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Abstract. We investigate a system consisting of two like-charged infinitely long rods and neutralizing
counterions at low temperatures, using both analytic theory and simulations. With some reasonable ap-
proximations we can analytically solve for several ground-state structures of the model, starting with
states where all counterions are lined up in the gap between the rods, over planar configurations, where
the counterions are divided up into a fraction which resides between the rods, and counterions which
are located on the outer surfaces, up to configurations which cover the full rod surfaces. Using parallel
tempering simulations, we are able to study the system over a wide range of temperatures. At low temper-
atures we find good agreement with our T = 0 results. At higher temperatures, the strong coupling (SC)
theory delivers qualitatively better results. We furthermore demonstrate that for the SC theory and our
ground-state approximations to yield quantitative agreement, three parameters are required to be large,
the strong-coupling parameter Ξ, the Rouzina-Bloomfield parameter, and the ratio of the average distance
of the counterions to the radius of the rods. In the case of the latter ratio being small, our T = 0 results
show better agreement with the simulation data at very low temperatures.

PACS. 87.15.-v Biomolecules: structure and physical properties – 87.15.N- Properties of solutions of
macromolecules

1 Introduction

In a polar solvent, macromolecules possessing dissocia-
ble groups can acquire a charge by ionic dissociation.
In this way, charged polymers, called polyelectrolytes, or
charged macromolecules in general, are surrounded by a
so-called “double layer” of oppositely charged counteri-
ons. It is well known that sufficiently strong electrostatic
interactions lead to behavior which cannot be described
on the mean-field level. The most prominent example is
like-charged attraction: it can be proven rigorously that
the standard mean-field Poisson-Boltzmann theory will
always predict repulsion between like-charged macroions,
regardless of their shape [1–4]. Nevertheless attractive in-
teractions for rod-like macroions have been confirmed by a
large number of computer simulations [5–16], and exper-
iments have shown that DNA, a stiff, highly negatively
charged polyelectrolyte, can be condensed by multivalent
counterions [17–19]. This correlation-induced attraction is
for instance believed to be important for the compaction
of DNA inside viral capsids [20,21]. In this article we deal
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with the case of two infinitely long, charged rigid rods,
which can be regarded as simple DNA models or more
generally as a good approximation for studying the ion
distribution around semi-flexible polyelectrolytes.

The experimental as well as the theoretical observa-
tions indicate that attraction of like-charged objects oc-
curs in systems which interact via strong Coulomb inter-
actions, i.e. when multivalent counterions are present, the
macroions are highly charged, or at high Bjerrum lengths.

The Bjerrum length lB is defined as lB = e2

4πεkBT
, where

e, ε, kB, T denote the unit charge, dielectric permittiv-
ity, Boltzmann constant, and temperature, respectively;
therefore, a high Bjerrum length corresponds to a low tem-
perature, or in general a strong Coulomb interaction.

In a previous simulation study [22], we found that for
small Bjerrum lengths, the force between the two rods is
dominated by their plain repulsion. But already at mod-
erate Bjerrum lengths, attraction sets in, which often goes
along with a strong correlation hole in the radial distribu-
tion function of the counterions and interlocking patterns
along the parallel rods. This suggests that the counterions
are starting to freeze into a quasi-crystalline flat pattern
in the plane spanned by the two rods.
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The interesting findings of our previous study moti-
vated us to investigate the ground-state properties of the
system, which is the topic of the present article. We will
show that the ground-state configurations essentially only
depend on the geometric parameter γz, which is defined as
the ratio between the lateral average counterion distance
parallel to the rods, and half of the rod distance. For high
γz, all counterions are lined up equally spaced between
the rods, but below a certain value of γz, we predict a
regime of two-dimensional configurations with interlock-
ing patterns along the inner and outer rod sides. Only for
small values of γz, the stable configurations are actually
three-dimensional, i.e. counterions are found outside the
plane spanned by the two rods.

To verify our findings, we performed computer studies
using parallel tempering, which vastly extend our previous
findings [22]. We compare the results of these simulations
both to our T = 0 approximations as well as to the strong
coupling (SC) theory of Moreira and Netz [23,24]. This
theory is suited for systems with strong electrostatic cou-
pling, and has been adapted to the case of two charged
rods recently [25,26]. The theory has been shown to be
a good approximation only for large Rouzina-Bloomfield
parameter γRB, which is defined similar to γz as the ra-
tio between the lateral average counterion distance paral-
lel to the rods, and the surface-to-surface distance of the
rods.

The force between the two rods is indeed described
well by the SC theory for a wide range of temperatures,
but only above a critical value for γz. For values of γz,
for which the T = 0 theory predicts ions to be located
also outside the gap, we find strong deviations between
simulations and the SC prediction at all temperatures.
We therefore conclude that the SC theory is quantitatively
useful only if, in addition to a large value of γRB, also the
parameter γz has to be sufficiently large.

2 Approximate ground states

We start with an analytical investigation of the ground
states of a system consisting of two infinitely long parallel
rods, which are neutralized by point-like charged particles
or counterions. As we show below, these rods attract, and
therefore the equilibrium orientation of the two rods is
parallel, which we assume to hold in the following. Fur-
thermore we assume that the rods both have a line charge
density of τ < 0, a radius R and a surface-to-surface dis-
tance of Δ, and that the counterions have a charge of q > 0
(see Fig. 1). The total energy of the system is given by

Ẽ =
∑
i<j

q2

|ri − rj |
+ qτ

∑
i

{
log

[
(xi − R − Δ/2)2 + y2

i

]

+ log
[
(xi + R + Δ/2)2 + y2

i

]
−4 log R

}
=qτ

∑
i<j

γz

|r̃i − r̃j |
+ qτ

∑
i

{
log

[
(x̃i − 1 − Δ̃/2)2 + ỹ2

i

]

+ log
[
(x̃i + 1 + Δ̃/2)2 + ỹ2

i

]}
, (1)
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Fig. 1. Schematic view of the two-rod system, with the view
axis parallel to the rod axis. The large circles represent the
two rods of radius R and line charge density τ at a surface-to-
surface distance Δ. For the analytic calculations, it is assumed
that the particles form rods at the four positions marked by
small gray circles, with line charge densities given at the top of
the graph. The parameter α measures the fraction of counter-
ions located in the gap. The dashed arrows indicate the x- and
y-axis as used in the text, the z-axis is assumed to be parallel
to the rods.

where the tilde denotes a rescaling of the coordinates by
the rod radius R and the energy by e2/(4πε).

γz = q/(τR) (2)

measures the ratio between the average charge separation
parallel to the rods and the macroion-rod radius. γz and
Δ̃ are the only parameters describing the geometry of the
system, and qτe2/(4πε) (= lBqτkBT at finite tempera-
ture) determines the energy scale.

Finding the ground states of this system is neverthe-
less a formidable task, therefore we have to apply some
approximations that will be proven to be reasonable later
by comparing our findings to results obtained via com-
puter simulation. The situation is somewhat improved by
Earnshaw’s theorem which states that a collection of point
charges cannot be kept in a static configuration by purely
electrostatic interactions [27]. Since the rods are the only
objects with finite extension, this means that they either
have to repel each other and escape to infinity, or they
have to be located surface to surface (Δ̃ = 0) in the
ground state, with the counterions being distributed on
the rod surfaces. Our calculations and simulations how-
ever show that at least at short distances the rods attract,
while at large distances, they barely interact. Therefore,
the ground state of the system is the one with the two
rods in contact. Moreover the attraction will rotate the
rods into a parallel aligned position, and we can restrict
our investigation to two parallel rods in contact. However,
we will not assume Δ̃ = 0, but only that Δ̃ is small. This
allows to compare to numerical results for low, non-zero
temperatures, at which the rods are not in direct contact
in general.

For a single counterion, there are only two symmetric
electrostatic energy minima, located in the small gap be-
tween the rods on one of the rod surfaces. So each of the
counterions individually wants to be located in the gap.
However, with decreasing γz, resulting in an increase in
counterions, the gap becomes more and more populated,
and sooner or later the repulsion due to the many-body
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Fig. 2. Force between two interleaved regular charge grids as
depicted in the inset. The solid line shows the numeric result
obtained from MMM1D, the dotted lines the approximations
given by equations (7) (right branch for large δ) and (8) (left
branch for small δ).

interactions of the counterions pushes some counterions
out of the gap. To minimize the repulsion exerted by the
counterions remaining in the gap, the expelled counteri-
ons will jump to the outer sides of the rods. Further de-
creasing γz will force more and more particles out of the
plane spanned by by the rods, until the particles form a
nearly homogeneous layer around the rods, which can be
described by Wigner-Seitz cells.

Therefore we restrict ourselves in the analytical treat-
ment to only those configurations with particles in the
gap and on the opposite sides of the rods, and determin-
ing the onset of the transition from planar to non-planar
configurations. This leaves four positions for the counte-
rions in the xy-plane perpendicular to the rods, namely
either on the outer sides of the rods or on one of the rod
surfaces in the gap (see Fig. 1). The total system therefore
essentially consists of six rods, of which two are homoge-
neous line charges representing the macroions, and four
consist of discrete point charges representing the parti-
cles. To avoid confusion, we will call them macroion-rods
and particle-rods, respectively, in the following.

We now define α such that each of the inner particle-
rods, i.e. the rods formed by the counterions in the gap,
has a line charge density of ατ , while the two particle-rods
on the opposite sides have line charge density (1 − α)τ ,
due to symmetry and charge neutrality. A value of α = 1
means that all counterions are located in the gap, while
α = 0 is the case where all counterions are on the outer
sides of the rods.

The interactions of the particle-rods are highly com-
plex, since for arbitrary α the particles on the inner and
outer particle-rods will have different particle spacings.
However, on larger scales, the particles will form regular
grids. For a perfect regular grid, as depicted in Figure 2,
we can approximate the interaction well by analytical ex-
pressions both for small and large distances, as we will
show now.

2.1 Energy approximations

For the calculation of the approximate energies, we will
use the formulas of MMM1D [28], which in its original
formulation is a method to calculate the electrostatic en-
ergy in three-dimensional systems with one periodic coor-
dinate, and which is used to perform the computer sim-
ulations presented later. Here, however, the MMM1D for-
mulas will also be used to analytically calculate the en-
ergies of the approximate ground states. To this aim, we
have to quickly repeat some of the properties of MMM1D.
It is assumed that the system is periodic along only the
z-axis, with a periodicity length of λz. For convenience,
we define the inverse periodicity length uz = 1/λz. The
MMM1D method allows to calculate the total rescaled
system energy per length λz of a system of N charges
as a sum over an effective pair potential. For this effec-
tive potential, MMM1D provides two well-convergent se-
ries, one for particles with small lateral distance ρij and
one for ρ > 0. Both series reveal some important prop-
erties of the electrostatic interaction: at large distances
ρ > λz, the interaction of two (periodically replicated)
charges is essentially rod-like. For ρ < 1

2λz, we obtain from
MMM1D the effective interaction energy of two closely lo-
cated charges as

−uz

∑
n≥0

(
− 1

2
n

)
ψ(2n)(1 + uzz) + ψ(2n)(1 − uzz)

(2n)!
(uzρ)2n

+
1

r
− 2uzγ, (3)

where ψ(2n) denotes the 2n-th polygamma function [29],
and γ Euler’s constant. Finally, the effective interaction
energy between a charge q and a rod of line charge density
τ is

−2qτ(log[ρ/(2λz)] + γ), (4)

and
−2λzττ ′(log[ρ/(2λz)] + γ), (5)

for two rods of line charge densities τ and τ ′. The forces
can be obtained from the energies by simply taking the
derivative.

From the effective interaction energies of single parti-
cles, we can obtain the interaction energies for a particle-
rod consisting of charges q, regularly distributed with lat-
eral distance l. For the interaction with a rod of line charge
density τ at distance δ, we obtain from equation (4)

Ẽrp(l, τ, δ) = −2λz

q

l
τ(log[δ/(2λz)] + γ), (6)

which is simply the interaction of two rods of charge densi-
ties τ and q/l, independent of the lateral distance between
particle-rod and rod.

For the interaction with a second particle-rod with a
parallel separation l′, we obtain

Ẽfar
pp (l, l′, δ) = Ẽrp(l, q/l′, δ), (7)

provided that the lateral distance δ is larger than l and
l′. In this case, the MMM1D formalism shows that the
interaction is essentially rod-like, which is demonstrated
in Figure 2. For the interactions of the outer and inner
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particle-rods, we have a lateral distance of δ = 2R and a
charge distance l ≤ q/(2τ); the approximation therefore
holds if γz = 4l/δ ≤ 8. On the other hand, we will show
that already at γz ≥ 4 all ions line up between the rods,
in which case our calculations are exact. The two outer
particle-rods are even further apart.

For the interaction of the two inner particle-rods, we,
in contrast, need a formula for δ � λz. At close distances,
the strong local repulsion will force the two particle-rods
to interleave, as depicted in Figure 2. In this case, we can
approximate the interaction by the terms of order δ2 or
lower of equation (3). We obtain

Ẽclose
pp (l, δ) = λz

q2

l2

[
ξ − 2 log

(
λz

l

)
− η

(
δ

l

)2
]

, (8)

where

ξ = 2 − 2γ − ψ(0)

(
1

2

)
− ψ(0)

(
3

2

)
≈ 2.77,

η = 4 −

[
ψ(2)

(
1

2

)
+ ψ(2)

(
3

2

)] /
4 ≈ 8.41.

The validity of this approximation is also demonstrated in
Figure 2. It will be used for the interaction of the two inner
particle-rods which have a lateral distance Δ. Therefore,
the approximation is reasonable for small Δ/l = 2τΔ/q =
γ−1
RB. In other words, similar to the SC theory, we require

a large Rouzina-Bloomfield parameter, that is, larger than
≈ 5.

The self-energy of a particle-rod can be conveniently
derived from the MMM1D self-energy, and is given by

Ẽself(l) =
λzq

2

l2
log

λz

l
. (9)

2.2 Force between the rods

We now use the MMM1D formulas to determine under
which circumstances certain configurations are stable and
which value of α is optimal, i.e. has minimal energy. The
stability of the configuration requires that i) the net force
between the macroion-rods is attractive, so that they do
not move apart, and ii) that a particle in both the outer
and the inner particle-rods is in a local energetic mini-
mum, so that none of the particles is able to move. From
the stable configurations, we then determine the one with
the lowest energy as our approximate ground state. It is
not sure that this configuration is a minimum of the origi-
nal two-rod problem. However, we have argued above why
these states should be close to the true ground states, and
we will present computer simulation results that confirm
our predictions.

First, we calculate the force between two rods in the
planar model. For the ground state, we know that the force
has to be attractive, i.e. negative; however, for arbitrary
α, the force may be repulsive as well. There are not only
the electrostatic forces acting on the macroion-rods them-
selves; in addition, the particle-rods exert forces on the

macroion-rods in contact, since the outer particle-rods are
attracted towards the center, while the inner particle-rods
are pushed away from the center. Taking this into account,
one finds the total force between the two macroion-rods as

2
λzτ

2

R

(
−

2α

1 + Δ̃
+

1 + 2α − 2α2

2 + Δ̃

−
2(1 − α)

3 + Δ̃
+

(1 − α)2

4 + Δ̃
+

α2η Δ̃

γ2
z

)
. (10)

For Δ̃ = 0, this reduces to −2λzτ
2/R(9α2 + 10α − 1),

which is negative at least for all values 1/10 < α ≤ 1,

i.e. the rods attract; this also holds for small Δ̃ > 0. This
shows that, actually, even a relatively small portion of
ions between the rods is sufficient to induce attraction.

2.3 Stability of the particle-rods

Next we investigate the stability of the particle-rods, i.e.,
whether the planar configuration is actually stable, or
whether counterions would rather like to leave the plane.
To this aim, we calculate the second derivative of the
electrostatic energy for a single particle moving out of
the macroion-rod plane into the y-dimension. The particle
will move only along the surface of the rod on which it is
currently sitting, since the electrostatic energy is minimal
there.

In principle, one would also have to look at two or more
particles leaving their particle-rods simultaneously, which
might be easier; therefore, the true area of stability might
be smaller than our prediction. However, the primary driv-
ing force for moving a particle out of its particle-rod is the
strong interaction with the direct neighbors. This does not
decrease much further even if two neighboring counterions
move apart, so that the stable area should not change dra-
matically. In fact, our simulation results will justify this
simplification a posteriori.

We assume that a single charge is located initially in
one of the particle-rods, and moves by small angle δ on the
surface of its macroion-rod. The interaction of this charge
with the other particles in the particle-rod, which it is just
leaving, can be readily determined using equation (3) for
a single pair of charges with z = 0 and a periodicity λz

equal to the particle spacing l (of course, the 1/r term
has to be omitted). The interaction energy between the
moving charge and the macroion-rods, as well as its ener-
gies with distant particle-rods, can be easily determined
from equation (6). In the case that the moving charge is in
one of the two inner particle-rods, the interaction with the
second particle-rod can be obtained from equation (8).

Combining these contributions, we obtain for an inner
particle moving on the surface of a macroion-rod an energy
difference of

ΔẼi = −qτ

(
2 −

Δ̃

(1 + Δ̃)2
+ (1 − α)

(
1 + Δ̃

(2 + Δ̃)2
−

3

4

)

+
α3

γ2
z

[
ψ(2)(1)

2
− η(1 + Δ̃)

] )
δ2 + O(δ4), (11)
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where γz is the geometry parameter introduced in equa-
tion (1).

From equation (11), we can obtain an upper limit on
α. Stability requires that δ = 0 is a local minimum, and
since −qτ > 0, equation (11) gives the following implicit
upper limit for α:

γ2
z

[
2 −

Δ̃

(1 + Δ̃)2
+ (1 − α)

(
1 + Δ̃

(2 + Δ̃)2
−

3

4

) ]

+ α3

[
ψ(2)(1)

2
− η(1 + Δ̃)

]
> 0, (12)

where ψ(2)(1) ≈ −2.40, and η ≈ 8.41.
For the stability of the outer particle-rod, we obtain

by a similar calculation the following implicit lower limit
on α:

γ2
z

[
−

2 + Δ̃

(3 + Δ̃)2
+ α

[
1

4
+

1 + Δ̃

(2 + Δ̃)2

]

+ (1 − α)
3 + Δ̃

(4 + Δ̃)2

]
+

(1 − α)3

2
ψ(2)(1) > 0. (13)

For small Δ̃, this lower limit on α is stricter than the
requirement of attraction between the rods. The combi-
nations of α and γz excluded by equations (12) and (13)
are displayed in gray in Figure 3 and following.

2.4 The energetically optimal α

Since we know now for which values of α the planar con-
figurations are stable, we compare their energies to deter-
mine the lowest energy state. To this aim we calculate the
energy difference to the α = 1 state:

ΔẼ = 1/2τ2[−(1 − α2)ξ − γ(2 + 4α − 6α2)

+(1 − α2) log 4 + 4α2 log α + 2(1 − α)2 log(1 − α)

− 4(1 − α) log(1 + Δ̃) − 4(1 − α)α log(2 + Δ̃)

+ 4(1 − α) log(3 + Δ̃) − 2(1 − α)2 log[4 + Δ̃]

+ (1 − α4)Δ̃2η/γ2
z + (2 + 4α − 6α2) log(γz)], (14)

where we have inserted the geometry parameter γz =
q/(τR) and Δ̃ = Δ/R. The global minimum of ΔẼ is
either at the boundary α = 1, with an energy difference
of 0, or where

0 = −τ−2∂αΔẼ = 1 + 2γ + α(log 4 − 3 − 6γ − ξ)

− 4α log α + 2(1 − α) log(1 − α) − 2 log(1 + Δ̃)

+ (2 − 4α) log(2 + Δ̃) + 2 log(3 + Δ̃)

−2(1 − α) log(4 + Δ̃)

+ 2η α3Δ̃2/γ2
z − (2 − 6α) log(γz). (15)

Since Δ̃ is assumed to be small, we can neglect the
2η α3Δ̃2/γ2

z term; in this case we can solve the equation
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easily for γz, which gives

γext
z =exp

[
(1+2γ+α(log 4−3−6γ−ξ)−4α log α

+ 2(1−α) log(1−α)−2 log(1+Δ̃)

+ (2−4α) log(2+Δ̃)

+ 2 log(3+Δ̃)+(2α−2) log(4+Δ̃))/(6α−2)
]
. (16)

Figure 3 shows the local extrema γext
z in the case Δ̃ =

0; qualitatively, the curve looks similar for other values
of Δ̃. For γz below ≈ 3.40, there is only one α extremal
for given γz, which is a local a minimum. From ≈ 3.40 to
≈ 3.45, a second local extremum appears; the smaller α is
a local minimum, the larger α a maximum. Above ≈ 3.45,
there are no local extrema; with decreasing α, the curve
grows monotonously.

However, the local minimum is not always a global
minimum, as can be seen from Figure 4. ΔẼ is only
smaller than zero for α < αmax ≈ 0.93, and only these
local extrema are also global minima at fixed γz. For
γz > γcrit

z ≈ 3.451 no such extremum exists; in this case,
the energy is minimal for α = 1.

Below γz = γmin
z ≈ 1.175 the free minimum lies outside

of the stability region for the planar configuration, hitting
the limit for the stability of the outer particle-rods first.
In this case, our theoretical approximations do not apply
anymore. However, one can expect that with further de-
creasing γz, also the inner particle-rod breaks up, and the
charges form a Wigner-Seitz lattice on the macroion-rod
surfaces.

Since Δ̃ = 0 in the unconstrained ground state, the
only parameter left in the system is γz (see Eq. (1)). Sum-
marizing our results, we obtain the following picture of
the system configurations for different values of γz:

– For γz ≥ γcrit
z , α = 1 is the ground state, so that the

particles are lined up in the center of the gap between
the rods.
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– For γcrit
z > γz > γmin

z , the optimal α value is smaller
than one, however, the particles are still located in the
rod-rod plane. The particles arrange in two counterion-
rods on the outside and one counterion-rod on the in-
side.

– Below γmin
z , the outer counterion-rod breaks up first,

while the inner particle-rod is still stable. Eventually,
with further decreasing γz, the charges form a Wigner-
Seitz lattice on the macroion-rod surfaces.

These qualitatively different ground-state types are
sketched in Figure 5.

3 Simulation results for T = 0

As an alternative approach, we have performed computer
simulations using the ESPResSo simulation package [30].
Our system consists of 5-valent counterions and two rods
with a line charge density of τ = 1/2 each; the latter
means that all lengths are measured in units of λ = e/(2τ),
where e is the unit charge1. The rod radius was var-
ied between 2 and 10 in these units to measure different
γz = q/(τR) in the range 1 . . . 5, and the surface-to-surface

1 For DNA, for example, λ = 0.17 nm.
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Fig. 6. Simulation results for Δ̃ = 0.025γz. The filled squares
denote the α value we find in the approximate ground state, the
open squares in the lower half of the graph show the average
squared distance 〈Δy2〉 of the particles to the rod-rod plane
in multiples of the rod radius R. The gray area again denotes
values of α for which either the inner or outer particle-rod gets
unstable. The continuous curve marks the prediction for the
optimal alpha; the two big open circles mark its discontinuity
at γcrit

z
.

distance of the two rods was fixed at Δ = 1/4λ, which
gives γRB = 40. To prevent the counterions from escap-
ing at higher temperatures, the system was confined by a
cylinder of diameter 4D, where D = 2R + Δ denotes the
center-to-center distance of the two macroion-rods.

For the calculation of the electrostatic interactions, the
MMM1D method was used. To obtain an infinite system,
we introduce periodic boundary conditions along the rods,
such that each periodic image contains N = 96 charges.
By repeating some simulations with higher values of N ,
we verified numerically that our findings are not sensi-
tive to the number of charges in each periodic image. A
shifted Weeks-Chandler-Anderson potential [31] was used
to approximate the hard-core interactions between the
rods and the counterions. We used parallel tempering [32]
with 48 exponentially distributed temperatures to sim-
ulate the system at various temperatures such that the
Bjerrum length lB varied between 0.25λ and 1000λ.

In our simulations, we found α to be practically in-
dependent of the temperature for Bjerrum lengths larger
than 10λ. Therefore, it is reasonable to compare the simu-
lation results for lB = 1000λ to our theoretical predictions
for the ground state. Figure 6 shows these results for α and
the average distance of the particles to the rod-rod plane.
Above γz ≈ 1.5, this distance is practically zero, showing
that the particles are indeed located in the plane spanned
by the two rods. The values for α are in nice agreement
with our theoretical predictions. Moreover, we observe in
the simulations the predicted behavior as follows:

– For γz > 3.5 ≈ γcrit
z , the configurations are planar with

α = 1, i.e. the counterions line up in the gap, which
agrees with the SC prediction.

– For γmin
z ≈ 1.5 < γz < 3.5, the configurations are still

flat. However, ions are found both between the rods
and on the opposite side, see Figure 7.
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Fig. 7. Snapshots of annealed ground states obtained from the
simulations for γz = 2.85 (left) and γz = 1.43 (right). Spheres
represent the point-like ions; the two rods are displayed much
thinner than they really are.

– Below 1.5, the outer counterion-rod breaks up first,
while the inner particle-rod is still stable. In the graph
one can only see the non-planarity through 〈Δy2〉, but
a visual inspection shows that indeed first the outer
particle-rod breaks up into two particle-rods above and
below the rod-rod plane, see Figure 7.

4 Systems with finite temperature

We will now investigate how the two-rod system behaves
at small, but finite temperatures, and up to which temper-
ature our T = 0 results are still meaningful. In addition,
we will compare our results to the strong coupling (SC)
theory of Naji, Moreira and Netz [23,24,26]. Also in our
SC calculations, we confined the two rods in a cylinder of
diameter 4×D, as we did in our computer simulations. The
SC theory becomes exact in the limit of infinite counterion
correlations, i.e., when the strong-coupling parameter Ξ is
infinite. For rods the coupling parameter is Ξ = q3l2Bτ/R;
therefore the theory is capable, but not limited to sys-
tems with a high Bjerrum length or low temperature, and
should be well suited to describe our simulation results.

The convergence properties of the SC expansion are
however not known in the case of two rods. Previous
computer simulations [26] have demonstrated that the
SC results agree with simulations only if the Rouzina-
Bloomfield parameter γRB = q/(τΔ) is large. The reason
for this is that in the SC limit, counterion correlations
perpendicular to the rods are negligible compared to those
parallel to the rods; therefore the theory is only suited for
finite systems in which the parallel correlations dominate.
A similar result has been previously found also in the case
of two charged plates [33].

Our T = 0 calculations and the SC theory represent
two qualitatively different limits: the T = 0 limit corre-
sponds to the limit Ξ → ∞ at constant γz, while the
strong-coupling limit is Ξ → ∞ at constant Manning pa-
rameter ξ = qlBτ , which measures the interaction strength
of the counterions with the rods. Because Ξ = ξ2γz, one
necessarily takes the limits Ξ → ∞ and γz → ∞ simulta-
neously (compare Fig. 8). This means that the SC theory
is not suited to describe systems with small γz. In fact, the

γz

−1

−1Ξ0
0

Fig. 8. Schematic view of the T = 0 and strong-coupling lim-
its. The solid arrows give the direction of the T = 0 limit, the
dotted arrows the direction of the strong-coupling limit. The
angle is determined by the Manning parameter ξ.
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by equation (16). The dotted arrows point to the corresponding
SC force curves.
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Fig. 10. Simulation results for α as a function of the Man-
ning parameter ξ. The solid arrows on the right side mark the
predictions for the optimal α obtained from equation (16). For
γz ≥ 4, the prediction is 1.

SC theory predicts for large Manning parameter a coun-
terion localization in the gap between the rods, which is
in agreement with our T = 0 findings only for large γz.

The force between the two rods obtained from our
simulations (Fig. 9) agrees indeed reasonably well with
the SC force prediction for γ > γcrit

z . This shows that
the SC theory is able to correctly predict the tempera-
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ture dependence of the force, which the T = 0 limit by
construction cannot. Only for small Manning parameter
and therefore small Ξ, the SC curves deviates from the
simulation as expected. For γ < γcrit

z , however, the SC
force predictions differ significantly from our simulation
results, even at large Manning parameters. This can be
understood from the particle distribution (see Fig. 10):
below γcrit

z , a significant fraction of the ions is not local-
ized in the gap between the rods, but at the opposite sides
of the rods. This effect does not occur in the SC limit, and
the theory is therefore not well suited to describe systems
with γz < γcrit

z .
Our T = 0 predictions, on the other hand, predict the

particle distribution correctly even below γcrit
z , and Man-

ning parameters above 20 (see Fig. 10). Also the force
quickly approaches the T = 0 limit, so that for Manning
parameters above 20, the T = 0 theory is a suitable ap-
proximation, although it does not capture the temperature
dependence.

5 Conclusions

We have presented a method of analytically calculating
approximate ground states for a system of two infinite
rods and neutralizing counterions. The findings of this
analysis were confirmed by computer simulations. In the
ground state, the system is characterized by the geome-
try parameter γz, which measures the ratio between the
rod radius and the lateral average counterion distance.
We have identified several types of ground-state config-
urations: For γz > γcrit

z ≈ 3.45, the counterions will
line up in a single row in the gap between the rods. For
1.18 ≈ γmin

z < γz < γcrit
z , the particles stay in the plane

spanned by the rods, but ions are located both in the gap
and on the opposite sides of the rods. For γz < γmin

z , the
internal energy of the particle-rods on the outer surfaces
of the rods gets too high, and these particles leave the
rod-rod plane.

As an alternative approach, we have performed parallel
tempering simulations, which yield not only ground-state
approximations, but also configurations at higher tem-
peratures. We compared these configurations both to the
strong-coupling (SC) theory of Moreira and Netz [23,24],
and to our T = 0 results. Unlike our zero-temperature cal-
culations, the SC limit provides good predictions for the
temperature dependence, however, our T = 0 predictions
cover a wider range of system geometries.

Our simulations suggested parameter limits for both
the SC and T = 0 approaches: the T = 0 predictions
are suitable to describe systems with Manning parameter
above 20. Moreover, the T = 0 approximations require
γRB > 5, i.e. the rods need to be close, and γz > γmin

z ≈
1.18.

Together with previous simulation studies [26], we find
similar, but stronger conditions for the application of the
SC theory to the case of two rods: it is a good description
for large coupling parameter Ξ > 50, γRB > 5, and γz >
γcrit

z ≈ 3.45. The two last conditions are similar in spirit:
they describe the requirement that the average counterion

distance parallel to the rods is much larger than the gap
size (γRB) and the rod size (γz). In this case, counterion
correlations perpendicular to the rods are negligible, which
are not captured by the SC approach.

However, we want to emphasize that from an experi-
mental point of view, γz plays a much more important role.
While in systems where the rods attract, γRB is automat-
ically large because the rods approach closely, the value
of γz is a constant and determined by the investigated
system. For DNA and trivalent counterions (e.g. spermi-
dine), the value for γz is very low, only ≈ 0.5. Therefore
one cannot expect that either our T = 0 theory nor the
SC theory will provide a good quantitative agreement for
this system. In fact, for most polyelectrolyte systems and
relevant ranges of coupling parameters, γz will be smaller
than 3, so that the SC limit appears to be not a good
approximation, and our ground-state approximation will
also work for large couplings only if γz > 1.18.
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