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Abstract
Temperature-economic growth relationships are computed to quantify the impact of
climate change on the economy. However, model performance and differences of
predictions among research complicate the use of climate econometric estimation.
Machine learning methods provide an alternative that might improve the predictive
effects. However, time series and extrapolation issues constrain methods such as
random forests. We apply a simple thought experiment with national marginal GDP
growth by aggregating subnational climate impact to alleviate the shortcomings in
random forests. This paper uses random forests, multivariate cubic regression, and
linear spline regression to examine the direct impacts of temperature on economic
development and conducts a performance comparison of the methods. The model
results indicate an optimal temperature of 15°C, 15°C or 21°C for each model.
Furthermore, a thought experiment indicates that the marginal predictions of
national GDP changes by approximately 1%, –3%, or –6% for models with 1°C
warming. The performance comparison suggests that random forests have stable
model performance and better prediction performance in bootstrapping. However,
the extrapolation problem in random forests causes underestimation of climate
impact in 5% of cells under 6°C warming. Overall, our results suggest that
temperature should be considered in economic projections under climate change
scenarios. We also suggest the use of more machine learning methods in climate
impact assessment.

Keywords: Climate change; GDP-temperature relationship; Temperature effects on
economic growth; Subnational data; Bootstrap performance test; Random forests

1 Introduction
Research has estimated the impact of climate change on economic development through
temperature-economic growth relationships (Burke, Hsiang, & Miguel [5]). These at-
tempts offer a relatively simple solution to assess the economic impact of climate change.
For instance, Sebnem et al. [39] included temperature as a quadratic variable in com-
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putable general equilibrium equations (CGEs) to compute the potential climate change
impact to agriculture, other sectors, and the whole economy in Bulgaria. The temperature-
economic relationship plays a critical role in estimating the climate change impact and
hence determines the final performance of the whole economy in the model. However,
the simulation of climate change impact relies on the form of the climate variables in the
model equations. Due to the important role of economic models in informing policymak-
ing, it is vital to find suitable ways to predict the climate impact into the economic system
(Heal & Park [23]; García-León et al. [18]).

To quantify the impact of climate change, previous studies have investigated linear and
nonlinear temperature-economic relationships via traditional regression methods by in-
corporating temperature into the Cobb-Douglas production function (Dell et al. [12];
Kalkuhl and Wenz [28]). Among the nonlinear regression approaches, quadratic regres-
sion and linear spline regression are the primary modeling methods. Specifically, country-
level studies such as Burke, Hsiang, and Miguel [5] [henceforth BHM] and Heal & Park
[22] used multivariate quadratic regression to estimate impact for countries via the tan-
gent slopes of the curve. By contrast, subnational research uses linear spline models (Du
et al. [14]) to compute slopes within temperature bins as marginal impacts. Moreover,
some research applies both methods (Newell et al. [33]; Zhao et al. [48]) but presents a
preference for quadratic regression.

Some problems remain unsolved by the two nonlinear regression approaches. The tan-
gent slope limits the functional relationships in multiple regression to be a quadratic to
ensure that the marginals represent countries’ temperature economic semielasticity. How-
ever, as Hsiang [26] noted in areas where the annual average temperature is below 0°C, any
increase in temperature might cause obvious production growth. Hence, a quadratic form
might cause high deviations between fitted values and observations in low-temperature
areas for the observed inverted U-shaped curves (Du et al. [14]). A cubic regression might
be better than quadratic regression in describing temperature-economic growth. The poor
fitting in the low-temperature areas can be mediated by a linear spline; however, linear
spline regression has shortcomings, such as outlier effects and uncertainties from bin set-
tings.

Other problems come from differences in projection among research. Dell, Jones, and
Olken [12] used reduced-form linear regression and estimated a marginal –1.3% return in
per capita GDP in poorer countries. Heal & Park [22], using the same dataset as Dell et al.,
applied quadratic regression and obtained an impact of approximately 5%, with marginal
impact between –4% and 3% depending on the country. Zhao, Gerety, and Kuminoff [48]
reported a global GDP change of approximately –7% for warming of 1°C. For China, as an
example, Heal & Park [22] reported a marginal 3% (0-6%, with 95% confidence intervals)
per capita income increase, while BHM estimated a negative 0-1% marginal impact on
income growth. The difference is partially due to the base-year selection, model forms
(Newell et al. [33]), and model settings that differentiate the results even within the same
research (Heal & Park [22]). Along with low explanatory ratios in a predictive setting in
some models (Dell et al. [12]) and lack of model performance comparison, the problems
hinder the use of climate economic estimation.

Advanced learning models provide an alternative to traditional models. The learning
process treats data as a “black box” or “gray box” and summarizes patterns from the data
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within the box processes. Such models are widely used in impact simulations in economics
and environmental economics (Athey [2]; Cole et al. [10]).

Machine learning has been shown to have good performance on data with structures
that are hard to depict by traditional models (Mullainathan & Spiess [32]). Liu et al. [31]
found that machine learning performed better than traditional regression methods in
identifying relationships between poverty and its explanatory variables. Another exam-
ple of improving explanatory power and accuracy by means of machine learning was il-
lustrated in a study of climatic impacts on crop yields (Jeong et al. [27]). However, to the
best of our knowledge, machine learning methods have not been applied to studying the
impact of temperature on economic growth.

One reason may be that learning methods based on “trees” lack the ability to capture
trends in time series and have limitations in extrapolation. The first issue causes problems
in panel data but could be mediated through the use of first-order differences (Wyner
et al. [45]); these issues make it difficult to make predictions over time. However, since
our research target is to investigate the relationship between temperature and economic
growth, time series prediction is not our main concern.

Therefore, how to quantify climate change impact and consider it in projection and
econometric equations for CGE is an important issue. Based on the climate Cobb-Douglas
production function (Dell et al. [12]), we suggest using marginal propensity to incorpo-
rate the impact of temperature into the production equation. A simple thought experiment
is applied to obtain the national marginal GDP change through a process of aggregating
cell GDP, which was proposed by Zhao, Gerety, and Kuminoff [48] [henceforth ZGK].
This marginal impact might cooperate with production and even sector production as
marginal impact or elasticity within the Cobb-Douglas function or constant elasticity of
substitution equations.

We select random forests (RFs) as our modelling method in the main context, and mul-
tivariate cubic regression (cubic) and linear spline regression (spline) serve as our bench-
mark models. We evaluate additional machine learning models such as Decision Tree
(DT), Gradient Boosting Machines (GBM), and Support Vector Regression (SVR). Given
their outcomes closely resemble those of Random Forests (RF), and RFs exhibit superior
performance, the findings from the other machine learning models are outlined in the
Appendix (Additional file 1). This paper uses 1-degree latitude by 1-degree longitude sub-
national quinquennial variations in China over 20 years to examine the impacts of tem-
perature on economic development. China is selected as our research area because of its
importance as a developing country facing chanllenges of climate change. With low geopo-
litical risk (Caldara & Iacoviello [7]) and low global uncertainties (Ahir et al. [1]), China’s
economic development experienced relatively fewer disruptions from conflicts during the
study period (1985-2005).

The simulation results for Random Forests (RFs) reveal modest shifts in national GDP,
hovering around 1%, whereas cubic and spline simulations show more substantial changes
at –3% and –6%, respectively. When assessing model performance, RFs stand out with a
more robust explanation in the train-test split and consistent stability when confronted
with sample variations in bootstraps. Despite these strengths, it’s worth noting that ex-
trapolation poses a challenge and may lead to underestimation. Causality remains an issue
for RFs, so prior to deploying RFs, we strongly advocate conducting an in-depth literature
review and causality checks to ensure a robust and reliable analysis.



Song et al. EPJ Data Science           (2023) 12:51 Page 4 of 24

The content of this paper is organized as follows. In Sect. 2, we describe the data source,
empirical model, and performance index. In Sect. 3, we discuss the empirical results of
RFs. In Sect. 4, we compare the three modeling methods in terms of their results and
performance. We conclude in Sect. 5. Our results suggest that temperature should be ac-
counted for in economic projections under climate change. Moreover, our research con-
tributes to modeling methods in climate econometrics and the literature on quantifying
the temperature impact on the economic growth effect.

2 Data and methods
2.1 Data
Economic data were extracted from the Geographically Scaled Economic Database
(GEcon 4.0) by Nordhaus (Nordhaus [34]). GEcon 4.0 provides subnational economic and
demographic information at a 1-degree resolution every five years from 1990 to 2005. Raw
data were winsorized to avoid the influence of extreme values, and cells with no economic
activity were dropped. The changes in the per capita gross production in cells (which is
later referred to as GDP change per capita or per capita GDP change) were calculated as
the log first difference.

Climate data were extracted from the meteorological data repository developed by the
Coordinated Regional Climate Downscaling Experiment (CORDEX) East Asia project
(Giorgi et al. [19]; Lake et al. [29]). Near-surface air temperature (ts) and precipitation
(pr) at 0.5-degree resolution were acquired for a historical period from 1985 to 2005. The
climate data were then aggregated to 1 × 1 degree resolution. Then, they were averaged
by a 5-year interval for period 0 (1985-1990), period 1 (1991-1995), period 2 (1996-2000),
and period 3 (2001-2005). The summary statistics of the variables are shown in Table 1.
For more details of data preparation, please see Appendix A.1 and Table A.1 (Additional
file 1).

Observations N = 3234; St. Dev.: standard deviation; p1 – p99: 1st percentile – 99th
percentile. � log yir is the log first difference of per capita GDP.

2.2 Empirical framework
The temperature and precipitation from CD-C have been studied in many climate econo-
metric studies. Following Dell, Jones and Olken [12] and Du et al. [14], we employ a Cobb-
Douglas type production function (CD-C) to model the relationship between temperature
and per capita GDP growth in cells.

Yir = eδir AirKα
ir Lβ

ir , (1)

Table 1 Summary statistics for the variables in model estimation

5-year average 5-year average � log yir
Precipitation (cm) Temperature (°C)

Mean 34.81 4.76 0.36
St. Dev. 26.92 8.49 0.14
p1 4.28 –9.96 0.05
p10 9.51 –5.88 0.19
p25 17.16 –1.79 0.28
p50 26.83 3.37 0.34
p75 43.44 12.02 0.44
p90 71.31 16.47 0.56
p99 134.63 23.94 0.7
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where i indexes the cell and r indexes time, and Yir is the total output for time r in cell i. A
represents productivity, K measures capital, and L stands for labor. We follow BHM and
assume the capital-labor ratio is fixed for cell i such that Kir/Lir = Rir and constant returns
to scale; thus, α + β = 1. Then, we have,

Yir = eδir AirRα
irLir . (2)

We then divide both sides of the equation by Lir ,

Yir/Lir = eδir AirRα
ir . (3)

We define yir as per capita output; then, we have yir = Yir/Lir . Inserting yir into Eq. (3)
yields

yir = eδir AirRα
ir . (4)

Taking the log first difference in Eq. (4) then gives the following equation,

� log yir = log(Air) – log(Ai,r–1) + α(log Rir – log Ri,r–1) + δir – δi,r–1. (5)

We introduce the impact of climate into the production function using Cir to represent
climate variables (temperature and precipitation). We follow Dell et al. [12] and Du et al.
[14] to assess the impact of climate on productivity Air and capital-labor ratio Rir , where

�Air/Air = μi + ξCir , (6)

�Rir = κr + ωCir . (7)

Then, we insert Eq. (6) and (7) into Eq. (5) to obtain

� log yir = μi + ξCir + ακr + αωCir + δir – δi,r–1. (8)

We rewrite Eq. (8) as

� log yir = μi + θr + τCir + εir , (9)

where θr = ακr and τ = αω. μi measures the innate characteristics of productivity in cells;
θr measures the capital-labor ratio change over time.

Cir represents climate impacts, and we replace it with Tir (temperature) and Pir (pre-
cipitation). Previous research (e.g., Dell et al. [12]; BHM) has provided evidence of the
nonlinear impact of temperature on economic activity at the microlevel; hence, we aug-
ment our base model Eq. (9) with the nonlinear settings of temperature and precipitation.

To estimate these effects, we run panel regressions of the form

� log yir = μi + θr +
∑

τjT
j
ir +

∑
ρkPk

ir + εir , (10)

where � log yir is the log first difference of the quinquennial per capita GDP. For regres-
sors, μi and θr are cell and time fixed effects as dummy variables. Tir is the five-year average
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temperature, and Pir is the five-year average precipitation. τj and ρj are the parameters of
temperature and precipitation, and j and k depend on the modeling method.

The CD-C models in different papers vary in the selection of fixed effects and additive
variables capturing slow changes in “trend”. The fixed effects in our model are cell and time
effects. The cell effects account for cell-level specific terms such as culture, traditions, and
institutions. Time fixed effects capture shocks in markets, sudden improvement in tech-
nologies, and abrupt changes in policies. However, we do not specifically include “trend”
variables that depict slow changes such as demographic shifts, trade liberalization, and
evolving political institutions (BHM). We believe part of these changes are captured by
time fixed effects, and the root for these slow changes is buried deeply in the cell culture
and historical background. Additionally, since our data are five-year averages, the changes
in five years are condensed into a single value; thus, we believe a considerable slow effect
is already observed with the time effects.

Some research considers the region-year effects and states that they capture spatially
correlated shocks caused by policies and trade (ZGK). If we use κir to replace κr in Eq. (7),
region-year effects are introduced. However, in this work, we choose κr instead of κir and
hence do not include cell-by-year effects. As Fisher et al. [17] suggested, the use of state-
by-year fixed effects absorbs almost all variation in weather, which increases interactions
among the variables in the models.

Lagged effects from temperature might have a delayed impact on economic growth. The
lagged effect could be introduced to the equation through

�Air/Air = μi + ξCir +
∑

ϕCi,r–l, (11)

�Rir = κr + ωCir +
∑

φCi,r–l, (12)

where i – l is the lags.
We insert Eq. (11) and (12) into Eq. (5) and follow similar steps to obtain our formula

with lagged climate effects as

� log yir = μi + θr + τCir +
∑

γ Ci,i–l + εir . (13)

By considering Tir (temperature), Pir (precipitation) and nonlinear effects, we obtain
panel regressions of the form,

� log yir = μi + θr +
∑

τjT
j
ir +

∑
ρkPk

ir +
∑

γmTi,r–l +
∑

ηnPi,r–l + εir . (14)

Ti,r–l and Pi,r–l are lagged effects of temperature and precipitation; ϒm and ηn are the
parameters of the lagged effects; r – l = 0 (0-lag) and r – l = 2 (2 lags) are considered sepa-
rately.

The per capita GDP growth is calculated as,

gyir = exp(� log yir) – 1. (15)

Because the changes in GDP are quite large in China among the 5-year intervals (Ta-
ble 1), � log yir is no longer approximately equal to the gyir . Hence, we define Eq. (15) to
calculate gyir .
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The null hypothesis is that after controlling for the fixed effects and precipitation, tem-
perature has no effect on economic growth: H0:

∑
τj = 0.

The alternative hypothesis is H1:
∑

τj �= 0.

2.3 Random forests and the benchmark models
2.3.1 Random forests (RFs)
We take the independent variables of Eq. (10) as inputs to train RFs. In a train-test-split
setting, 80% of the data are extracted as training data, while the other 20% of the data
are kept for prediction validation. RF-CART regression is built under binary tree settings
for each node. The analysis was conducted in R language with the random forest package
(Liaw & Wiener [30]). The hyperparameter settings have been fine-tuned based on the
minimum mean squared error, following Probst et al. [35]. The specific values are set as
mtry = 989, min.node.size = 2, and sample.fraction = 0.3142428, while the number of trees
is configured as a default value of 500 (Gromping [21]).

We’ve also tested alternative machine learning models such as Decision Tree (DT), Gra-
dient Boosting Machines (GBM), and Support Vector Regression (SVR). Given that their
outcomes closely align with Random Forests (RFs) and RFs exhibit superior performance,
we have opted to focus on presenting the results of RFs in our main context. The results of
the additional machine learning models are detailed in Appendix Fig. A.4 (Additional file
1), which illustrates the temperature effects on cell per capita GDP change, as well as Fig.
A.5, depicting the GDP growth distribution in cells under the temperature rise scenario.
Furthermore, Table A.6 provides a comprehensive overview of the model performance for
Decision Tree (DT), Gradient Boosting Machines (GBM), and Support Vector Regression
(SVR).

2.3.2 Benchmark models
A cubic curve is observed in the exploratory analysis of Deryugina & Hsiang [13] and
ZGK. Hence, we explore two benchmark models, cubic regression (cubic) and linear spline
regression (spline), as traditional regression benchmarks using the R packages splines and
mgvc (Wood [43]). Equations for the two benchmark models are provided in Appendix A2
(Additional file 1) Empirical methodology. The parameters and setting of the benchmark
models are presented in Appendix Table A.2 (Additional file 1).

2.4 A thought experiment for temperature effects on marginal national GDP
changes – temperature rise scenarios

To determine the marginal prediction of rising temperature on economic development,
we conduct a simple thought experiment considering scenarios that assume equal temper-
ature increases of τ °C among all cells. Under the temperature rise scenarios, temperature
is the only variable that changes: all other variables retain their 2005 values.

The temperature ranges in the temperature rise scenarios are set to τ = 0.5°C to 6.5°C,
with intervals of 0.5°C. We set the maximum temperature rise to τ = 6.5°C since the aver-
age temperature changes by 6.62°C in China under the RCP8.5 scenario by 2100 compared
to the 2005 temperature in CORDEX East Asia.

The projected GDP in each cell is calculated through

GDPi,τ0+τ =
(
exp(� log yi,τ0+τ ) + 1

) × GDPi,τ0 , (16)
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where GDPi,τ0+τ is the projected GDP in cell i after the temperature rises by τ °C.
� log yi,τ0+τ is the per capita GDP change from the model projection when the temper-
ature rises by τ °C in cell i. GDPi,τ0 is the GDP in cell i in 2005.

The impacts of temperature on national GDP growth are computed as

gYτ0+τ = (GDPτ0+τ – GDPτ0 )/GDPτ0 (17)

in which the accumulated national GDP in China is GDPτ0+τ =
∑N

i=1 GDPi,τ0+τ .

2.5 Geographic distribution of temperature impacts under the temperature rise
scenario

To examine the geographic distribution of the impacts of temperature on economic
growth, a contour map of the cell per capita GDP growth is plotted under a tempera-
ture rise scenario of 1°C and 6°C. The graph uses the R package ggplot2 (Wickham [42]).
Per capita GDP growth values of 0, 0.6, and 1 are set as contour lines in the graph. We use
0.6 because the accumulated national GDP growth in China from 2000 to 2005 was 0.6.
A quantile summary of the impact on GDP growth in cells is provided in Appendix A.3
(Additional file 1).

2.6 Model performance indices
Different indices are used to evaluate the performance of RFs and the benchmark regres-
sions. Performance indices and their explanation and equations are listed below:

(1) R2, which measures the proportion of the outcome explained by the regressors.

R2 =
N∑

i=1

(ŷi – ȳi)2/
N∑

i=1

(yi – ȳi)2, (18)

where yi represents the observations in the training dataset, ŷi represents the fitted
values of the model, ȳi is the observation mean, and N is the number of
observations.

(2) Root mean squared error (RMSE), which measures the average difference between
the observations and the output fitted values from the model. It is the square root of
the mean squared error (MSE).

RMSE =

√√√√
N∑

i=1

(yi – ŷi)2/N . (19)

(3) The mean absolute error (MAE), similar to RMSE, measures the absolute difference
between the observations and the fitted values.

MAE =
N∑

i=1

|yi – ŷi|/N . (20)

(4) Akaike information criteria (AIC), which is an unbiased estimate of the MSE.
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We use an adjusted AIC equation from Richardson [36] since the normal calculation of
AIC (AIC = 2k – 2 ln(L)) has met obstacles of deciding k and L (the maximized value of
the likelihood function) for RFs (Burnham and Anderson [6]).

AIC = MSE + s2k/N , (21)

where s2 is the squared sum of variance between the predicted and actual values of the
test dataset (N ) and k is the number of parameters. k is calculated as follows:

k = K/n + 1, (22)

where K is the global count of the number of times that each of the variables in RFs is
used, n is the number of trees calculated in the RF (which is 501 in our RF model), and 1 is
added for variance. In the other two regression models, k = the number of variables+1+1,
where 1 is added for variance and the other 1 is added for the intercept.

In evaluating the performance of machine learning regressions, commonly used metrics
include RMSE (root mean squared error) and MAE (mean absolute error) as highlighted
by Chicco et al. [9]. RMSE, calculated as the average of the squares of errors, assigns higher
weights to outliers, aiding in outlier detection and addressing overfitting. On the other
hand, MAE represents the absolute difference between estimated and true values, giving
less weight to outlier errors compared to RMSE. It is often preferred when outlier values
are not critical in model selection.

R-squared is a key metric that identifies the proportion of variance in the target variable
explained by independent variables. Recent research, such as Chicco et al. [9], suggests
R-squared as a standard metric for evaluating regression performance due to its informa-
tiveness and lack of interpretability limitations found in metrics like SMAPE. In panel data
analysis, individual and model significance may outweigh R-squared due to potential vari-
ance explained by random or fixed effect factors (Baayen [3]). Nevertheless, when comes
to model selection, for instance in mixed effects models comparison, R-squared remains
a pivotal performance measure (Rightsa & Sterbab [37]).

A caveat with R-squared is its tendency to increase when new variables are added, po-
tentially leading to misleading comparisons. Adjusted R-squared addresses this issue by
incorporating degrees of freedom in its calculation, penalizing scores as more features are
added. But in panel regressions with time and cross-sectional effects, fixed-effects dummy
variables can substantially reduce adjusted R-squared scores, sometimes even to negative
values.

For clarity when comparing to machine learning models, this paper opts for using R-
squared in performance measurement, while adjusted R-squared scores for conventional
models can be found in Appendix Table A.7 and A.8 (Additional file 1).

Additionally, AIC (Akaike Information Criterion) is included as a performance index.
AIC is an probablistic measure that not only consider model performance but also model
complexity. It assesses a model’s ability to capture variance in the data while offering a
standard for measuring information loss (Cavanaugh & Neath [8]).

Except for R2, the other model performance evaluation indices have the standard that
the lower the value is, the better the model performed.
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The prediction performance of the modeling is assessed using the model predictions of
the 20% “out-of-bag” (OOB) test data, which are set aside for train-test-split and evalua-
tion purposes.

3 Empirical results and discussion of random forests
3.1 Temperature effects on cell per capita GDP change
Figure 1a presents the mean impact of temperature effects on the per capita GDP change at
the cell level. An inverted U-shaped trend is observed as � log(per capita GDP) increases
slightly as temperatures rise before 15°C and then declines at temperatures above 15°C.
The estimated per capita GDP growth of cells is between 5% and 85%. For a quantile sum-
mary, please see Appendix Table A.4 (Additional file 1) (for training samples, N = 2590).

This 15°C optimal temperature is consistent with former literature for China. BHM esti-
mated an optimal temperature of approximately 14°C in China in country-level research.

Figure 1 Mean impact of temperature on log cell per capita GDP change (� log yir ) in China. The plot depicts
the relationship between annual average temperature and changes in per capita GDP with 95% confidence
intervals (N = 1078 ∗ 3) for quinquennial variations between 1985 and 2005. Empirical models include
cell-fixed effects, year-fixed effects, and precipitation as controls (see Supplementary Methods). Lagged
effects are not included. (a)-(c) show the mean impacts of temperature on economic growth, (a) modeling
with random forests, (b) modeling with cubic regression (c) modeling with linear spline regression. (d) the
kernel density of observations and the models’ fitted values



Song et al. EPJ Data Science           (2023) 12:51 Page 11 of 24

ZGK proved an estimated 16°C optimal temperature in poor countries (including China),
also using GEcon4.0 economic data.

There is a debate about whether optimal temperature reflects a country’s economic sen-
sitivity to temperature. Many studies have reported comparatively high optimal tempera-
tures in “poorer” countries and low optimal temperatures (Du et al. [14]; BHM) or no opti-
mal temperature (ZGK; Dell et al. [12]) in “richer” countries. The differences are explained
by industrial structure and labor-intense production, which are less climate-sensitive in
developed countries (Heal & Park [23]), and adaptability to climate is stronger in devel-
oped countries (Barreca et al. [4]). However, Deryugina and Hsiang [13] calculated an
optimal temperature of 15°C in the United States. They also suggested that adaptation
measures were limited to climate change, even in the US.

3.2 Temperature effects on national GDP growth under the temperature rise
scenario

To develop a sense of the direct influence of temperature on economic development, we
conduct a simple thought experiment that assumes equal temperature increases among
all cells by t °C, where t = 0.5°C-6.5°C. The temperature increase and other variables are
substituted into Eq. (10) or Eq. (14) to simulate the potential per capita GDP changes in
each cell; then, Eq. (15) is used to calculate the GDP in cells under a certain temperature
rise scenario. We aggregate the GDP in the cells of each temperature change to obtain the
national GDP under the temperature rise simulation (Eq. (17)). By comparing outcomes
from this simulation with actual GDP in the base year, we obtain the national GDP change
under the temperature rise scenario (Eq. (16)) and then roughly characterize the marginal
national economic change through a linear simulation.

The data distribution in Fig. 2 suggests a linear relationship. The accumulated linear sim-
ulation at the national level is found in previous studies. Dell, Jones, and Olken [12] noted
conflicts in which microevidence tended to support nonlinear temperature-economic re-
lationships and macroevidence tended to support linear temperature-economic relation-
ships. BHM provided evidence that “high frequency” microdata, such as changes in labor
supply (min), had a nonlinear curve with respect to temperature, while aggregated macro
data, such as labor supply (day), displayed flatter changes and linear simulations before
reaching certain temperature levels.

Figure 2 displays the model estimations and 95% confidence intervals for simulated
trajectories of the national GDP changes under the temperature rise scenario. The lin-
ear simulation is for warming by 1°C, and the national GDP changes by 0.0087 (y =
0.0087x + 0.5904, R2 = 0.98) in RFs, which is an approximately 1% marginal propensity
to GDP change.

The observed approximately 1% change in output due to temperature fluctuations aligns
with findings in some previous studies, although the directional trend contradicts results
from many investigations. A mid-latitude research by a 27-year panel dataset of 274 pre-
fecture cities suggested an increase of 1°C in temperature associated with a 0.78% decrease
in output in China (Duan et al. [15]). Dell et al. [12] estimated a marginal change of –1.3%
in GDP with an average 1°C warming in “poorer” countries, and Hsiang [25] observed
a –2.5% change in Caribbean-basin countries. Some research presented higher impacts
from temperature change; for instance, ZGK reported a global economic marginal change
of approximately –7% when the temperature rises by 1°C. Sandhani [38] estimated 4.7%
fall in the growth rate of district per-capita income in India with 1°C warming.
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Figure 2 National growth-rate projections (gY) combining econometric estimates of the impact of
temperature on economic growth with temperature rise projections of 0.5°C to 6.5°C relative to 2005 levels.
(a) cubic models, (b) spline models, and (c) RFs. The plot shows the projected relative impact (dots) together
with the 2.5%–97.5% percentile range (darker shading) as the confidence intervals. Lagged effects are
indicated by dot color, blue dots for no-lag, and red dots for 2-lags, together with the 2.5%–97.5% percentile
range for uncertainty from the projected relative impact (lighter shading)

There are instances of positive temperature impacts reported in specific contexts. Yuan
et al. [46] highlighted the seasonal effects of temperature on economic outcomes in Chi-
nese cities, noting significant negative impacts during the warm season but positive im-
pacts during the cold season. Heal & Park [22] found a marginal change of around 3%,
indicating an income increase as the temperature rises by 1°C. These diverse findings un-
derscore the complexity of the relationship between temperature and economic outcomes,
suggesting that regional and contextual factors play a crucial role in shaping these dynam-
ics.

The thought experiment provides solutions for estimates of the marginal impact of tem-
perature on economic growth. This method helps overcome the obstacle of using nonlin-
ear and nonparametric modeling to determine marginal influences. We believe the sim-
ulation results are a useful exercise for developing a sense of the temperature effects on
economic development under climate change.
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Figure 3 Cell growth-rate projections (gy) combining econometric estimates of the impact of temperature
on economic growth with the temperature rise projections of 0.5°C to 6.5°C warming relative to 2005 levels.
(a) The projected per capita GDP growth of cells by different models and 95% confidence intervals, with the
median projection given as the solid line. The dashed line refers to national GDP growth (Fig. 2-no lags) as a
comparison. (b)–(d) Distribution maps of cell-level per capita GDP growth (gy) when temperatures rise by 1°C
and by 6°C. Contour lines are plotted if the predicted values fall in the range. In (b)-(d), the blue lines indicate
areas where the per capita GDP growth is 0 (0%). The purple lines indicate areas where the per capita GDP
growth is 1 (100%). The gray lines indicate where the per capita GDP change is 0.6 (0.6 equals a 60% increase
in the per capita GDP). The gray line gy = 0.6 is set as the mean GDP growth in the base year 2005

3.3 GDP growth distribution in cells under the temperature rise scenario
Figures 3(b)-(d) display the distribution of the cell per capita GDP growth in China under
scenarios of warming by 1°C and 6°C. The graphs in Fig. 2 illustrate the national GDP
growth since they depict the distribution pattern of the growth.

The geographical impact of temperature is nonuniform. While our warming pattern
suggests an equal increase in temperatures in cells, the impact on economic growth is
projected to predominantly be a beneficial in northern China. For RFs, the cell per capita
GDP growth presents comparatively mild but even changes when moving toward north-
ern China. As temperatures rise, areas where the per capita GDP growth is larger than
0.6 expand from southern China to northern China and western China. Surprisingly, no
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detrimental effects of temperature rise are observed in the considered range. This explains
the positive impacts of the temperature rise of RFs in Fig. 2.

4 Comparison of the three models
4.1 Empirical results comparison of the three models
We compare the mean impacts and simulations of the thought experiment under the tem-
perature rise scenario for the three models. Compared to RFs, traditional models display
broader impacts on cells and deeper impacts on national GDP.

For the mean impact, the cubic model exhibits a similar optimal temperature to that
of RFs, approximately 15°C – 16°C. The spline model differs from the other two models,
with an optimal temperature of 21°C. The difference occurs because the spline simulates
a linear model within each bin, where the bin setting and outliers in bins have a strong
influence on the estimation of the slope. To present the changing patterns within bins, we
tested a cubic spline model using the same settings and found a smooth curve in which
the optimal temperature fell between 15°C and 16°C (Appendices Fig. A.2 and Table A.3
(Additional file 1)). Thus, caution should be taken when using a linear spline to depict the
temperature-economic relationship.

For the accumulated national GDP under the temperature rise scenario, the linear
equations regressing the national GDP changes on temperature are y = 0.0087x + 0.5904
(R2 = 0.98) in RFs, y = –0.0312x + 0.5984 (R2 = 0.93) in cubic, and y = 0.0601x + 0.527
(R2 = 0.89) in spline (Fig. 2). Therefore, the models have marginal predictions of a GDP
change of approximately 1% in RFs, –3% in cubic, and 6% in spline for warming below
6.5°C.

For distributions of the cell per capita GDP growth under the temperature rise scenario
(Fig. 3b-d), northern China displays an overall benefit from warming. The impact scales
are spline > cubic > RFs. In traditional regression, detrimental effects expand in southern
China, especially for cells with high annual temperatures. Previous studies (e.g., Dell et al.
[12] and Heal and Park [22]) also found that countries in hot regions are more vulnerable
to climate variation.

Due to the nonuniform growth effect, the accumulated GDP is determined by the dif-
ference between northern and southern China. Through which in the sample as a whole,
the positive effect offsets the negative effect in spline, but the opposite result is observed
in cubic. Hence, spline is computed with a positive slope and cubic with a negative slope
(Fig. 2).

For the magnitude of economic change, RFs present lower but more evenly distributed
per capita GDP growth compared to the benchmark models (Fig. 3a). A quantile summary
of the cell-level per capita GDP growth is provided in Appendix Table A.5 (Additional
file 1).

4.2 Performance comparison of the three models
To determine the performance of the models, we tested the R-squared, RMSE, MAE, and
AIC of the models. Then, we use “out-of-box” (OOB) data to validate the models’ perfor-
mance in prediction.

Our result indicate that RFs outperform traditional regressions in terms of all indices.
For R2, RFs explain 93% of the variation in per capita GDP growth by the model, while
cubic explains 35% and spline explains 38%. For extended OBB prediction with the test
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Table 2 Model performance of random forests (RFs), multiple linear regression (cubic), and linear
spline regression (spline)

80% training data model result 20% OOB test data for prediction

R2 RMSE MAE AIC R2 RMSE MAE

RFs 0.93 0.04 0.03 2.78 0.31 0.12 0.09
cubic 0.35 0.11 0.09 14.12 0.04 0.19 0.16
spline 0.38 0.11 0.09 13.40 0.02 0.19 0.16
RFs_lag2 0.93 0.04 0.03 2.11 0.44 0.11 0.08
cubic_lag2 0.38 0.11 0.09 13.40 0.01 0.20 0.16
spline_lag2 0.42 0.11 0.09 12.59 0.00 0.21 0.16

data, the explanatory effect of the projection is 31% in RFs and 4% and 3% in cubic and
spline RFs, respectively (Table 2). The AIC value, MAE, and RMSE also indicate RFs have
better model performance.

The out-performance of RFs is partially explained by the design of regression trees in
RFs. A regression tree is built by recursively partitioning the sample into its homogeneous
groups (separated by nodes) based on the value of a variable to the tree’s splitting crite-
rion. For instance, the CART tree (Gordon et al. [20]) grows with a splitting criterion that
ensures maximum reduction for reaching an overall node impurity. RF-CART consists of
a combination of trees generated from randomly partitioning observations to each tree.
The prediction of RF-CART is the average prediction of trees (Gromping [21]).

This calculation process has two advantages in RFs. First, the average of the trees ensures
that they cover a wide range of patterns and capture reoccurring patterns in the regressors
in the randomly selected 500 subset samples. This approach makes RFs a good model op-
tion if there are unpredicted structures in the data (Mullainathan & Spiess [32]). Second,
RFs diminish the influences of variable collinearity. The splitting process picks the single
best variable at each node. Thus, if collinearity exists in the regressors, they do not simul-
taneously have explanatory power, but it is separately assigned to different levels of nodes
(Jeong et al. [27]). Moreover, this method covers the potential interactions of regressors
since the interaction patterns could be expressed as a combination of different levels of
nodes.

The characteristics of Random Forests (RFs) make them well-suited for investigating
climatic impacts in economic research. Their ability to capture potential explanatory pat-
terns and interactions among variables is particularly valuable. Moreover, RFs mitigate
the influences of collinearity between temperature and precipitation, as well as between
climatic variables and fixed effects. This unique capability allows RFs to excel in capturing
complex, non-linear patterns that traditional climate econometric methods might over-
look.

The comparisons of performance suggest there is a need to evaluate and compare the
performance of machine learning approaches with climate econometric methods when
predicting both level and growth effects. Our result indicates RFs provides more accu-
rate predictions for both the current state and the out-of-box samples. The performance
comparison helps identify which method is more reliable for specific predictive tasks.

By conducting this evaluation, researchers and practitioners can make informed choices
about which approach to use in climate-economic studies, depending on the specific pre-
diction goals and the nature of the data. It also helps advance the understanding of how
ML methods compare with traditional econometric techniques in addressing complex is-
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sues related to climate change and its economic consequences. This knowledge is pivotal
for making informed decisions and pushing the boundaries of research in this crucial field.

4.3 Robustness check
We test the lagged effects of climate variables with 2 lags (across 10 years) of temperature
and precipitation. For the mean impact of temperature on � log yir with lagged effects,
please see Appendix Fig. A.3 (Additional file 1) and parameters with robust errors in Ap-
pendix Table A.2 (Additional file 1) for the traditional regressions. The lagged effects do
not significantly improve the overall explanatory ratio and model performance (Table 2),
which is similar to the conclusions of ZGK and BHM Table ED1. However, introducing
lags impacts national GDP accumulation under the temperature rise scenario for the two
traditional regressions (Fig. 2). Specifically, the marginal effect of temperature rise changes
from –3% to –10% (R2 = 1.00) in cubic and 6% to –4% (R2 = 0.87) in spline. By contrast,
that in RFs is comparatively stable, with the marginal association changing from 0.87%
to 0.43% (R2 = 0.98). Robustness with alternative specifications please refer to Appendix
Table A.7, A.8, and A.9 (Additional file 1).

We use bootstrapping to simulate the impact of samples and test robustness on the
model performance of the three modeling methods. The bootstrap method can be used
to assess the accuracy of a statistic from a dataset by resampling the original dataset based
on the plug-in principle (Efron & Tibshirani [16]). A new bootstrap sample is created by
random sampling with replacement from the original dataset. Then, model training and
corresponding performance tests are conducted for the new bootstrap sample. The re-
sampling and training procedure is repeated m times. Finally, we illustrate the variations
in model results and model performance and prediction performance in plots.

To assess the robustness of the input sample, we apply bootstrapping to the train-test
split dataset to illustrate the sample impact on model performance. Although RFs have in-
cluded bootstrapping in their calculation, we still conduct bootstrapping on all RFs since
the training sample changes. First, we test random subsets from the sample of the training
dataset (N = 2590 in training) with 500 bootstraps for the models. The 20% test dataset is
used to compute the prediction performance in each iteration (schematic flow diagram;
see Fig. 4c). Then, the model performance and prediction performance are displayed in
boxplots for comparison. Overall, the boxplots in Fig. 4a suggest consistency of the per-
formance indexes of the three modeling methods with 500 bootstrap samples. The figure
displays an extraordinarily narrow interquartile range and low outliers in RFs. This low
variance in the prediction performance of RFs is observed for all performance indices ex-
cept the R2_test boxplot (R-squared for the testing dataset). When comparing the values
of the performance indices, RFs present higher AIC, higher explained variance, and lower
RMSE in training and higher explained variance and lower RMSE in prediction relative
to the benchmark models. These results are consistent with those in Table 2. The robust-
ness in model performance and better prediction performance among bootstrap samples
support RFs as a good modeling method for predicting economic growth from multiple
factors including temperature.

Since the train-split process left 20% of the data for testing purposes, it might lump the
predictions for the conditions outside the range of the training data. To check the impact
of the 20% information loss on model prediction, we first conduct bootstrapping from the
sample of all observations (N = 1078∗3) 500 times for each model. Next, prediction errors
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Figure 4 Robustness check via bootstrapping to compare the performance of the three models. Plot a shows
boxplots of the bootstrap training and testing errors for the train-test split dataset. It reports performance for
500 bootstrap samples of the training dataset and prediction with the test dataset. Plot b shows kernel
densities of the prediction errors from the original dataset by bootstrap training of the training dataset
(N = 2590) or original dataset (N = 3234). It reports the impact of sample size on model performance, in which
the blue line is modeled with random forests, the red line is modeled with cubic regression, and the green
line is modeled with linear spline regression; the solid line is trained with the training dataset in
bootstrapping, and the dashed line is trained with the original dataset in bootstrapping. Plot c is a schematic
flow diagram of the bootstrap performance test

are calculated using the original dataset for the bootstrap training with all observations
(named “bootstrap with all” in Fig. 4b). Prediction errors using the original dataset are
also computed for bootstrap training with the training dataset (named “bootstrap with
train” in Fig. 4b). A comparison via density plot illustrates the loss of information of the
train split (schematic flow diagram see Fig. 4c). The prediction error here refers to the
bootstrap root mean square test error (Tian et al. [41]).

Overall, for the prediction of the original dataset, RMSE and R-squared indicate the
RFs have better prediction performance. The bandwidths in the density plot suggest a
consistency of performance in RFs (Fig. 4b). A similar result is shown in Fig. 4a considering
the impact in the input sample.

We then compute changes in the mean accuracy and mean explanatory effects through
equations

%mean explanatory effect change

=
(
R2

bootstrap with train – R2
bootstrap with all

)
/R2

bootstrap with all × 100%, (23)
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and,

%mean accuracy change

= (RMSEbootstrap with train – RMSEbootstrap with all)/RMSEbootstrap with all × 100%. (24)

Since low RSME represents high accuracy, a positive %mean accuracy change indicates an
increase in RSME; thus, it indicates an accuracy loss.

For RFs, the mean R-squared decreases from 0.70 in bootstrap with all to 0.62 in boot-
strap with train. Using Eq. (23), the train split causes a mean explanatory effect change
of –12% relative to the original dataset. RMSE changes from 0.08 in bootstrap with all to
0.09 in bootstrap with train, a mean accuracy loss of 13% (Eq. (14)). We use the equations
to calculate the change for traditional regressions. We obtain –32% in cubic and –40%
in spline for the changes in mean R-squared and 13% in cubic and 25% in spline for the
change in mean RMSE. Hence, RFs has a smaller loss in explanatory power and less re-
duction in prediction accuracy than traditional regression methods during the train-split
process. Due to the low sensitivity to sample size, along with the stable performance, we
recommend RFs as a good tool for depicting the sophisticated relationship between tem-
perature and economic development. Our result is consistent with Sidhu et al. [40], who
proved a significantly better prediction accuracy when using boosted regression trees, a
Machine Learning technique in crop yield prediction to climate change when comparing
to quadratic and piece-wise linear functions.

4.4 Problems in using RFs
There are lingering issues in utilizing Random Forests (RFs) in temperature-economic
growth studies. Applying tree-based regressions to amalgamate correlated time and cli-
mate variables may result in inaccuracies in estimating the climate sensitivity of economic
growth. Challenges related to overfitting, the identification of trends in time series, and
the absence of causality could introduce biases, uncertainties, and even errors into the RFs
model.

First, there is a potential for overfitting in RFs. Overfitting reduces model generalization,
thereby reducing prediction accuracy. Although bootstrap indicates good performance by
RFs, RFs with different model settings could be tested to minimize the impact of over-
fitting. Regularization and entropy tests (Czarnecki & Tabor [11]) are recommended in
overfitting tests in future research.

Second, RFs have difficulty detecting trends with time series (Zhang et al. [47]). To avoid
this problem, we apply the log-first difference to remove the time trend in our regressand
(Wyner et al. [45]). The stationarity is confirmed via ADF. Time fixed dummies might also
help to alleviate the problem. In addition to removal of the time trend in variables, we
quantify the climate impact as marginal impact through the thought experiment of the
temperature rise scenario, which makes a change with time not the primary concern in
this research.

An additional critical consideration revolves around the causal explanatory capacity of
Random Forests (RFs). Given their inherent black-box nature in data processing, RFs lack
a direct mechanism for discerning causal relationships among variables. In our investiga-
tion, however, we assert a causal link between temperature and GDP growth, supported
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by prior literature and reinforced by our analyses using spline models and cubic regres-
sions. To address concerns regarding causation effects in research, traditional models play
a pivotal role in validating causal inferences before incorporating RFs. We recommend a
comprehensive literature review, the application of traditional modeling techniques, or
an initial causal inference assessment before proceeding with the implementation of Ran-
dom Forests (RFs) and other tree-based models, or considering causal forests as alternative
methodologies.

Lastly, a major concern in RFs for prediction is extrapolation. RFs have limited extrapo-
lation ability since the inner workings of a Decision Tree can be thought of as many if-else
conditions. Therefore, when tasked with predictions for temperatures not previously ob-
served, RFs will always predict an average of the values seen previously (Hengl et al. [24]).
Hence, the predicted values of gy always fall within the range of the gy observations in the
training sample. In our work, although there was no extrapolation in time, we designed
scenarios of warming as high as 6.5°C, which involved temperature areas outside the train-
ing sample.

To determine how seriously extrapolation constrains RFs under the temperature rise
scenarios, we compare the values predicted by RFs to the training sample by means of
distribution plots in Fig. 5. Scenarios with temperature increases of 1°C and 6°C are illus-
trated in Fig. 3b. In Fig. 5, a-c display the projected values of cells per capita GDP growth
(gy) for each model. The values predicted by RFs fall within the range of the gy observa-
tions in the training sample due to the limitation in extrapolation mentioned above. We

Figure 5 Extrapolated projection in predicted values (gy) by traditional models and projection by random
forests compared to the training sample under the temperature rise scenarios of 1°C and 6°C warming relative
to 2005 levels. (a)-(c) display the projected per capita GDP growth (gy) of cells by different methods. (d)
displays the temperature distribution of cells with histograms under the corresponding scenarios. In the plots,
black represents gy or temperature in the training sample (N = 2560); gray represents values under the
temperature rise scenario of 1°C warming for all cells (N = 1078). Purple represents values under the
temperature rise scenario of 6°C warming for all cells (N = 1078). We set the training sample (N = 2560) as the
baseline for comparison since extrapolation assumes that prediction cannot exceed the range of training
values in gy for random forests. Thus, the min and max values in gy determine the distribution range for
random forests. Values beyond the range of the training sample gy present the direct extrapolation ability in
traditional regressions
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then counted cells with “out-of-range” per capita GDP growth in traditional regressions
for the predicted values either larger than the maximum training observation or smaller
than the minimum training observation. The number of cells with out-of-range values
is 0 with 1°C warming and 86 with 6°C warming in cubic and 36 with 1°C warming and
450 with 6°C warming in spline (the total cell size in China is 1078). All the out-of-range
predicted values are negative in the cubic form, while spline has both positive and nega-
tive out-of-range values. Hence, comparison of models indicates that RFs mispredict 8%
(86/1078) of cells compared to cubic and 42% (450/1078) of cells compared to spline from
extrapolation under 6°C warming.

For temperature changes in Fig. 5d, 0.5% of cells (5/1078) and 5% of cells (51/1078) have
temperatures beyond the maximum temperature in the training sample for 1°C warm-
ing and 6°C warming, respectively. Hence, extrapolation might result in direct errors for
predictions of these out-of-range cells with temperatures not seen in the training sample.
Potential information loss to the seriously impacted cells partially explains the positive
projection by RFs in Fig. 2 and Fig. 3. This means that RFs might underestimate the neg-
ative economic impact of climate change. However, since fewer than 5% of cells involve
temperatures out-of-range in the training sample with 6°C warming, we assume that the
marginal predictions are still usable since it is calculated as the aggregated impact from a
total of 1078 cells.

There are methods such as regression-enhanced RFs (Zhang et al. [47]) that overcome
extrapolation in RFs and are thus highly recommended in future research. An artificial
neural network with no direct constraints on extrapolation is also suggested for future
research.

We acknowledge several limitations in our model and estimation process that present
opportunities for improvement in future research. Firstly, we have not examined the ro-
bustness of our findings with higher time resolution (annual) variations in weather and
economic outcomes, incorporating additional annual lags. The 5-year panel has limita-
tions in capturing short-term weather changes and lag-length, which should be priori-
tized in future research. Secondly, spatial autocorrelation among nearby counties was not
considered in our models. We recommend incorporating methods such as Conley HAC
standard errors in future research to address this limitation. Third, we did not include the
location-by-time dummies for a concern of degrees of freedom. Including these dummies
could better account for location-specific time trends and provide a more comprehensive
understanding of the dynamics involved, especially for annual panel in future research.

We tested the serial correlation, cross-sectional independence, and heteroskedasticity
in the residuals (Wooldridge [44]). The test was conducted for the original dataset (N =
1078 ∗ 3). Friedman’s test of cross-sectional independence resulted in a value of 70.85 (Pr
= 0.87), which indicates no cross-sectional independence. The F-test of serial correlation
failed to reject the null hypothesis, with no serial correlation significantly influencing the
model. This result is consistent with ZGK.

The modified Wald test for groupwise heteroskedasticity suggested heteroskedasticity
(Pr = 0.00) in the data. After adjusting the robust standard errors, we found no obvious
changes in parameter significance for the benchmark models. We recommend the use of
robust standard error RFs in future research to rule out the impact of heteroskedasticity
in studying the effects of temperature on economic development.
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5 Conclusions
We use 1-degree latitude by 1-degree longitude subnational quinquennial variations to ex-
amine the impacts of temperature on economic development in China through RFs. Cell-
level analysis indicates a 15°C optimal temperature for the log per capita GDP changes in
cells and an inverted-U shape trend for the above 0°C areas with the mean impact curve of
temperature effects on economic development. The impacts on cell GDP changes range
from 5% to 85% in RFs, –10% to 103% in cubic, and –11% to 120% in spline for the train-
ing sample (Table A.4). RFs display even and mild impacts from temperature on economic
development compared to traditional regressions.

We use a thought experiment to compute the marginal predictions of temperature on
economic development at the national level through aggregated cell GDP. The thought
experiment assumes an equal temperature rise among cells and refers to the temperature
rise scenario, with warming from 0.5°C–6.5°C. We use the thought experiment to estimate
how different the national GDP in China would be in simulations relative to historical ex-
perience to effectively compute the economic penalty borne of a temperature increase.
The marginal predictions of temperature on the national GDP changes are 1% (random
forests), –3% (cubic regression), and 6% (linear spline regression) for every 1°C tempera-
ture rise for warming within 6.5°C. The impact of temperature on economic growth should
not be ignored in economic projections.

The prediction performance comparison indicates that RFs outperform cubic regres-
sion and linear spline regression, for which the RFs present 30 times R-squared in the test
sample for the train-test split. The better performance of RFs is stable in the bootstrap
performance test, where RFs display a higher R-squared in training and higher accuracy
in prediction with bootstrap samples. RFs also display a lower divergence in performance
among bootstrap samples. This stability in model performance is less sensitive to sample
input and sample size. The high explanatory effect and stability in performance suggest
that RFs represent a reliable estimation of benchmark models. Hence, RFs might be useful
for depicting the complex relationship between temperature and economic development.

The incubation problems in random forests might introduce errors in estimation. The
lack of trend ability could be mediated through data preprocessing, such as log first dif-
ference and the use of the thought experiment to avoid prediction with time series. Al-
though only 5% of cells exceed the sample temperature range for warming as high as 6°C,
extrapolation does cause underestimation of the overall climate change economic impact.
This factor partially explains the projection differences compared to the two benchmark
models, even though the aggregation process at the national level alleviated the impact of
each single cell. Learning methods such as regression-enhanced RFs and artificial neutral
networks are recommended for future research to eliminate errors due to extrapolation.

A critical consideration lies in the causal explanatory capacity of Random Forests (RFs).
In our study, we assert a causal link between temperature and GDP growth, drawing on
established literature and supported by our analyses employing spline models and cu-
bic regressions. To mitigate concerns related to causation effects in research, traditional
models play a crucial role in validating causal inferences before incorporating RFs. We
strongly recommend a comprehensive literature review, the utilization of traditional mod-
eling techniques, or an initial causal inference test before the implementation of RFs to
ensure a robust and well-founded approach.



Song et al. EPJ Data Science           (2023) 12:51 Page 22 of 24

As prior literature and traditional models affirming the causal relationship between tem-
perature and economic growth, our findings emphasize the significance of incorporating
temperature into economic projections amidst climate change. Additionally, we advocate
for the exploration of more machine learning methods in future climate impact analy-
ses. Our research underscores the predictive impact of machine learning techniques in
temperature on economic growth, reinforcing the need to account for this factor in com-
prehensive economic assessments.
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