending on
whether the forces between non-nearest neighbors along
the backbone of the chain are purely repulsive, or contain
an attractive branch. While for strong adsorption, ε ≥ 3.0,
a plateau is observed even for attractive non-bonded in-
teractions, for weak adsorption, ε ≤ 2.0, an increase of
the non-bonded contribution at h/l0N ≈ 0.35, (seen as
a minimum in fig. 8a) is observed. This effect is entirely
missing in the case of purely repulsive non-bonded inter-
actions —see the inset in fig. 8a where the contributions
from bonded and non-bonded interactions are shown for
a neutral surface ε = 0. If one plots the magnitude of the
measured force at the plateau against the corresponding
value of the adsorption potential, ε, one may check the
theoretical result, eq. (12) —fig. 8b. Evidently, the theo-
retical predictions about fp agree well with the observed
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Fig. 8. (a) Variation of the two components to the total force,
exerted by the chain on the end-monomer which is fixed at
a (dimensionless) height h/l0N for different adsorption po-
tentials 2.0 ≤ ε/kBT ≤ 5.0: bonding interactions (full sym-
bols) and non-bonding Morse interactions (empty symbols).
In the inset the same is shown for a neutral plane ε = 0.0
for purely repulsive monomers (triangles) and for such with a
weak Morse attraction (circles). (b) Variation of the total force
(plateau hight) exerted by the AFM tip on the chain-end for
chain length N = 128 with the relative strength of adsorption
(ε − εc)/kBT .

variation of the detachment force in the MC simulation,
both within the BS or FJBV models, as long as only the
excluded-volume interactions in the MC data are taken
into account. If the total contribution to fp, including
also attractive non-bonded interactions in the chain, is
depicted —black triangles in fig. 8b— then the agreement
with the theoretical curves deteriorates since the latter do
not take into account the possible presence of attractive
non-bonded interactions.

The f -h relationship, which gives the equation of state
of the stretched polymer, may be derived within one of
the different theoretical models, e.g., that of BS, eq. (6),
or FJBV model, eq. (8), as mentioned in sect. 2. Which of
these theoretical descriptions is the more adequate can be
decided by comparison with experiment. In fig. 9a,b, we
present such comparison by plotting our simulation data
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Fig. 9. (a) Variation of the total applied force f with growing
height of the end-monomer in terms of Pincus reduced vari-
ables, fl0N

ν/kBT versus h/l0N
ν , for a polymer with purely

repulsive non-bonded forces for N = 64, 128. (b) The same as
in (a) but in terms of reduced units fl0/kBT versus h/l0N for
purely repulsive (empty symbols) as well as for usual Morse
potential (full symbols) of non-bonded interactions between
monomers. The FJBV model results, eq. (8), is shown by a
solid line. Arrows indicate the unperturbed gyration radius po-
sitions Rg/N for N = 64, 128.

using different normalization for the height h. From fig. 9a
it becomes evident that the data from our computer exper-
iment for N = 64 and N = 128 collapse on a single curve,
albeit this collapse only holds as long as h/l0N

ν ≤ 3.0 for
the BS model while it fails for stronger stretching. In con-
trast, this collapse works well for all values of h, provided
the height is scaled with the contour length of the chain
N , rather than with Nν , as in the FJBV model, fig. 9b,
regardless of whether a purely repulsive, or the full Morse
potential (which includes also an attractive part) of inter-
actions is involved. The analytical expression, eq. (8), is
found to provide perfect agreement with the simulation
data for strong stretching, h/l0N ≥ 0.4. From the simu-
lation data on fig. 9 one may even verify that the force f
goes through zero at some height h > 0 and then turns
negative, provided one keeps the chain-end very close to
the grafting surface (cf. eq. (6)).

6 Summary

In the present work we have treated the force-induced
desorption of a self-avoiding polymer chain from a flat
structureless substrate both theoretically and by means
of Monte Carlo simulation within the constant-height en-
semble. The motivation for this investigation has been the
necessity to distinguish between results obtained in this
ensemble and results, derived in the constant-force en-
semble, considered recently [14], as far as both ensembles
could in principle be used by experimentalists. We demon-
strate that the observed behavior of the main quantity of
interest, namely, the fraction of adsorbed beads n (i.e.,
the order parameter of the phase transition) with chang-
ing height h differs qualitatively from the variation of the
order parameter when the pulling force is varied. In the
constant-height ensemble one observes a steady variation
of n with changing h, whereas in the constant-force ensem-
ble one sees an abrupt jump of n at a particular value of
fD, termed a detachment force. However, this should not
cast doubts on the genuine first-order nature of the phase
transition which can be recovered within the constant-
height ensemble too, provided one expresses the control
parameter h in terms of the average force f . This equiva-
lence has been studied extensively for Gaussian chains by
Skvortsov et al. [12] who noted that ensemble equivalence
does not apply to fluctuations of the pertinent quantities
too.

Indeed, in our earlier study [13] we found diverging
variance of the PDF P (n) at fD whereas in our present
study the fluctuations of the order parameter are observed
to stay finite at the transition height hD. These findings
confirm theoretical predictions based on analytic results
which we derive within the GCE approach. Within this
approach, we have explored two different theoretical mod-
els for the basic force-extension relationship, namely, the
bead-spring (BS) model as well as that of a Freely Jointed
Bond Vectors (FJBV) model. Our simulation results in-
dicate a good agreement between theory and computer
experiment.

We are indebted to A. Skvortsov for useful discussions dur-
ing the preparation of this work. A. Milchev thanks the Max-
Planck Institute for Polymer Research in Mainz, Germany,
for hospitality during his visit at the institute. A. Milchev
and V.G. Rostiashvili acknowledge support from the Deutsche
Forschungsgemeinschaft (DFG), grant No. SFB 625/B4.

Appendix A. Freely jointed bond vectors
model

The deformation law in the overstretched regime (when
the chain deformation is close to its saturation) could be
treated better within the FJBV model. Let us consider
a tethered chain of the length N with one end anchored
at the origin of the coordinates and the external force fN

acting on the free end. The corresponding deformation
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energy reads

Uext = −fN r⊥N = −fN

N∑
i=1

bi cos θi, (A.1)

where r⊥N is the z-coordinate (directed perpendicular to
the surface) of the chain-end, bi and θi are the length and
the polar angle of the i-th bond vector, respectively. The
corresponding partition function of the FJBV model is
given by

ZN (fN ) =
∫ N∏

i=1

dφi sin θidθi exp

(
fN

kBT

N∑
i=1

bi cos θi

)

= (4π)N
N∏

i=1

(
kBT

bifN

)
cosh

(
bifN

kBT

)
. (A.2)

The average orientation of the i-th bond vector can be
calculated as

〈cos θi〉 =
(

kBT

fN

)
∂

∂bi
ln ZN (fN )

= coth
(

bifN

kBT

)
−

(
kBT

bifN

)
. (A.3)

From eq. (A.3) the chain-end mean distance h is given by

h =
N∑

i=1

bi〈cos θi〉 = bNL
(

bfN

kBT

)
, (A.4)

where we have taken into account that the lengths of all
bond vectors are the same, bi = b, and where L(x) =
coth(x) − 1/x is the Langevin function. This leads to the
force-distance relationship

bfN

kBT
= L−1

(
h

bN

)
=

{
1

1−h/bN , at h/bN ≤ 1,

2h
bN , at h/bN � 1,

(A.5)

which we use in sect. 2. The notation L−1(x) stands for
the inverse Langevin function.

Appendix B. Calculation of PDF in the
h-ensemble

Using eq. (24) for ln z∗(w) as well as eqs. (12) and (13)
(for the BS model), one obtains an expression for the tail
length

M(h, ξ w) =
h/l0[

aφ
1 (w − wc) ξ

](1−ν)/φ
. (B.1)

The saddle point (SP) equation in this case reads (cf.
eq. (21))

K + 1
ξ0

= − [N − M(h, ξ0w)]
∂ ln z∗

∂ξ

∣∣∣∣
ξ=ξ0

+
∂M

∂ξ

∣∣∣∣
ξ=ξ0

× ln z∗(ξ0w). (B.2)

Taking into account eqs. (24) and (B.1), after introducing
the notation y = (w−wc)ξ0, the SP equation can be recast
in the form(

K

N

)
= y1/φ − B1

(
h

l0N

)
yν/φ − B2

(
h

l0N

)
ln μ3

y(1−ν)/φ
,

(B.3)
where B1 and B2 are constants of the order of unity. In the
particular case h = 0, eq. (B.3) goes back, as expected, to
eq. (26). Providing that h � l0N , eq. (B.3) can be solved
iteratively as

y =
[(

K

N

)
+ B1

(
K

N

)ν (
h

l0N

)

+B2 ln μ3

(
N

K

)1−ν (
h

l0N

)]φ

. (B.4)

As before the main contribution in the integral given by
eq. (47) reads

P (K) ∝ exp {− [N − M(h, ξ0w)] ln z∗(ξ0w)

−(K + 1) ln ξ0} =

{
(w − wc)Nφ

× exp

[
1 − (h/l0N)

(K/N)1−ν [ρ(K/N, h/l0N)]1−ν

]

×ρ(K/N, h/l0N)

}K

[Kρ(K/N, h/l0N)]−φK
, (B.5)

where one introduces the notation

ρ(K/N, h/l0N) ≡ 1+B1
h/l0N

(K/N)1−ν
+B2 ln μ3

(h/l0N)
(K/N)2−ν

.

(B.6)
After normalization, the final expression for the PDF
reads

P (K) =
1

W(η, h/l0N)

×
{

η exp

[
1 − (h/l0N)

(K/N)1−ν [ρ(K/N, h/l0N)]1−ν

]

×ρ(K/N, h/l0N)

}K

[Kρ(K/N, h/l0N)]−φK
, (B.7)

where, as before, η = (w − wc)Nφ and the normalization
constant reads

W(η, h/l0N) =
N∑

K=1

{
η exp

[
1 − (h/l0N)

(K/N)1−ν [ρ(K/N, h/l0N)]1−ν

]

×ρ(K/N, h/l0N)

}K

[Kρ(K/N, h/l0N)]−φK
. (B.8)

Again one can readily see that for h = 0 eq. (B.7) reduces
to eq. (28). The PDF, following from eq. (B.7) is shown in
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fig. 3b for several values of the height h. Evidently, both
the mean value K and the variance K2 −K

2
decline with

growing h.
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