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Abstract. Confinement effects on single semiflexible macromolecules are of central importance for a fun-
damental understanding of cellular processes involving biomacromolecules. To analyze the influence of
confinement on the fluctuations of semiflexible macromolecules we study individual actin filaments in
straight and curved microchannels. We experimentally characterize the segment distributions for fluctu-
ating semiflexible filaments in microchannels as a function of the channel width. Moreover, the effect of
channel curvature on the filament fluctuations is investigated. We find quantitative agreement between
experimental results, Monte Carlo simulations, and the analytical description. This allows for determina-
tion of the persistence length of actin filaments, the deflection length, which characterizes the confinement
effects, and the scaling exponents for the segment distribution of semiflexible macromolecules.

PACS. 87.16.Ka Filaments, microtubules, their networks, and supramolecular assemblies – 87.16.Ac The-
ory and modeling; computer simulation – 82.37.Rs Single molecule manipulation of proteins and other
biological molecules

1 Introduction

In bottom-up approaches to cell mechanics [1–3] as well
as in top-down approaches to nanotechnology for bio-
analysis [4,5], confinement effects on semiflexible macro-
molecules play a considerable role. Shape, motility, and
proliferation of eukaryotic cells are regulated by the cy-
toskeleton, a meshwork of semiflexible biomacromolecules.
In living cells, cytoskeletal filaments are confined in their
own rather dense networks. Much effort is devoted to stud-
ies on networks of actin filaments, one of the key proteins
of the cytoskeleton. The overall goal is to elucidate the me-
chanical and dynamic properties of these in vitro model
systems and to exploit the results to obtain a better un-
derstanding of cell mechanics [1,6,7]. Although these in-
vestigations aim for an understanding of the collective be-
havior of cellular networks, they are strongly dependent
on a profound knowledge about single filament dynam-
ics confined by the surrounding macromolecules [8]. In

vivo cell mechanics are more complex than these idealized
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model systems, since the microstructure and elasticity of
the cytoskeleton are clearly heterogeneous and influenced
by active processes such as motion of molecular motors
and the polymerization and depolymerization of filaments.
The living cell exploits confinement effects for structure
formation, one fascinating example of which is the fibri-
positor (finger-like protrusions of the plasma membrane)-
mediated collagen fibril alignment in tendon [9].

In nanobioanalysis systems, transport and confinement
of DNA and proteins within micro- and nanochannels
are of particular importance [10–12]. The development of
DNA-chip-based devices aims not only to detect and sep-
arate single DNA molecules, but also to sequence them
on the single molecule level [4,5]. The devices are used
to confine DNA on the nanometer scale and thus elon-
gate genomic-length DNA. Confinement alters the statis-
tical mechanical properties as well as the Brownian mo-
tion of the confined biomacromolecules [4,13–16]. Since
in most nanodevices the widths of confining nanochan-
nels d are smaller than the persistence length LP of
DNA (LP ∼ 50 nm), the behavior of the DNA can only
be described by a model of confined semiflexible macro-
molecules [17]. Confinement of DNA is also widely found
in nature, the most prominent example being DNA com-
paction in the nucleus. The wrapping of the DNA around
core particles in chromatin leads to confinement and si-
multaneous bending of the macromolecules [18,19].
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In this work we study the Brownian dynamics and me-
chanical properties of actin filaments, which are confined
in microchannels of different geometries. Apart from being
a biologically relevant system, actin is known for its reli-
ability as an experimental model system for semiflexible
macromolecules. The width of the channels d and the fila-
ment contour length L as well as the persistence length LP

are on the order of a few micrometers, which enables di-
rect observation and visualization of fluorescently labeled
macromolecules by optical microscopy. Typical radii of
curvature of the channels are comparable to or larger than
the persistence length LP and similar to typical curvatures
of confining “tubes” in entangled actin solutions [8]. We
characterize the segment distributions of fluctuating actin
filaments as a function of the channel width as well as
the influence of a curvature on the thermal fluctuations.
By combining experimental, modeling, and analytical ap-
proaches, we provide a complete analysis of semiflexible
filament behavior under geometric constraints on the sin-
gle molecule level.

2 Experimental methods

Rhodamine labeled G-actin (Cytoskeleton, Denver, USA)
is polymerized, stabilized using phalloidin, and diluted to
a final monomer concentration of 70 nM. The detailed pro-
cedure is described in reference [13]. The dilute polymer
solution is injected into microchannels which are fabri-
cated using standard soft lithography techniques [20,21].
The depth h of the PDMS microchannels for all experi-
ments presented here is between 0.9 and 1.4µm. We use
parallel straight channels with widths of d = 1.5, 4.0, 5.8,
and 9.8µm, and curved channels with different radii of
curvature (13.5–143.5µm) and a width of d = 2.5µm (see
Fig. 1). The microchannels are tightly sealed with glass
cover slips. This allows for high-resolution fluorescence
microscopy (see Fig. 2a) using an Olympus BX61 fluores-
cence microscope equipped with a 75W xenon lamp and
a 100× Plan Apochromat oil-immersion objective. Expo-
sure times for the image sequences are 100ms. Examples
of snapshots are shown in Figure 2a. Due to the small
channel depth and the projection of the filament contour
into the focal plane of the microscope, we observe F-actin
in a quasi-2D geometry [22]. The channel walls are coated
with bovine serum albumin (BSA) to avoid additional in-
teractions of the actin filaments and the channel walls.

To obtain the tangent vectors t(s), the microscopy
images are binarized and skeletonized to a one-pixel-line
using commercial image processing software (Image-Pro
Plus, AnalySIS, MATLAB). A cubic spline fit is applied
to the one-pixel-line and an arclength reparametrization
of the continuous line is obtained by dividing it into tan-
gent vectors of equal length. The correlation function of
the corresponding unit tangent vectors as a function of
their arclength separation l is calculated from the average
〈cos θ(l)〉 ≡ 〈t(s) ·t(s+ l)〉 of their scalar products [13,14],
where the thermodynamic average is performed by an av-
erage in time over all recorded conformations. In addition,
we perform a spatial average over all points s within the
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Fig. 1. Schematic representation of confined semiflexible fil-
aments in different channel geometries. a) Straight channels.
b) Curved channels. c) Parameters used to describe curved
channels.

same image. To further improve the statistics of our re-
sults, we also average the data of several filaments where
the same experimental parameters have been applied. In
this case additional weighting by the filament length and
number of recorded conformations is taken into account.

To obtain the segment distribution in straight chan-
nels, we rotate all images containing the one-pixel-lines
such that the channel direction is exactly horizontal. We
integrate the intensity over the full filament length along
the direction of the channels, average the values over all
recorded conformations of a filament, normalize the result
by the length of the filament, mirror and average the data
at the center line of the channel to improve the statistics.
Results are plotted against the z-coordinate perpendicu-
lar to the channel, where we choose z = 0 and z = d as
the positions of the channel walls.

3 Theoretical model

3.1 Tangent correlations in curved channels

We have introduced an analytical description of tan-
gent correlations of fluctuating semiflexible filaments in
straight channels under consideration of the apparent
broadening of the filaments’ contour in microscopy im-
ages [14]. For long and weakly bent filaments, we find the
following scaling form for the tangent correlations:
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Fig. 2. Snapshots of fluctuating actin filaments. a) Experimen-
tal data for straight and curved channels. b) Simulated data
for straight and curved channels. Scale bars are 10 µm.

The scaling is governed by two length scales, the persis-
tence length LP and the deflection length λ, for which the

Odijk scaling relation λ = aL
1/3

P d2/3 holds [17] with a nu-
merical prefactor a ≃ 0.76, which we determine by Monte
Carlo (MC) simulations.

Our approach can be generalized to curved channels
with an arbitrary shape. The results assume a particularly
simple form provided that the channel radius of curvature
is large compared to the deflection length. The center line
of a curved channel with rectangular cross-section repre-
sents a contour in the two-dimensional focal plane of the
microscope. We parameterize this two-dimensional con-
tour r0(s) using its arclength s. The position of the fila-
ment segments can be described by displacements normal
to the channel direction. We introduce the unit tangent
t0(s) = ∂sr0 to the channel contour and the outward nor-
mal n0(s) = −R(s)∂st0, where R(s) is the local radius of
curvature of the channel center line. For a straight chan-
nel we have r0(s) = sex and zero channel curvature or
infinite radius of curvature. Analogously to the straight
channels we describe filament fluctuations within the fo-
cal plane by displacements z(s) perpendicular to the lo-
cal channel direction. The filament’s contour in the focal
plane is given by

r(s) = r0(s) + z(s)n0(s). (3)

We assume that the filaments are only weakly bent
with small displacement gradients ∂sz ≪ 1. With the
parametrization in equation (3) it follows that the bending

energy of the filament is

Hb =

∫ L

0

ds
κ

2

[

R−2(s) − R−3(s)z(s) + (∂2
sz)2

]

, (4)

where the first term is the contribution of the background
curvature of the channel, that is, the bending energy for a
filament lying in the center of the curved channel. The sec-
ond term represents the contribution of an effective force
that pushes the filament outwards. The last term is the
contribution of shape fluctuations of the filament within
the channel. In the bending energy, we neglect higher or-
der terms in displacement gradients ∂sz as well as terms
of the order of O(R−4z2) and O(R−2(∂sz)2). These terms
are small compared to the term ∼ (∂2

sz)2 if λ ≪ R. The
condition R ≫ λ implies a separation of length scales of
filament fluctuations and channel geometry: The typical
length scale λ for filament fluctuations along the channel
needs to be much smaller than the radius of curvature of
the channel geometry to apply this description.

Locally, the channel potential acts on the displacement
z(s) perpendicular to the channel in the same manner
as for a straight channel. Therefore, we proceed as for
straight channels and approximate the steric potential for
hard channel walls by a harmonic potential, which leads

to a Hamiltonian HR = Hb +
∫ L

0
dsK

2
z2(s).

For large radii of curvature, the tangent correlations of
filaments in curved channels are simply given by multiply-
ing the background correlations t0(s) · t0(s + l) caused by
the channel geometry with the result of a straight channel,

〈t(s)·t(s+l)〉 = (t0(s)·t0(s+l))〈t(s)·t(s+l)〉straight, (5)

where 〈t(s) ·t(s+l)〉straight is the tangent correlation func-
tion for a straight channel with zero curvature, R−1 = 0.
In the experiments presented here we use channels with
constant curvature R. In this case, equation (5) leads to
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In particular, this means that the ratio 〈cos θ(l)〉/ cos(l/R)
assumes the scaling form of equation (1) with the shape
function of equation (2).

We use MC simulations to show that equation (6) is
still valid if the same definition of the deflection length is
used as for straight channels. We perform MC simulations
for filament parameters L = 100µm and LP = 15µm,
and channel width d = 2.5µm with constant radii of
curvature (R = 30, 50, 100, 150, or 200µm). The ratio
〈cos θ(l)〉/ cos(l/R) should exhibit the same scaling prop-
erties as for a straight channel. We use this ratio in the
regime l/R ≪ π/2, where the cosine is larger than zero,
to perform the same rescaling as for straight channels. If
the condition R ≫ λ is fulfilled, the length scale λ on
which the filaments perform unconfined fluctuations and
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the length scale R of the curved confining channel decou-
ple. In this case the data can be collapsed onto the master
curve

(

1 − 〈cos θ(l)〉
cos(l/R)

)

d−2/3L
2/3

P = Ca(ld−2/3L
−1/3

P ) (7)

with the same scaling function Ca(x) = aC(x/a) and the
same numerical prefactor a ≃ 0.76 as for straight chan-
nels [14] (see Fig. 5b).

3.2 Segment distribution

A confining potential also influences the temporal and spa-
tial distribution of segments of the filament within the
conformational space. Therefore, the channel geometry
gives rise to a characteristic distribution of filament seg-
ments in the z-direction, which can be measured in the
present experiments. In the following, we consider a typ-
ical center segment, which is at least a distance λ away
from the filament ends. Segments at the filament ends
exhibit a slightly different scaling behavior. In contrast
to flexible macromolecules, each segment of a semiflexible
macromolecule has a well-defined tangent vector, and we
have to consider the compound probability density P (z, v)
for segment displacements z and displacement gradients
v ≡ ∂sz. P (z, v)δzδv is the probability to find a center
segment within the range [z, z + δz] and with a displace-
ment gradient in the interval [v, v + δv]. This probability
density obeys a scaling form, which is governed by two
exponents [23–26]: One exponent θr describes the deple-
tion of segments in front of the confining wall, and the
other exponent χr characterizes the probability of con-
tacts with the wall. The detailed scaling form is given in
the appendix.

The corresponding value P (z, 0) is the contact proba-
bility, for which we find

P (z, 0) ≈ zθrd−4/3−θrL
1/3

P . (8)

The contact exponent χr is defined such that it describes
the scaling of this contact probability with the correlation
length along the polymer, which is given by the deflec-
tion length, P (z, 0) ∼ λ−χr [26]. Using the scaling law
d ∼ λ3/2 [17] together with equation (8) this leads to an
exponent relation [26]

χr = 2 + 3θr/2. (9)

This shows that the depletion exponent θr and the con-
tact exponent χr are not independent and it is sufficient
to determine one of these exponents to completely de-
scribe the scaling behavior of the segment distribution.
The exponents are characteristic properties of a semiflex-
ible polymer at a hard wall, which have been calculated
analytically using transfer matrix techniques [24,25]:

θr = 1/3 and χr = 5/2. (10)

In the experiments, the v-integrated segment distribution
is measured, that is, the distribution of segment positions

irrespective of their orientation. The corresponding con-
tact probability of finding a segment close to the wall with
arbitrary tangent v is

P (z) ∼ z1/3+θrd−2χr/3

∼ z2/3d−5/3. (11)

Thus, the probability P (z)δz to find a segment of a fila-
ment in a range [z, z + δz] in close proximity to a channel
wall scales with z1/3+θr as a function of z at fixed d, and
with d−2χr/3 ∼ λ−χr as a function of d at a fixed distance
z.

The scaling behavior of P (z) given in equation (11)

can be specified in terms of a shape function Ω̃(y). MC

simulations can be used to determine Ω̃(y) and to ver-
ify the scaling behavior. To compare this to experimen-
tal data, we perform MC simulations of long filaments
(L = 35µm) with LP = 13µm in channels with different
widths d = 1.5, 4.2, 5.8, and 9.8µm. These values cor-
respond to the experimental situation. The distribution
P (z) is averaged over all segments along the filament to
improve the statistics. For long filaments, this does not
affect our results regarding the scaling properties of the
distribution.

To determine the shape function Ω̃(y), we rescale the
simulation data. We bin the segment distribution data into
nbin = 100 bins of length δz = d/nbin and show the proba-
bilities P (z)d/nbin as a function of the rescaled coordinate
z/d. We should find a collapse of all data to a curve

P (z)
d

nbin

= P
(z

d

)

(12)

with a scaling function

P(y) = nbin
−1 [y (1 − y)]

2/3
Ω̃ (y) (13)

for a depletion exponent θr = 1/3.
In order to test whether we can fit the data satisfy-

ingly well using a constant value Ω̃(y) = Ω̃ for the shape
function, we use the scaling function

P(y) = 3.41nbin
−1 [y(1 − y)]

2/3
, (14)

corresponding to a constant

Ω̃(y) = Ω̃ =
7Γ (1/3)

22/3
√

3πΓ (5/6)
≃ 3.41, (15)

which is determined by the normalization condition
∫ d

0
dzP (z) = 1 or Ω̃−1 =

∫ 1

0
dy[y(1 − y)]2/3. In equa-

tion (15), Γ (x) is the Gamma function [27].

4 Results and discussion

4.1 Segment distribution in microchannels

Previously, we have reported careful analysis of tan-
gent correlation data derived from experiments with long
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(L ≥ 30µm) semiflexible filaments in straight confining
microchannels [13,14]. These studies reveal a unique be-
havior of tangent correlations. Briefly, tangent correlations
of confined filaments deviate from the known exponen-
tial decay of the tangent correlations of freely fluctuat-
ing filaments [28,29]. The overall correlation increases as
the channel width decreases, as does the saturation level
for very large distances l between two macromolecule seg-
ments along the filaments’ contour. A pronounced mini-
mum evolves and is shifted towards larger values of l as
the channel width increases. The qualitative picture that
emerges from the results is as follows: At distances l ∼ λ
the confining potential induces turns of the filament’s con-
tour leading to the minimum in the tangent correlation
function. On length scales l < λ, filament segments are
approximately free and the correlation function resembles
the exponentially decaying free correlation function in this
regime. On length scales l ≫ λ, the confining potential
leads to an alignment of the filament and therefore, to
a characteristic plateau in the tangent correlations. Such
a plateau cannot be explained by a stiffening of the fila-
ments as it can be observed for filaments with larger per-
sistence length but in contrast is a unique feature of the
confinement effect. The value of the plateau in the tan-
gent correlations is consistent with a picture, where the
filament is viewed as an ensemble of roughly uncorrelated
segments of length λ.

The presence of channel walls does not only influence
the local tangential orientation of confined filaments. The
distribution of filament segments with respect to the posi-
tion within the channels also changes distinctly once wall
potentials are introduced to the system. Analyzing the
segment distribution of filaments in proximity of the chan-
nel walls sheds light on certain scaling laws that charac-
terize the segment depletion in front of the walls. In Sec-
tion 3.2, we introduced two exponents which are charac-
teristic of depletion effects of semiflexible macromolecules:
χr for the contact probability to the wall along the poly-
mer, that is to say, parallel to the wall, and θr for the
segment distribution perpendicular to the wall [26].

In our experiments we are able to measure these ex-
ponents for single macromolecules. The segment distribu-
tions P (z) for different channel widths (d = 1.5, 4.2, 5.8,
and 9.8µm) are shown in a double logarithmic plot against
z in Figure 3a.

To improve the statistics, the data for P (z) are aver-
aged over the whole length; since the filaments are suffi-
ciently long (L ≥ 30µm), our results are not affected. In
addition, we make use of the symmetry P (z) = P (d − z)
and also average over contours mirrored at the center line
of the channel (z = d/2, since we choose z = 0 and z = d
as the positions of the channel walls).

The solid line in Figure 3a corresponds to the scaling
law P (z) ∝ z2/3 that we obtain in equation (11) for the
probability to find a segment of the filament at a position z
close to the wall within the channel. The improved statis-
tics of the data for smaller d are obvious. Although all four
data sets show the scaling, a smoother course is observed
for smaller channels. This is due to the smaller conforma-

tional space in the case of smaller channels, generally lead-
ing to better statistics. The observed scaling P (z) ∝ z2/3

is typical of semiflexible filaments and gives direct exper-
imental evidence for a scaling exponent θr = 1/3, as it
has been obtained analytically [24,25]. This exponent is
characteristic of a semiflexible chain governed by its bend-
ing energy. For a flexible Gaussian chain, in contrast, one
would expect an exponent θr = 2 and P (z) ∝ zθr close
to a wall [30,31]. The slope with which the segment dis-
tribution increases in close proximity to the channel walls
describes the depletion of segments near the wall owing to
deflection of the filament by the potential. The small expo-
nent θr = 1/3 for semiflexible polymers indicates that the
influence of the confining wall potential on the filaments
is extended quite far into the channel—mediated by the
intrinsic semiflexible properties of the filament. Generally,
we expect an exponent θr < 0 for attractive interactions,
θr = 0 in the absence of interactions, and θr > 0 for repul-
sive interactions, which give rise to depletion as presented
here. Thus, the result θr = 1/3 > 0 also demonstrates that
there is no residual unspecific attraction between filaments
and channel walls in our experiment.

The second exponent to be considered, χr, describes
the scaling of P (z) with the channel width d for a fixed
z close to the wall (see Eq. (11)). Analysis of the val-
ues for P (z) requires careful renormalization of the data.
Subsequently, we average the frequency values of the first
nine data points (z ≤ z∗ ≈ 0.6µm) and plot the results
against d (see Fig. 3b). The value z∗ ≈ 0.6µm is chosen
since it represents about half the width of the smallest
channel and can thus be applied to all data sets discussed
here. According to the relation equation (11), we expect
a scaling P (z∗) ∝ d−2χr/3. The dotted line in Figure 3b
corresponds to the scaling law P (z∗) ∝ d−5/3. The exper-
iment thus supports an exponent value χr = 5/2, as it has
been obtained analytically [24,25].

The value χr = 5/2 also has important consequences
for the proper interpretation of the deflection length λ
in terms of collisions with the channel walls. It is often
stated that the deflection length λ is the “average dis-
tance between collisions” with the confining walls (see for
example Ref. [17]). The result χr = 5/2 > 1 shows that
such a statement is not correct. Since the contact prob-
ability is proportional to λ−χr , actual contacts with the
wall are much rarer than one collision per deflection length
if χr > 1. An analogous finding has been pointed out in
reference [32] in the context of fluid two-dimensional mem-
branes. The deflection length λ is the correlation length
of the segment distribution. As such, it does not give the
average distance between collisions but actually character-
izes the exponentially decaying tails of the distribution of
contour lengths between contacts: The probability of find-
ing a long polymer segment L ≫ λ between two contacts
decays as ∼ exp(−L/λ).

Both scaling parameters, θr and χr, describe the ex-
perimental results on a length scale of ≤ 1µm in the prox-
imity of the channel walls. By extracting the contour line
from the micrographs and analyzing the statistical prob-
ability to find a filament segment at a specific distance
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Fig. 3. a) Double-logarithmic plot of the experimental segment distributions which scale as z2/3. b) Contact probability to
the wall which scales as d−5/3. c) Double-logarithmic plot of the simulated segment distributions which scale as z2/3 as well.
d) Simulation data as shown in c collapsed onto a single master curve (dashed line).

from the wall, we can make educated assumptions about
the behavior of the filaments on a length scale smaller
than the optical resolution.

In this section, we present experimental evidence for
the two exponent values θr = 1/3 and χr = 5/2. Previ-
ously we have confirmed the scaling law λ ∝ d2/3 experi-
mentally [14]. This relation provides a direct measurement
of the roughness exponent ζ = 3/2, hearkening back to the
condition 〈z2〉 ∼ d2 with 〈z2〉 ∝ λ2ζ for a filament segment
of length λ. Determining all three exponents ζ, θr, and
χr experimentally, we achieve a complete characterization
of fluctuations of semiflexible polymers confined by hard
walls. We further confirm our findings by providing exten-
sive MC simulations showing the same scaling behavior.

Figure 3c shows simulated data for the same param-
eters as the experimental data in Figure 3a (channels
widths, persistence length, filament length). Note, though,
that infinitely thin filaments are assumed in these simu-
lations. The simulations and the experimental data dis-
play a striking similarity, both qualitatively and quanti-
tatively. Figure 3d shows the same simulation data again,
but rescaled onto a single master curve according to equa-
tion (12) (dashed line). All data sets collapse nicely onto

the scaling function and thus provide strong support of
our experimental findings.

4.2 Curved channels

In biological systems, for example the cytoskeleton or the
densely packed DNA in cell nuclei, as well as in microflu-
idic applications, the confining geometry is usually much
more complex than a simple straight channel. Therefore,
we add more complexity and present experiments and sim-
ulations where we confine actin filaments in channels with
varying radii of curvature R. We thus investigate the in-
fluence of additional bending on confined filaments. R is
defined as the radius of the center line of the channel, in
other words the mean value of the inner radius Ri and
the outer radius R0 (see Fig. 1b and c). In Figure 4a the
tangent correlation functions for d = 2.5µm wide chan-
nels and various values of R are shown. Each curve rep-
resents data from an individual filament and the data are
averaged over all recorded conformations and the whole
length of the filament. All filaments have a similar con-
tour length L ≈ 20µm. The radii of curvature lie between
13.5µm and 143.5µm. These values are on the same or-
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different radii of curvature R. b) Fit parameters λ and LP .
For comparison λ and LP of straight channels with d = 1.5 µm
(1/R = 0) are plotted as well. Dotted line: mean value for LP

in straight channels.

der of magnitude as the filament length L, the persistence
length LP , the channel width d, and the deflection length
λ. Therefore, we expect an influence of the radius of curva-
ture on the filaments’ behavior. More specifically, the radii
of curvature range from R ∼ LP to R ≫ LP thus com-
prising the tightly as well as the weakly bent regime [19].
Compared to straight channels, the fluctuations in curved
channels appear clearly less correlated. This effect is more
pronounced in channels with smaller R although in all
cases the filaments are yet more correlated than uncon-
fined filaments.

To quantify these results, we fit the data with equa-
tion (6), which applies if the radius of curvature is larger
than the deflection length, or R ≫ λ such that the back-
ground curvature introduced by the channel is small com-
pared to the typical filament curvature 1/λ from ther-
mal fluctuations. We take into consideration a Gaussian
correction factor accounting for the fact that microscopy
images generally show finite width contour lines of the
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Fig. 5. Tangent correlations of filaments in curved channels,
collapsed onto a master curve. a) Experimental data as shown
in Figure 4a. b) Simulation data.

filaments [14]. The radius of curvature of the channels is
measured and introduced into the equation and is not used
as a free fit parameter. The fitting functions are shown as
solid lines in Figure 4a. For R = 13.5µm, the notion of the
background correlation as described in Section 3 breaks
down and thus we are not able to obtain values for the fit
parameters.

In Figure 4b both fit parameters, λ and LP , are plot-
ted against the curvature, 1/R. All values for LP lie in
the expected range, close to the mean value for straight
channels, LP = 13.1µm (dotted line in Fig. 4b). The dif-
ferences between individual filaments are similar to those
observed for straight channels [14]. The deflection length
λ as well is almost constant for the larger radii R and
slightly larger than the value which we obtain for straight
channels with d = 1.5µm (value for 1/R = 0, plotted for
comparison). This is to be expected for the weakly bent
regime, where the fluctuations of the filaments are not in-
fluenced very much by the bending [19]. Thus the fluctua-
tions can be considered as superimposed to a background
correlation and equation (6) can be applied to fit the data.
The situation is different for tightly bent filaments, that
is, small radii of curvature. While for very small values
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of R we cannot apply the background correlation of the
channels to the filaments’ fluctuations, in the case of an in-
termediate bending regime for the channels, we observe an
increase of λ (R = 33.5µm). If a filament is tightly bent,
long wavelength fluctuations are frozen out, at the same
time resulting in smaller fluctuation amplitudes [19]. If a
channel wall is involved we do not observe an effect on λ as
long as the fluctuation amplitudes are still larger than the
channel width. However, once the bending becomes strong
enough such that the amplitudes become smaller than the
channel width, the original notion of the deflection length
is no longer valid. Thus, we cannot superimpose the “un-
bent” fluctuations by a background correlation.

We can rescale the data for filaments in curved chan-
nels as shown in Figure 4a to collapse the data on a single
curve. This is done in two steps: by i) multiplying the
data by the prefactor in equation (6) that accounts for
the background curvature and ii) rescaling the data ac-
cording to the Odijk scaling. The resulting data plots are
shown in Figure 5a. The data for the strongest curvature,
R = 13.5µm, cannot be rescaled since values for λ and LP

could not be obtained. In comparison to these experimen-
tal results, Figure 5b shows simulation data for tangent
correlations of filaments in curved channels, also collapsed
onto a single master curve. In both the experiment and the
simulation we observe, that only data sets for sufficiently
large radii of curvature (R ≥ 63.5µm and R ≥ 100µm,
respectively) can be collapsed onto a master curve with
data for straight channels. However, the data for smaller
R show a very different behavior. In the case of small radii
of curvature the notion of a superposition of the tangent
correlations of the filament and the background correla-
tion breaks down. At the same time the simulations come
to a limit for these parameters. Nevertheless, these results
show that for strongly bent channels the background tan-
gent correlation and the tangent correlation of the filament
fluctuations cannot be superimposed as for more weakly
bent channels.

5 Conclusions

We present a consistent description of semiflexible fil-
aments in confining geometries. We combine single-
molecule experiments with Monte Carlo simulations
and analytical descriptions to characterize the macro-
molecules’ behavior in terms of tangent correlations and
segment distributions, taking into account channel width
and curvature. We are able to directly measure three
scaling exponents which are characteristic for semiflexi-
ble filaments, in particular we measure the depletion ex-
ponent θr = 1/3, and the contact exponent χr = 5/2,
which characterize the scaling properties of the segment
distribution. We thus show that confined actin can in-
deed be described in terms of the worm-like chain model
on all length scales accessible to optical microscopy. At
the same time, we experimentally prove the general scal-
ing laws for semiflexible-polymer physics. Furthermore,
we demonstrate that for weakly bent channels the back-
ground curvature leads to a background tangent correla-

tion onto which the tangent correlation of the shape fluc-
tuations of the filament is superimposed. For strongly bent
channels this notion breaks down due to a freezing-out
of long-wavelength fluctuations. These results represent a
first step towards the characterization of single-filament
behaviour in complex confinement geometries such as in
reconstituted-biopolymer networks or in in vivo networks
in cells.
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Herminghaus, Reinhard Lipowsky, Holger Stark, and Heather
Evans. This project was supported by the DFG in the frame-
work of the Emmy Noether Program (PF 375/2) and of the
Priority Program SPP 1164 “Nano- and Microfluidics” (PF
375/4).

Appendix A. Tangent correlations in curved

channels

In the following section we discuss the behavior of semi-
flexible filaments in curved channels. As for a straight
channel it is sufficient to consider the projection of the fila-
ment contour into the two-dimensional focal plane, the xz-
plane. Fluctuations in the perpendicular y-direction de-
couple for a weakly bent filament. In this two-dimensional
plane, we consider a curved channel whose centerline is
given by the contour r0(s), where s is the arclength of
the channel contour. We introduce the unit tangent vec-
tor t0(s) = ∂sr0 to the channel contour and the unit out-
ward normal vector n0(s) = −R(s)∂st0(s), where R(s) is
the local radius of curvature of the channel center line,
that is, R−1(s) is the local channel curvature. We also
find ∂sn0(s) = R−1(s)t0(s). We describe the filament’s
contour within the focal plane by displacements z(s) per-
pendicular to the local channel direction,

r(s) = r0(s) + z(s)n0(s), (A.1)

and assume that filaments are only weakly bent with small
displacement gradients ∂sz ≪ 1. The (unnormalized) tan-
gent vectors of the filament contour (Eq. (A.1)) are

t(s) = t0(s)

(

1 + z(s)/R(s) − 1

2
(∂sz)2

)

+ n0(s)(∂sz),

(A.2)
where we neglect terms of order O(z2R−1) and
O(z(∂sz)R−1). The arclength element ds|∂sr| of the fil-
ament’s contour (Eq. (A.1)) is given by

ds|∂sr| ≈ ds

(

1 + z(s)/R(s) − 1

2
(∂sz)2

)

. (A.3)

For a contour given by equation (A.1) the filament’s
bending energy becomes

Hb =

∫ L

0

ds
κ

2

[

R−2(s) − R−3(s)z(s) + (∂2
sz)2

]

. (A.4)
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In equations (A.3) and (A.4), we neglect some terms of the
order of O(R−4

0 z2) and O(R−2
0 (∂sz)2) in the integrand. To

analyze the validity of these approximations, we consider
an almost straight channel. It can be shown that fluctua-
tions of displacement derivatives scale as 〈(∂n

s z)2〉straight ∼
λ3−2n/LP for straight channels. Therefore, all neglected
terms in equation (A.3) are small compared to the term
∼ (∂sz)2 and all neglected terms in equation (A.4) are
small compared to the term ∼ (∂2

sz)2 as long as λ ≪ R.
Equations (A.2), (A.3), and (A.4), represent the leading-
order terms of an expansion in λ/R.

Filament fluctuations are governed by the sum of the
bending energy and a confining potential, which acts on
the displacement z(s) perpendicular to the channel. In the
same manner as for straight channels, we replace the steric
potential Vd(z) for channel walls by a parabolic potential
Kz2/2, which leads to the Hamiltonian

HR =

∫ L

0

ds

[

κ

2

(

R−2(s) − R−3(s)z(s) + (∂2
sz)2

)

+
K

2
z2(s)

]

(A.5)

for filament fluctuations in a curved channel. Taking into
consideration equation (A.2), the tangent correlation func-
tion becomes

〈t(s) · t(s + l)〉 = (t0(s) · t0(s + l))

×
[

1 +
〈z(s)〉
R(s)

+
〈z(s + l)〉
R(s + l)

− 1

2
〈(∂sz(s) − ∂sz(s + l))2〉

]

+(t0(s) · n0(s + l))〈∂sz(s + l) − ∂sz(s)〉. (A.6)

From the quadratic Hamiltonian equation (A.5) we find
for the shift of the mean filament contour with respect to
the center line of the channel by balancing the force term
(second summand in Eq. (A.5)) and the potential term
(fourth summand):

〈z(s)〉/R(s) =
κ

KR4(s)
=

λ4

4R4(s)
(A.7)

and

〈∂sz(s)〉 = − 3λ4

4R4(s)
∂sR(s). (A.8)

In the limit λ ≪ R, expression (A.8) becomes very small
and for a channel of constant curvature R, as used in
the experiments, it vanishes. Because the Hamiltonian
in equation (A.5) is quadratic, the correlation function
〈(∂sz(s) − ∂sz(s + l))2〉 is essentially given by the same
result as for a straight channel:

〈[∂sz(s) − ∂sz(s + l)]
2〉 = 〈[∂sz(s) − ∂sz(s + l)]

2〉straight

+ [〈∂sz(s) − ∂sz(s + l)〉]2 . (A.9)

From equation (A.8) and 〈(∂sz)2〉straight ∼ λ/LP it follows
that the second contribution in (A.9) can be neglected
for λ ≪ R(R(∂sR)2/LP )1/7. Likewise, the contributions

linear in 〈z〉 in equation (A.6) can be neglected for λ ≪
R(R/LP )1/3 and λ ≪ R(R∂sR/LP )1/3. These conditions
are essentially fulfilled for radii of curvature much larger
than the deflection length, R ≫ λ. In this limit and in the
approximation of a weakly bent filament, the arclength s
of the channel is also essentially identical to the arclength
of the filament (see Eq. (A.3)). In the limit R ≫ λ, we
finally obtain

〈t(s) · t(s + l)〉≈(t0(s) · t0(s+l))〈t(s) · t(s+l)〉straight

= (t0(s) · t0(s + l))

[

1− λ

2
√

2LP

×
(

cos

(

π

4

)

− cos

(

π

4
+

l

λ

)

exp

(−l

λ

))]

, (A.10)

where 〈t(s) ·t(s+l)〉straight is the tangent correlation func-
tion for a straight channel with zero curvature, R−1 = 0.

The detailed conditions λ ≪ R(R/LP )1/3 and λ ≪
R(R∂sR/LP )1/3, under which the tangent correlations
factorize as in equation (A.10), are similar to a condition
λ ≪ R2/LP given by Odijk for the regime, where contour
fluctuations decouple from background deformations [19].
The criteria are slightly different because Odijk’s estimate
is based on the scaling behavior of positional fluctuations,
whereas we consider tangent fluctuations.

Appendix B. Segment distribution in

channels

In this section we provide more details of the calculation
of segment distributions in channels. To derive the scal-
ing form for the segment distribution P (z, v) and the ex-
ponents θr and χr we first note that displacement fluc-
tuations scale as 〈z2〉 ∼ λ3/LP ∼ d2 and fluctuations
of displacement gradients scale as 〈(∂sz)2〉 ∼ λ/LP ∼
(〈z2〉/L2

P )1/3, as follows from equation (1) for large l ≫ λ.
Therefore, the center segment distribution of a filament
confined in a channel in front of a hard wall at z = 0
will depend on the scaling variables z/d and v(LP /z)1/3.
A channel has two walls. We choose z = 0 and z = d as
positions of the channel walls. Then the segment distri-
bution has to obey the symmetry P (z, v) = P (d − z,−v)
and a boundary condition P (0, v) = 0 for all v 6= 0. For
two walls, the corresponding symmetric scaling variables
are z/d and v(LP d/z(d − z))1/3. We obtain a segment
distribution of the form

P (z, v) = d−4/3L
1/3

P

[

z(d − z)/d2
]θr

×Ω
(

z/d, v[LP d/z(d − z)]1/3
)

, (B.1)

where Ω(y, u) is a shape function defined for 0 < y < 1
with the following properties: i) the symmetry Ω(y, u) =
Ω(1 − y,−u); ii) a finite value at y = u = 0; iii) expo-
nential decay for large u; iv) prefactors in equation (B.1)
are chosen such that the parameter-free normalization
∫ 1

0
dy

∫

∞

−∞
du[y(1 − y)]θr+1/3Ω(y, u) = 1 for the shape
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function gives the usual normalization of the segment dis-

tribution,
∫ d

0
dz

∫

∞

−∞
dvP (z, v) = 1.

The characteristic exponent θr describes the segment
depletion in front of the channel walls. Close to the wall
at z ≈ 0, we can only find parallel segments with v =
0 (for v 6= 0, the scaling function in Eq. (B.1) becomes
exponentially small for z ≈ 0 because the second argument
of the scaling function u ≈ v(LP /z)1/3 becomes large).
The corresponding value P (z, 0) is the contact probability,
for which we find

P (z, 0) ≈ zθrd−4/3−θrL
1/3

P Ω(0, 0). (B.2)

The contact exponent χr is defined such that it describes
the scaling of this contact probability with the correlation
length along the polymer, which is given by the deflection
length, P (z, 0) ∼ λ−χr [26]. Using the scaling law d ∼
λ3/2 [17] together with equation (B.2) this leads to an
exponent relation [26]

χr = 2 + 3θr/2. (B.3)

In the experiments, the v-integrated segment distribution
is measured, which follows a scaling behavior

P (z) ≡
∫

∞

−∞

dvP (z, v) = d−1[z(d − z)/d2]θr+1/3Ω̃(z/d),

where Ω̃(y) ≡
∫

∞

−∞
duΩ(y, u) is the corresponding shape

function. The corresponding contact probability of finding
a segment at z ≈ 0 close to the wall with arbitrary tangent
v is

P (z) ≈ z1/3+θrd−2χr/3Ω̃(0, 0)

∼ z2/3d−5/3. (B.4)

Appendix C. Monte Carlo simulations

MC simulations are performed for the experimental ge-
ometries of straight and curved channels with a rectan-
gular cross-section. We use a similar quasi-two-dimen-
sional geometry as in the experiment with a channel height
h = 1.4µm and channel widths between d = 1.5µm and
10µm. For curved channels the radii of curvature are be-
tween R = 30µm and 200µm. For an efficient equilibra-
tion in the simulation, we introduce a small extensibility
of tangent vectors, characterized by a (large) spring con-
stant k such that the simulation model is the semiflexible
harmonic chain model described in reference [33]. Intro-
ducing N = L/b points r3,n = r3(nb) (n = 1, . . . , N) along
the chain connected by vectors t3,n = r3,n+1 − r3,n, the
simulated Hamiltonian is

H3D =

N−2
∑

n=1

κ

2b
[t3,n − t3,n+1]

2
+

N−1
∑

n=1

k

2
[|t3,n| − b]

2

+

N
∑

n=1

bVch(r3,n). (C.1)

The discretization length b has to be chosen sufficiently
small not to influence results. In general, discretization
effects are small in this problem. They are actually absent
for a free filament without confining potential.

We use a standard Metropolis algorithm with a combi-
nation of local displacement and pivot moves of the chain.
A typical MC simulation performs ∼ 107 MC sweeps over
all positions r3,n. We project the three-dimensional tan-
gent vectors t3,n into the two-dimensional plane y = 0
in the same manner as in the experiment, where the con-
tour is projected into the focal plane. We measure the
spatially averaged correlations of the projected tangent
vectors tn = (1− êy ⊗ êy)t3,n, where êy is the unit vector
in the y-direction. The MC algorithm that we described
so far simulates ideally thin filaments. It is used to con-
firm that the results (1) and (2) for the tangent correla-
tions, which were originally derived for a harmonic con-
fining potential, remain valid for tangent correlations in
steric channel confinement and to determine the appro-
priate value of the numerical prefactor a ≃ 0.76 in the

Odijk scaling relation λ = aL
1/3

P d2/3.

In the microscope image, however, the filament’s con-
tour has a finite thickness which cannot be neglected. The
thickness originates from the finite exposure time and the
limited resolution of optical microscopes. To capture these
effects in the MC simulation and to allow for a detailed
comparison with experimental data, we simulate the ex-
perimental imaging process within the MC simulation.
Snapshots of such simulations are shown in Figure 2 along
with experimental snapshots. We first mimic the experi-
mental data acquisition process by introducing a pixel grid
with a pixel size of 0.065µm comparable to the pixel size
of the camera. Then we generate “microscopy images” by
selecting each pixel which is positioned within a radius
RMC of the polymer’s contour at any time point during a
certain MC exposure time of several hundred MC sweeps.
Similar to the experimental images the radius RMC is
much larger than the pixel size. This step leads to the
loss of information about the filaments’ positions on length
scales smaller than RMC . Typically we used values around
0.30µm for RMC which is comparable to the filament radii
on the experimental binarized microscopy images. We ob-
tain simulated binarized images as shown in Figure 2b.
After acquiring the simulated images, we analyze them
using the same procedure as for the experimental data.
We first reduce the image contour which has a thickness
of the order of 2RMC to a one-pixel-line. For this step
we use the same algorithm as described in reference [34].
A cubic spline is fitted to the one-pixel-line, and an ar-
clength reparametrization of the resulting continuous line
is obtained by dividing it into tangent vectors of equal
length. In the MC simulations, we can control the fila-
ment thickness RMC and the exposure time. As described
in reference [14] this allows us to obtain much improved
fits to the experimental data for tangent correlations and
to accurately determine persistence and deflection lengths
from these fits.
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