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Abstract
Solar photovoltaic (PV) deployment plays a crucial role in the transition to renewable
energy. However, comprehensive models that can effectively explain the variations in
solar PV deployment are lacking. This study aims to address this gap by introducing
two innovative models: (i) a computer vision model that can estimate spatial
distribution of solar PV deployment across neighborhoods using satellite images and
(ii) a machine learning (ML) model predicting such distribution based on 43 factors.
Our computer vision model using Faster Regions with Convolutional Neural Network
(Faster RCNN) achieved a mean Average Precision (mAP) of 81% for identifying solar
panels and 95% for identifying roofs. Using this model, we analyzed 652,795 satellite
images from Colorado, USA, and found that approximately 7% of households in
Colorado have rooftop PV systems, while solar panels cover around 2.5% of roof areas
in the state as of early 2021. Of our 16 predictive models, the XGBoost models
performed the best, explaining approximately 70% of the variance in rooftop solar
deployment. We also found that the share of Democratic party votes, hail and strong
wind risks, median home value, the percentage of renters, and solar PV permitting
timelines are the key predictors of rooftop solar deployment in Colorado. This study
provides insights for business and policy decision making to support more efficient
and equitable grid infrastructure investment and distributed energy resource
management.

Keywords: Solar PV; Data mining; Computer vision; Region-based convolutional
neural network; Energy transition; Renewable energy; Energy justice

1 Introduction
In the past decade, solar energy technology has advanced rapidly to the point where the
20-year Levelized Cost of Energy (LCOE) for solar is now lower than that of coal in many
countries around the world [1]. However, despite these advancements, the average pay-
back period for a residential solar project still ranges from 7 to 10 years as of 2022 [2].
This means that the upfront costs associated with installing solar panels remain substan-
tial barriers for low- and moderate-income (LMI) households interested in investing in
solar energy. Consequently, it is not surprising that individuals with higher incomes are
more likely to adopt solar energy compared to those with lower incomes [3]. While more
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affluent communities have been able to take advantage of government subsidies and incor-
porate solar energy into their energy portfolio, LMI communities have been left behind,
lacking access to the benefits of solar energy while being more vulnerable to increasing
energy costs.

The deployment of rooftop solar photovoltaic (PV) systems has been uneven across
neighborhoods with varying natural and socioeconomic characteristics. Racially diverse
communities [4] and lower-income neighborhoods [5] generally have lower rates of solar
energy deployment. Additionally, areas with higher solar radiation [6] and government in-
centives for renewable energy, such as renewable energy portfolio standards (RPS) and net
metering (NEM), tend to exhibit higher levels of solar PV adoption [7]. However, the col-
lective influence of socioeconomic and environmental factors on the uneven distribution
of rooftop solar deployments remains unclear.

This study utilizes satellite imagery from the state of Colorado, USA in 2021 to model
and predict disparities in solar PV deployment at the US Census block group level. Using
Geographical Information Systems (GIS), we aggregated 43 layers of data related to the
natural and built environment, social and economic factors, as well as energy policy in-
formation. Our approach involves building a machine learning (ML) model that predicts
two measures of solar PV deployment: the count of solar PV installations per household
(henceforth PV Count Per Household (HH)) and the PV-to-roof area ratio (henceforth
PV-to-Roof Ratio). These predictions are based on the 43 input features included in the
model. The state of Colorado serves as an ideal location for this investigation due to its
high solar radiation, diverse natural landscapes, and varying socioeconomic characteris-
tics across neighborhoods within the state. The total area of Colorado is 269,837 km2. We
identify the following four unique contributions of this study.

First, our study is one of the first attempts to measure PV-to-roof ratio, or the proportion
of roofs covered by solar panels. To achieve this, we used Faster Regions with Convolu-
tional Neural Network (RCNN) [8], a deep convolutional neural network trained end-to-
end to generate high-quality region proposals and used for object detection in computer
vision. Unlike previous approaches that focus on solar system counts per capita/house-
hold [9] or the size of solar panels [6], our study pioneers the use of the PV-to-roof ratio,
which provides valuable information for utility infrastructure planning and energy policy
design, indicating the availability of underutilized roof areas for future PV installations.
Communities aiming to enhance their distributed solar energy generation can use this
ratio to identify areas with a low PV-to-roof ratio for potential deployment of additional
solar panels. Furthermore, aggregated PV areas have implications for utility infrastructure
planning, as utilities may need to adjust procurement strategies and upgrade grid infras-
tructure to ensure the reliability of the electrical grid system.

Second, our study provides one of the most detailed solar deployment datasets to date.
Existing studies examining neighborhood-level solar deployment often rely on US Cen-
sus tract-level data (with an average size of 4000 residents per tract) or zip code-level
data (with an average of 8000 residents per zip code). However, these spatial units may
not capture the spatial disparities in PV deployment adequately. Neighborhoods within
a tract or zip code can exhibit significant variations in residents’ socioeconomic status
and living arrangements. In contrast, our study estimates solar deployment at the US
Census block group level, which has an average size of 1500 residents. By focusing on a
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smaller spatial unit, our data provide more targeted and nuanced results, as the variation
in neighborhood-level measures tends to increase with decreasing spatial scale [10].

Third, to the best of our knowledge, this study is the first attempt to explore the relation-
ship between natural disaster vulnerabilities and residents’ decisions to deploy rooftop so-
lar. Different types of natural disasters may influence people’s willingness to invest in solar
energy differently. For instance, individuals residing in areas prone to frequent power out-
ages due to extreme cold or heat might be more inclined to install rooftop solar with stor-
age systems to ensure a continuous power supply during outages. On the other hand, resi-
dents experiencing frequent hailstorms, hurricanes, or tornadoes may be hesitant to invest
in rooftop solar due to concerns about potential damage to the panels. In this study, we
examine the correlation between six common natural disasters in Colorado and rooftop
solar deployment.

Lastly, by leveraging recent developments in tree-based algorithms and the SHapley Ad-
ditive exPlanations (SHAP) method for interpretable machine learning, our model, which
includes 43 predictors, is one of the most comprehensive and precise predictive models
of rooftop solar deployment to date. Our best model, developed using XGBoost, explains
about 70% of the variation in PV deployment. Existing solar deployment prediction mod-
els can potentially improve their performance by incorporating the variables identified as
important in our analysis, such as political ideology, types and frequency of natural disas-
ters, and local government rooftop solar permitting rules.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the related work that underpins the empirical analysis of our study. Section 3 describes the
data sources, GIS data processing, computer vision methods, and machine learning mod-
els employed in this research. Section 4 presents the results and identifies the significant
predictors of rooftop solar deployment. Section 5 discusses the implications and limita-
tions of our study. Finally, in Sect. 6, we summarize our findings and outline potential
avenues for future research.

2 Related work
Existing studies on solar PV deployment often take one of the three approaches. The
first approach involves individual or household surveys [11, 12], which allow for targeted
data collection at the individual level. However, this approach can be costly and time-
consuming to obtain a geographically representative and comprehensive dataset. The sec-
ond approach utilizes datasets collected by governments and utility service providers who
manage interconnection processes, which determine how rooftop solar connects to the
grid [13]. While this approach provides accurate data on solar adopters, address-level so-
lar deployment or interconnection data are often protected and difficult to access for re-
search purposes. Therefore, we have chosen the third approach, utilizing satellite imagery
and computer vision models to detect the existence and size of rooftop solar PV instal-
lations [6]. Although this approach requires more time and computing resources for col-
lecting and processing large satellite imagery datasets, it allows us to obtain uncensored
and comprehensive data on the spatial distribution of solar deployment.

Several rooftop solar deployment datasets have been created using satellite images.
Google Project Sunroof [14] estimates the number and sizes of solar PV installations us-
ing satellite images since 2013. However, approximately 25% of areas, mainly rural areas,
are not included in their dataset. DeepSolar [6] developed a comprehensive database of
solar installations for the contiguous United States. However, the data are from 2017 or
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earlier and may not capture the recent sharp increase in solar deployment. The National
Renewable Energy Laboratory’s (NREL) Distributed Generation Market Demand (dGEN)
[15] model provides up-to-date solar deployment data, but the most granular spatial res-
olution available to the public is county-level data, which is insufficient for capturing
neighborhood-level spatial disparities. Therefore, we have created our solar deployment
dataset from scratch, collecting satellite images of Colorado, our area of interest.

The predictors of solar PV deployment have been extensively studied in the renewable
energy literature. Previous studies have found positive correlations between solar PV de-
ployment and residents’ income [6], education [16], and age [11]. Census tracts with Black
or Hispanic majorities have installed fewer rooftop PV systems compared to tracts without
a racial/ethnic majority, even after controlling for median household income [17]. Solar
radiation has been found to positively predict PV deployment [6, 18]. More rooftop solar
PVs exist in areas with a smaller proportion of renter-occupied homes [13], higher me-
dian home value [19], and newer buildings. Studies from various countries have identified
an urban-rural divide in solar PV deployment, although the direction of this divide varies
depending on the study context. For instance, rural municipalities have more solar PV
projects per capita in Switzerland [20], while urban counties have more solar installations
per capita in Georgia, USA [21]. Recent research has also found that solar deployment
occurs in many Republican households, but to a greater extent in Democratic households
[22]. Disadvantaged communities facing socioeconomic, health, and environmental bur-
dens are significantly less likely to adopt solar PV compared to more advantaged commu-
nities, even after controlling for median household income [5].

We have identified four significant gaps in the literature on the predictors of solar PV
deployment. First, the relationship between tree canopy cover and residents’ decisions
to deploy PV systems has not been examined. Second, while the proximity to transmis-
sion lines can impact the performance of distributed solar PV installations, no studies
have investigated the influence of the existence or size of transmission infrastructure on
building owners’ decisions to adopt solar. Third, although existing literature has examined
how solar PV deployment relates to state-level policies, little is known about the impact
of local-level policies and rules, such as solar mandates and Solar Permitting, Inspection,
and Interconnection (PII) rules. Lastly, there is limited empirical research on how the types
and intensity of natural disasters influence solar PV adoption and deployment size.

3 Data and materials
3.1 Satellite imagery data collection
To ensure that our data collection focused on the geographical areas of interest, we ex-
cluded census blocks that had no residents. This exclusion was necessary because our
study specifically targeted rooftop solar installations, rather than large-scale ground-
mounted solar projects. Out of the 201,062 blocks in Colorado, we removed 55,258 blocks
with zero residents from our data collection. Figure 1 visually represents the 145,804
blocks that were included in our analysis.

We developed two measures of rooftop solar deployment: (i) the number of rooftop so-
lar panels per household (PV count per HH) and (ii) the area of solar panels to roofs (PV-
to-roof ratio). To obtain comprehensive satellite images encompassing all rooftops in Col-
orado, we utilized the Google Maps JavaScript API for downloading Google Earth satellite
images. The polygons representing the census blocks were subdivided into smaller poly-
gons to acquire high-resolution images. This process resulted in a collection of 652,795
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Figure 1 Gray areas are the selected areas for satellite imagery collection

image tiles, each with dimensions of 640 × 640 pixels at zoom level 20. The latitude and
longitude coordinates of each polygon’s center and boundary were utilized to retrieve the
corresponding images for the respective census blocks. We employed the World Geodetic
System WGS84 format to retrieve the spatial information of the polygons. Our data col-
lection took place between January 2021 and February 2021. The satellite images used for
Colorado were captured by Google Maps from September 2020 to February 2021.

3.2 Computer vision frameworks
The advancements in deep learning have revolutionized various applications, including
computer vision tasks. Significant progress has been made in recent years, starting with
the introduction of Regions with Convolutional Neural Network (RCNN) and region pro-
posal methods [23, 24]. A more efficient version of the original RCNN was developed to
address the computational expense and training time, known as Fast RCNN [25]. The Fast
RCNN replaced max pooling with ROI pooling, allowing for the generation of a convo-
lutional feature map by processing the entire image once. While this improvement was
substantial, the bottleneck remained in the region proposal step for Fast RCNNs.

To overcome the computational challenges associated with region proposals in Fast
RCNN, the Faster RCNN framework was introduced as a more widely used version [8].
The Faster RCNN addresses the performance issues by incorporating a separate convolu-
tional network called the region proposal network (RPN) for generating region proposals.
Unlike the previous versions that utilized a CPU-based selective search algorithm, the
RPN significantly improves the speed of region proposals and enables the sharing of lay-
ers between proposal generation and object detection. This sharing of layers enhances
the overall efficiency of the network. The Faster RCNN model has emerged as one of the
state-of-the-art object detectors, surpassing the performance of other traditional models
such as YOLO, SSD, and other traditional models on several key metrics [26, 27].

3.3 Satellite imagery data processing: faster RCNN
To detect solar panels and roofs in satellite images, we employed the Faster RCNN
model. For the backbone network, we utilized ResNet-50, which was pretrained on COCO
train2017. We replaced the pretrained head with a FastRCNNPredictor to optimize the
performance of the image detection.
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Figure 2 An example of an annotated image: The leftmost image represents the original image, the center
image displays the bounding boxes that indicate the location of roofs, and the rightmost image highlights
the solar panels within the detected roofs

To enhance the accuracy of the detection, we created two versions of the pretrained
Faster RCNN model: one for identifying roofs and another for identifying PVs. We trained
the model using a dataset of 367 annotated images, each of size 480 × 480. The dataset
was divided into train (80%), development (10%), and test (10%) sets. An example of such
an annotated image is depicted in Fig. 2.

We used the TorchVision library to import the model and employed the AdamW opti-
mizer [28] to minimize cross-entropy loss. To fine-tune the other hyper-parameters, we
performed a number of experimental tests on the development set. For the final model,
we used a learning rate of 2 × 10–4, a weight decay of 0.001. We also used a StepLR as our
scheduler with decaying the learning every epoch by gamma of 0.7 along with a batch size
of 8 and trained for 4 epochs on Tesla K10 GPUs.

After obtaining the predictions, we applied non-maximum suppression (NMS) with In-
tersection over Union (IoU) thresholds of 0.2 for roofs and 0.1 for PVs. This process helped
in eliminating redundant bounding boxes and selecting the most accurate predictions. To
assess the prediction accuracy, we employed the mean Average Precision (mAP) metric
with an IoU threshold of 0.5 for all object sizes. The IoU is given by

IoU =
area(Ap ∩ Agt)
area(Ap ∪ Agt)

, (1)

where Ap is the predicted frame and Agt is the ground truth frame. Our model achieved
an mAP of 0.95 and 0.81 for detecting roofs and PVs, respectively.

3.4 Two measures of rooftop solar deployment
Two measures, PV Count Per Household and PV-to-Roof Ratio, of rooftop solar PV de-
ployment at the block group level by running our Faster RCNN model on 652,795 satellite
imagery data.

PV Count Per Household (HH) =
∑k

n=1 Number of Solar PV Systemsk
∑k

n=1 Number of Householdsk
, (2)

PV-to-Roof Ratio =
∑k

n=1 Solar PV Areak
∑k

n=1 Roof Areak
, (3)

where k is the number of images for a block group. On average, 189 images correspond to
a block group.
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3.5 Predictors of solar PV deployment
The second objective of our study is to predict rooftop solar deployment using various so-
cial and environmental features. To build a comprehensive and accurate predictive model
of rooftop solar deployment, we considered four groups of predictors: (1) natural envi-
ronment, (2) demographics and built environment, (3) energy infrastructure, market, and
policy, and (4) social and natural disaster vulnerabilities.

3.5.1 Natural environment
Solar radiation Solar radiation data were obtained from the national solar radiation
database (NSRDB). We focused on the Direct Normal Irradiance (DNI), which measures
the amount of solar energy received per unit area by a surface held perpendicular to the
sun’s rays. In our analysis, we calculated the average DNI by taking the mean of the maxi-
mum and minimum DNI values measured at the centroid of each block. These block-level
DNI measures were then averaged over all blocks within a block group.

Tree canopy cover The presence of trees in an area can impact the energy output of solar
panels and potentially deter residential solar deployment in regions with significant tree
coverage. Tree canopy cover has been shown to substantially reduce the energy output
of rooftop solar PV systems [29]. Additionally, in urban areas where tree coverage helps
mitigate the urban heat island effect and regulate stormwater runoff [30], the competition
for space between solar panels and trees may lead to lower residential and small-scale
solar deployment [31]. To assess tree canopy cover, we utilized data from the United States
Forest Service (USFS) and created the variable “% of tree-to-land area,” which measures
the proportion of land area covered by trees within each block group.

3.5.2 Demographics and built environment
Demographics We included various demographic variables in our model, such as median
household income, race and ethnicity distribution (i.e., % White, % Hispanic, % African
American, % Asian, % Other race), median age, the proportion of individuals with a bach-
elor’s degree or higher, and the proportion of households with at least one member aged
65 or older. These demographic data were obtained from the 2019 American Community
Survey (ACS).

Housing characteristics Our model incorporated housing characteristics at the block
group level, utilizing data from the ACS. These characteristics include the proportion of
renter-occupied housing units, median home values, and the median year of construction
for residential structures. For approximately 2% of missing estimates in median home val-
ues and median year of construction, we imputed the average values from adjacent block
groups.

Rural-urban classification To account for the distinctions between rural and urban ar-
eas, we incorporated rural-urban continuum codes from the U.S. Department of Agri-
culture (USDA) [32] into our analysis. These codes range from 1 to 9, with higher values
indicating greater rurality.

Political ideology We included the percentage of votes for the 2020 Democratic presi-
dential candidate at the county level in our models to capture the heterogeneity in political
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orientation among residents. This data was sourced from the MIT Election Data and Sci-
ence Lab [33].

3.5.3 Energy infrastructure, market, and policy
Transmission lines Building owners’ decision to install rooftop solar could be influenced
by the existence of large grid infrastructure such as a high-power electrical transmission
tower in their neighborhood. Thus, we included transmission data from Homeland In-
frastructure Foundation-Level Data (HIFLD) by aggregating the length and voltage of the
transmission lines within each block group level.

Utility ownership Since utilities generally develop and implement interconnection stan-
dards which define how rooftop PVs can connect to the grid, our analysis includes three
types of utility ownership: investor-owned utilities (IOUs), Municipal utilities (MOUs),
and rural electric cooperatives (co-ops). Utility ownership data are obtained by spatially
merging the map of block groups and the electric utility territory map.

Electricity price Using zip-code level utility rate data from the Utility Rate Database
(URDB) [34], we obtained residential, commercial, and industrial utility rates for each
block group. When a block group has multiple zip codes, the most populous zip code
within the block group was used to extract the utility rates for the block group.

Solar mandates Solar mandates, a building code that requires new construction homes
to be solar-ready or to have a PV system installed, can address the cost-prohibitive barriers
of retrofitting a roof or removing shade obstructions associated with solar PV adoption
[35]. We obtained local-level solar mandate information from municipal building codes
publicly available on municipality web pages.

Solar permitting, inspection, and interconnection (PII) rules Local (i.e., city, town,
county) PII requirements can affect the duration of solar PV installations significantly
[36]. Thus, our models incorporate four PII rule variables: (i) SolSmart Awardee (1 for a
local jurisdiction awarded by the SolSmart award for improvements to local permitting,
inspection, planning, zoning, and/or market development to facilitate solar installs and
mitigate associated soft costs, or 0 otherwise), (ii) Online Permit (1 for a local jurisdic-
tion accepting permit submissions through an online portal or email, or 0 otherwise),
(iii) Same-day In-person Permit (1 for a local jurisdiction offering over-the-counter per-
mit submission and approval, or 0 otherwise), and (iv) Permit & Pre-Install Days (median
business days between first permit submission to the local jurisdiction and approval). Data
are from NREL’s SolarTrace [37].

3.5.4 Social and natural disaster vulnerabilities
Social vulnerability Utilizing the Social Vulnerability Index (SVI) from the Centers for
Disease Control and Prevention (CDC) [38], we specifically consider nine social vulnera-
bility variables: (i) % Below Poverty (percentage of persons below poverty), (ii) % Disabil-
ity (percentage of civilian non-institutionalized population with a disability), (iii) % Single
Parent (percentage of single parent households with children under 18), (iv) % Limited En-
glish (percentage of persons (age 5+) who speak English “less than well”), (v) % 10+ Unit
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Figure 3 Data processing workflow

Housing (percentage of housing in structures with 10 or more units), (vi) % Mobile Home
(percentage of mobile homes), (vii) % People > Rooms (percentage of occupied housing
units with more people than bedrooms), (viii) % No Vehicles (percentage of households
with no vehicle), (ix) % Unemployed (unemployment rate). We merged our block-group
data with the census-tract level SVI data which is the most granular spatial resolution
available.

Natural disaster vulnerability Considering the resilience value of rooftop solar, we also
examined the impact of natural disasters on PV deployments. While rooftop solar can
provide electricity during power outages caused by extreme weather events, certain types
of natural disasters, such as hailstorms or tornadoes, can damage roofs and PV systems,
discouraging investment in rooftop solar. Therefore, we incorporated the expected an-
nual loss scores (EALS) of six of the most frequent natural disasters in Colorado from the
National Risk Index by the Federal Emergency Management Agency (FEMA) [39]. These
natural disaster risks include drought, wildfire, hail, winter weather, strong wind, and tor-
nado risks.

These four groups of determinants – (i) natural environment, (ii) demographics and
built environment, (iii) energy infrastructure, market, and policy, and (iv) social and nat-
ural disaster vulnerabilities – were merged with the two measures of rooftop solar de-
ployment at the block group level. A snapshot of the satellite and geospatial data process-
ing workflow is provided in Fig. 3. The energy infrastructure, market, and policy features
corresponding to the boundaries of local jurisdictions, utility service areas, or zip code
tabulated areas were spatially merged with the block group map using the GeoPandas
Python library [40]. In cases where a block group crossed multiple jurisdictional bound-
aries (which accounted for less than 5% of all block groups), the jurisdiction with the largest
share of the area was selected to represent the block group. Descriptive statistics of the
variables are presented in Appendix A.

3.6 ML models
In order to cross-validate the prediction results and achieve higher performance, we de-
ployed four ensemble ML algorithms:
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1. Random Forest is a supervised machine learning algorithm developed by Breiman
[41] for both classification and regression tasks. This algorithm utilizes feature
bagging, where strong predictors for the target variable are selected in multiple
samples or trees. Random Forest was chosen as our baseline algorithm due to its
robustness against overfitting compared to other algorithms.

2. CATBoost is another supervised machine learning algorithm developed by
Dorogush et al. [42] in 2017. It is designed for classification and regression tasks
and employs boosting techniques instead of bagging. CATBoost sequentially
generates decision trees, utilizing the results from existing trees to enhance the
predictions of subsequent trees. It is particularly effective in handling categorical
features, making it suitable for our dataset that includes categorical data.

3. LightGBM, short for light gradient-boosting machine, is a gradient boosting
framework introduced by Microsoft in 2016. It is based on decision tree
architectures and boosting techniques, and it offers capabilities for ranking,
regression, classification, and other machine learning tasks. We opted for
LightGBM due to its faster training speed compared to XGBoost, while still
achieving comparable performance [43].

4. XGBoost, which stands for Extreme Gradient Boosting, is a powerful machine
learning algorithm developed by Chen and Guestrin [44] in 2014. It is widely used
for regression, classification, and ranking problems. XGBoost implements the
gradient boosted trees algorithm, combining the estimates of weak learners to make
accurate predictions. We deployed XGBoost because of its speed, flexibility, and
ability to produce high-performing models for prediction tasks.

For regression tasks, the mean or average prediction of and other Four ML models are
estimated on four datasets: (i) PV count dataset without energy policy variables (n = 3441),
(ii) PV count dataset with energy policy variables (n = 2328), (iii) PV-to-roof ratio dataset
without energy policy variables (n = 3441), (iv) PV-to-roof ratio dataset with energy policy
variables (n = 2328), yielding a total of 16 models. We separated models without policy
variables because policy variables were not available for all cities and towns in Colorado,
and some block groups are in unincorporated communities, which are not considered to
be municipal areas of their own accord.

Metrics We evaluate the performance of all models based on three measures: Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination
(R2).

RMSE =

√
√
√
√ 1

n

n∑

i=1

(yi – ŷi)2, (4)

MAE =
1
n

n∑

i=1

|yi – ŷi|, (5)

R2 = 1 –
∑n

i=1(yi – ŷi)2
∑n

i=1(yi – ȳ)2 , (6)

where n is the number of sample (observations) in the dataset, yi is observed (true) value
of the target variable, ŷi is the estimated (predicted) value of the target variable, and ȳ is
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Figure 4 SHAP values assuming a single ordering (123) of input features (adapted from [48])

the mean value of the target variable. The optimization of hyper-parameters are provided
in Table A1 for each algorithm.

Shapely values (SHAP) SHAP is an approach for interpretable ML. The SHAP approach
evaluates the average marginal contribution of a feature value across all possible coali-
tions (orderings) of all feature values. The concept of Shapley value, originally introduced
by Shapley [45] in 2016, was initially used to assign payouts in cooperative game theory
based on each player’s contribution to the overall payout. Building upon this concept and
other additive feature attribution methods like LIME (Local Interpretable Model-agnostic
Explanations) [46] and DeepLIFT [47], Lundberg and Lee [48] developed a fast algorithm
in 2017 for explaining the outputs of ML models. The SHAP value represents the impor-
tance of each input feature in the expected model prediction and is obtained by aggregat-
ing a set of values. These values quantify the attribution or impact of each feature on the
change in the expected model prediction. Figure 4 is a simplified illustration of how SHAP
values (φi) are obtained by attributing the change in the expected model prediction (f (x))
by conditioning on each feature (x).

The order of input features and their interdependencies can impact the expected model
prediction. However, SHAP values are derived by averaging over all possible orderings
of input features, providing a unified measure of feature importance. The SHAP value φi

is obtained as a unified measure of feature importance is the solution to the following
equation (7):

φi(f , x) =
∑

z′⊆x′

|z′|!(M – |z′| – 1)!
M!

[
fx
(
z′) – fx

(
z′ \ i

)]
(7)

In this equation, x represents the input features, |z′| denotes the number of non-zero
entries in z′, and z′ ⊆ x′ encompasses all z′ where the non-zero entries in z′ are a subset of
the non-zero entries in x′. The term fx(z′) – fx(z′ \ i) represents the marginal contribution
of each input feature, capturing the change in the expected model prediction when con-
sidering or excluding a specific feature. The weight |z′|!(M–|z′|–1)!

M! accounts for the different
ways each input feature can be added to the ordering. Here, z′ ∈ 0, 1M , and M denotes the
number of input features.

4 Results
4.1 Rooftop solar PV deployment in Colorado
At the block group level (n = 3441), approximately 7% of households in Colorado are ob-
served to have solar panels installed on their roofs, while on average, 2.5% of roofs in the
state are covered by solar panels (refer to Fig. 5). The percentage of households with solar
panels per household ranges from 0% to 78.4%, indicating significant variability. Similarly,
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Figure 5 Rooftop solar PV deployment in Colorado

Table 1 Model Performance Comparison

Model Dataset Algorithm MAE RMSE R2

M1 PV count per HH XGBoost 0.038 0.003 62.2%
M2 CATBoost 0.039 0.003 57.4%
M3 LightGBM 0.038 0.003 60.4%
M4 Random Forest 0.039 0.003 60.9%

M5 PV count per HH with energy policy predictors XGBoost 0.038 0.003 68.5%
M6 CATBoost 0.008 0.0001 66.0%
M7 LightGBM 0.008 0.0001 66.8%
M8 Random Forest 0.009 0.001 61.8%

M9 PV-to-roof ratio XGBoost 0.009 0.0002 55.7%
M10 CATBoost 0.009 0.0002 56.0%
M11 LightGBM 0.009 0.0001 59.2%
M12 Random Forest 0.009 0.0002 56.0%

M13 PV-to-roof ratio with energy policy predictors XGBoost 0.008 0.0001 71.1%
M14 CATBoost 0.008 0.0001 66.0%
M15 LightGBM 0.008 0.0001 66.0%
M16 Random Forest 0.009 0.0001 61.8%

the ratio of solar panels to roof area ranges from 0% to 26%. It is important to note that
any solar panels detected in images that do not include roofs are not considered in the
estimation process. This study focuses exclusively on the deployment of rooftop solar PV
systems on buildings, excluding ground-mounted and utility-scale solar installations.

Table 1 presents the predictive performance of the 16 ML models. The hyperparmeters
used for each model is presented in Appendix Table B1. Among the models predicting the
PV count per household, Model 5, which incorporates energy policy factors and is trained
on XGBoost, achieves the highest R2 value of 68.5%. Regarding the models predicting the
PV-to-roof ratio, Model 13, also including energy policy factors and trained on XGBoost,
achieves the best performance in terms of R2. This XGBoost model, with energy policy
factors as features, explains approximately 71.1% of the variance in the PV-to-roof ratio.
To visualize the impact of the number of iterations (i.e., the number of trees in the ran-
dom forest) on the performance of the best-performing XGBoost models (Model 5 and
Model 13), Fig. 6 displays the learning curves in terms of Root Mean Square Error (RMSE)
for M5 (PV-count-per-HH) (Figure 6a and M13 (PV-to-roof ratio model) (Figure 6b).
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Figure 6 Learning curves

4.1.1 PV count per household prediction
Figure 7 displays the ranking of the aggregated standardized feature importance scores
(FIS) from the eight models that predict solar PV count per household. Within each model,
the FIS values were standardized to a range between 0 and 1. The aggregation of FIS scores
was weighted by the R2 value of each model. Additionally, the bivariate correlation coef-
ficient between each predictor and the target variable is indicated with colors to denote
statistical significance.

Based on the aggregated FIS (Feature Importance Scores), the percentage of Democratic
presidential voters (% Dem. Votes) emerges as the most influential predictor of PV count
per household. Block groups with a higher percentage of Democratic voters tend to have a
greater number of PVs per household. The second most significant predictor is hail risks,
where block groups with a higher hail risk tend to have a lower number of PVs per house-
hold. The third most important predictor is the timeline for obtaining solar PV permits
and completing the pre-installation process. Block groups with longer expected durations
between the first permit submission and pre-installation completion typically exhibit a
smaller PV count per household.

Figure 8 displays the SHAP values for the 20 most important features in predicting PV
count per household, obtained from XGBoost and LightGBM models. SHAP values quan-
tify the impact of each feature on the target value. A positive SHAP value indicates a pos-
itive impact on the target value, while a negative SHAP value indicates the opposite. The
colors in the figure represent the relative contribution of each data point (observation)
in predicting the outcome. Red pixels indicate higher importance, indicating a stronger
impact of the feature, while blue pixels indicate the opposite.

4.1.2 PV-to-roof ratio prediction
Figure 9 displays the ranking of aggregated standardized FIS from the eight models pre-
dicting PV-to-roof area ratio in each block group. The standardized FIS is weighted by the
explained variance (R2) of each model. The bivariate correlation coefficient between each
predictor and the target variable is annotated with different colors to indicate the level of
statistical significance.

The average number of bedrooms, serving as a proxy for the average size of houses,
emerges as the most influential predictor of the PV-to-roof ratio. As expected, a higher
average number of bedrooms is negatively correlated with the PV-to-roof ratio since larger
houses tend to have more roof area available for solar panels. The second most significant
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Figure 7 Aggregated Feature Importance Scores (FIS) for 43 Factors predicting PV count per household

predictor is the duration of the permit and pre-installation process, meaning the PV-to-
roof ratio is smaller in block groups which have longer timelines for getting the permits
and pre-installation of PV projects. The percentage of renters constitutes the third most
important predictor. A higher percentage of renters is associated with a larger PV-to-roof
ratio. This finding aligns with expectations as neighborhoods with a greater proportion of
rental units often have smaller roof areas available for solar panel installation.

Figure 10 reports SHAP values for 20 of the most important features in predicting PV-
to-roof ratio from XGBoost and LightGBM models, respectively. The relative importance
and the impact of each predictor are explained below.

Combining the results from the aggregated FIS (Figs. 7 and 9) and the SHAP values
(Figs. 8 and 10), the following Sects. 4.2–4.5 summarize how the four groups of input
features – (1) natural environment, (2) demographics and built environment, (3) energy
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Figure 8 SHAP Values of Most Important Features Predicting PV Count per Household from XGBoost (upper)
and LightGBM (lower) Models (Models 5 and 7)

infrastructure, market, and policy, and (4) social and natural disaster vulnerabilities – pre-
dict the two measures of solar PV deployment. Additionally, Appendix Figure S1 com-
pares the aggregated FIS between PV-count-per-HH models and PV-to-roof-ratio models
across all 43 predictors.
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Figure 9 Aggregated Feature Importance Scores (FIS) for 43 factors predicting PV-to-Roof ratio

4.2 Natural environment
PV count per household The proportion of tree-to-land area has a negative relationship
with both PV count per household and the PV-to-roof ratio. This implies that block groups
with greater tree coverage are less likely to adopt PV systems. Solar radiation shows a
slight negative and nonlinear association with PV count per household (Appendix Table
C1). However, it is important to note that this finding should not be generalized beyond
the context of Colorado. The majority of areas within the state boast high solar poten-
tial, with annual average direct normal irradiance (DNI) ranging from 4.5 to 7.5. These
values are 2 to 3 times higher than the world average DNI. Consequently, any location in
Colorado is considered suitable for solar PV deployment in terms of solar radiation. The
areas with extremely high DNI levels are typically arid and have relatively fewer residential
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Figure 10 SHAP Values of Most Important Features Predicting PV-to-Roof Ratio from XGBoost (upper) and
LightGBM (lower) Models (Models 13 and 15)

properties. This circumstance may help explain the slight negative association observed
between PV count per household and solar radiation in these particular areas.

PV-to-roof ratio Overall, the findings regarding natural environment features are con-
sistent with the analysis of PV count per household. The proportion of tree-to-land area
exhibits a negative association with the PV-to-roof ratio, indicating that block groups with
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greater tree coverage tend to have smaller PV systems relative to the size of their roofs.
This negative relationship remains statistically significant even when accounting for other
factors (Model 34 in Appendix Table C5). Solar radiation also demonstrates a negative
predictive relationship with the PV-to-roof ratio. However, it is important to note that
this finding should not be generalized beyond Colorado. The state’s abundant solar radia-
tion levels make it an exceptional case, ensuring highly effective energy generation in most
areas of the state.

4.3 Demographics and built environments
PV count per household As depicted in Fig. 7, the analysis reveals that median household
income holds the 9th position as a significant feature and displays a positive association
with PV count per household. This observation aligns with previous studies indicating that
solar deployment tends to be more prevalent in neighborhoods characterized by higher
income levels [5]. While median household income does not emerge as the most influ-
ential predictor among the 43 factors considered, other income-related variables, such as
median home value and the number of bedrooms, rank prominently in the comprehen-
sive feature importance scheme and exhibit higher SHAP values. Consistently across all
models, median home value and the number of bedrooms exhibit a positive impact on PV
count per household. These findings are consistent with prior research, which indicates
that median home values positively predict solar PV installations at the neighborhood
level [49].

There are significant disparities in solar deployment across block groups concerning
race and ethnicity. The proportion of Asians demonstrates a positive correlation with PV
count per household, whereas the proportion of Hispanics exhibits a negative association.
Our supplementary statistical analysis yields similar findings (see Appendix Table C2).
Even when accounting for median household income, home value, and house sizes, block
groups with a higher proportion of African Americans tend to have a lower PV count
per household. Moreover, the results from the supplementary analysis, utilizing Model 20
(see Appendix Table C2), which incorporates interaction terms between race and median
household income, indicate varying marginal effects of income on PV count per household
across neighborhoods with differing racial compositions. Figure 11 visually represents that
an increase in the Asian and White populations correlates with positive average marginal

Figure 11 The average marginal effects of median household income on PV count per household across
neighborhoods with varying racial compositions



Kim et al. EPJ Data Science           (2023) 12:25 Page 19 of 34

effects of income on PV count per household, while an increase in the Black and Hispanic
populations exhibits a distinct trend.

Political ideology, as measured by the percentage of Democratic voters, exhibits a pos-
itive correlation with PV count per household across all four ML models. The share of
Democratic party votes consistently emerges as the most impactful or second-most im-
pactful feature across all models. This discovery aligns with prior research indicating that
households with rooftop solar installations are more likely to align with the Democratic
party [50]. Furthermore, residents’ education level, measured by the proportion of individ-
uals with bachelor’s degrees or higher, positively predicts PV count per household, which
is in line with existing literature [5]. Additionally, our analysis reveals that rural areas tend
to exhibit lower PV count per household. However, when considering the aggregated im-
portance of the rurality variable, it ranks 19th out of 43 predictors, indicating a medium
influence on the models’ predictions (see Fig. 7).

PV-to-roof ratio The findings related to demographics and the built environment should
be interpreted cautiously due to the potential association between predictors and both PV
installations and roof areas. In such cases, the direction of SHAP values for a predictor is
determined by which of the two factors, PV or roof areas, is more influenced by the pre-
dictor. To illustrate, consider the scenario where median home value positively predicts
PV areas in a neighborhood. The PV-to-roof ratio may exhibit a negative association with
median home value because areas with higher median home values tend to have signif-
icantly larger roof areas. Therefore, it is important to note that the impact of predictors
can be influenced by the relative influence they have on PV installations versus roof areas.

The proportions of renters and multi-dwelling unit houses emerge as the third and
fourth most important and positive predictors of the PV-to-roof ratio. This suggests that
neighborhoods with a higher concentration of renters and multi-dwelling units tend to
have a larger proportion of roof areas covered by PV installations. Conversely, median
household income and home values exhibit a negative association with the PV-to-roof ra-
tio. This implies that the positive correlation between income or home values and roof
sizes outweighs the negative association between these factors and the PV-to-roof ratio.

The proportions of Black and Asian populations within neighborhoods explains some
of the variability in the PV-to-roof ratio. Analysis using SHAP values from the XGBoost
model reveals a bimodal pattern in the PV-to-roof ratio among block groups with varying
proportions of Black residents. Neighborhoods with high or low shares of Black residents
tend to exhibit a higher PV-to-roof ratio, whereas neighborhoods with a moderate share of
Black residents tend to have a lower ratio. Similarly, both the SHAP values and statistical
analyses indicate that block groups with a higher proportion of Asians tend to display a
greater PV-to-roof ratio. In contrast to the findings from the PV-count-per-HH analysis,
the interaction between income and racial composition appears to have less influence in
this particular context.

Consistent with the earlier findings concerning PV count per household, block groups
with a higher proportion of Democratic residents also demonstrate a higher PV-to-roof
ratio. This alignment suggests that neighborhoods with a greater concentration of Demo-
cratic residents tend to have a larger proportion of roof areas covered by PV installations.
Additionally, both the ML models and supplementary statistical analysis (see Appendix
Table C2) indicate that the PV-to-roof ratio is higher in areas with newer homes or a higher
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average year of construction. This implies that neighborhoods with more recently built
structures tend to exhibit a greater proportion of roof areas utilized for PV installations.

4.4 Energy infrastructure, market, and policy
PV count per household While the lengths and aggregated voltage of transmission lines
in block groups show a negative relationship with PV count per household (as indicated
in Appendix Table C3), the feature importance scores for these factors are relatively low
across all ML models. Transmission length ranks 39th out of 43 features, while voltage
ranks 40th out of 43 features. This suggests that while there may be a negative correlation
between transmission line characteristics and PV count per household as shown in the
statistical models (Appendix Table C3), these factors do not significantly contribute to the
overall predictive power of the ML models.

Based on the results from statistical analysis and SHAP analysis, we find that neigh-
borhoods located within municipal utility service areas and rural co-ops tend to have a
lower PV count per household compared to those in investor-owned utility service areas.
However, when energy policy variables are taken into account, this disparity across utility
service areas becomes statistically insignificant in the models (as indicated in Appendix
Table C3), and the feature importance scores associated with utility ownership types are
relatively low Fig. 8. These findings suggest that the disparities observed in PV deployment
are more likely influenced by utility policies and soft costs, such as PPI rules, rather than
the inherent differences between the types of utilities themselves.

Among the energy policy variables examined, the duration of permit and pre-install
days, as well as the presence of a solar mandate, emerge as the two most influential pre-
dictors of rooftop solar adoption. The median number of business days between the initial
permit submission to the local jurisdiction and the pre-install interconnection is found to
have a negative impact on PV count per household. This suggests that longer timelines for
solar permit approval may discourage solar adoption in those areas. On the other hand,
the results provide strong evidence that neighborhoods located in cities or counties with
solar mandates exhibit a higher number of PV installations per household. Net metering
is found to have a statistically significant and positive effect on solar deployment. How-
ever, the relative importance of net metering as a predictor is relatively low, likely because
most utilities in Colorado already offer net metering programs. These findings on energy
policy variables align with previous literature emphasizing the significance of soft costs
associated with solar PV installations, such as the solar approval process, on the adoption
of solar PV installations [51].

PV-to-roof area The average timeline for permits and pre-installation activities emerges
as the second most important and negative predictor of the PV-to-roof ratio. Neighbor-
hoods with shorter permit and pre-install timelines tend to have a higher proportion of
their roof areas covered by PV systems. This suggests that not only do PV permitting and
inspection timelines influence the decision to adopt rooftop solar, but they also affect the
size of the installed PV systems.

Although solar mandates do not exhibit as high of a feature importance score as other
predictors according to the SHAP analysis (Fig. 10), their positive impact on the PV-to-
roof ratio remains evident. Other variables related to energy infrastructure, market dy-
namics, and policy factors (such as net metering, online permitting, transmission volt-
age and length, and utility ownership) rank lower in the feature importance spectrum.
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However, comparatively speaking, these energy-related factors seem to have a more pro-
nounced impact on PV system adoption compared to the PV-to-roof ratio.

4.5 Social and natural disaster vulnerabilities
PV count per household Several social vulnerability variables have a significant impact
on predicting solar PV count per household. The percentage of housing in structures with
10 or more units (% 10+ Unit Housing) emerges as one of the most important predictors
according to both the SHAP analysis (Fig. 8) and the aggregated feature importance score
(FIS) analysis (Fig. 7). In addition, the share of single parents negatively predicts PV count
per household based on the SHAP analysis (Fig. 8). The proportion of persons with disabil-
ities also shows a negative association with PV count per household in the SHAP analysis,
specifically based on the LightGBM model. Other social vulnerability factors, such as the
proportion of households below the poverty level and households without vehicles, appear
to be less influential compared to the aforementioned variables.

Interestingly, natural disaster vulnerabilities emerge as one of the most important group
of predictors across all ML and statistical models and analyses. However, the direction of
effects varies depending on the type of natural disaster. Based on the results from both
machine learning (ML) models and statistical models (Appendix Table C4), areas with
higher risks of strong wind and winter weather positively predict PV count per household.
This suggests that neighborhoods with more frequent power outages caused by wind and
snowstorms are more likely to adopt PV systems. This finding is supported by both the
aggregated FIS (Fig. 7) and the SHAP analysis (Fig. 8). On the other hand, block groups
with higher hail risks are less likely to deploy PV systems, indicating concerns over poten-
tial hail damage to solar panels may act as a barrier to rooftop PV adoption. The direction
of effects for drought and wildfire risks is inconclusive, but both factors rank higher than
the median in terms of the feature importance.

PV-to-roof area In contrast to the analysis of PV count per household, our findings do
not provide strong evidence to suggest that social vulnerabilities have a significant impact
on PV sizes. The only consistent and notable findings are that block groups with a higher
proportion of households below the poverty line and those residing in 10+ unit hous-
ing tend to have a higher PV-to-roof ratio. This could be attributed to the fact that these
two features are strongly correlated with the size of the houses themselves. According to
the ML models and SHAP analysis, block groups with a greater share of single-parent
households exhibit a lower PV-to-roof ratio. However, this finding is not supported by
the supplementary statistical analysis (Appendix Table C4). The findings for other social
vulnerability variables, such as the proportion of individuals with disabilities, limited En-
glish proficiency, no vehicles, households with more people than rooms, unemployed indi-
viduals, are inconclusive based on the aggregated feature importance score (FIS) analysis
(Fig. 9), SHAP analysis (Fig. 10), and supplementary statistical analysis (Appendix Table
C4)

Regarding natural disaster vulnerability features, winter weather risk and wind risk
emerge as important predictors of the PV-to-roof ratio. Block groups with a higher win-
ter weather risk tend to have a higher PV-to-roof ratio, indicating that residents in areas
prone to frequent snowstorms are more likely to deploy larger PV systems in relation to
the size of their roofs. The second most important natural disaster vulnerability feature is
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strong wind risk, although the direction of its effect remains inconclusive. Based on the
SHAP analysis (Fig. 10), neighborhoods with medium wind risk display a lower PV-to-
roof ratio compared to those with high and low wind risks. The supplementary analysis in
Appendix Table C4 also suggests that wind risk is associated with a lower proportion of PV
to roof area. Finally, the findings for other natural disaster vulnerability factors, including
drought, wildfire, hail, and tornado risks, remain inconclusive.

5 Discussion
The advancement of real-time data flow has created numerous opportunities for inno-
vative research addressing important social issues. These issues include the development
of sustainable and healthy cities [52–54], the promotion of energy efficiency [55], the en-
hancement of emergency management [56], and the fostering of social justice [57]. No-
tably, the availability and quality of satellite imagery have significantly improved, enabling
the detection and analysis of distributed energy resources (DERs) such as solar PV, wind
generating units, and outdoor battery storage in near real-time.

By leveraging the recent advancements in ML, computer vision, and public satellite im-
agery services, this study demonstrates how data science can contribute to developing a
deeper understanding of household-level renewable energy deployment. Our novel model
predicting neighborhood-level (block group-level) solar PV deployment achieves around
a 70% R2. Through the analysis of spatial data and the application of advanced algorithms,
this study provides implications for developing sustainable, resilient, and equitable energy
systems that align with the broader goals of creating environmentally friendly and socially
just communities.

Our findings highlight the importance of local-level energy policies in promoting
rooftop solar adoption. Across all models, our results consistently indicate that reducing
permit and pre-installation timelines significantly enhances rooftop solar deployment. On
the other hand, online and same-day in-person permits are relatively less influential. Soft
costs, which encompass non-hardware expenses such as permitting, financing, and knowl-
edge acquisition, play a critical role as they constitute a substantial portion (50 to 70 %) of
the total installed PV system price [58]. Therefore, city and county governments seeking
to encourage rooftop solar adoption should focus on reducing barriers in the permitting
and interconnection processes, particularly by addressing time availability and informa-
tion gaps that may vary across different social groups and geographic and socioeconomic
circumstances.

This study also offers practical implications for energy justice and social equity. State and
local government energy regulations often promote rooftop solar as a means to increase
the use of DERs, improve grid reliability, lower utility bills, and yield associated health and
social benefits. However, in line with previous research [17, 19], we find disparities in so-
lar deployment rates among individuals with limited English proficiency, African Amer-
ican or Hispanic backgrounds, and lower incomes compared to their English-speaking,
Asian, White, and higher-income counterparts. These disparities can be attributed to var-
ious interconnected factors, including homeownership rates, internet access, information
and knowledge gaps, and the ability to participate in environmental decision-making pro-
cesses. Considering that low-income households, people of color, and renters are dispro-
portionately vulnerable to energy-related challenges [59, 60], our findings emphasize the
need for state and local governments to recognize underlying social and demographic
conditions that may hinder rooftop solar adoption.
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Furthermore, as cities are increasingly adopting new building codes and permitting reg-
ulations to encourage rooftop solar systems, the findings of this study have implications for
understanding the beneficiaries and potential inequities that may emerge during the tran-
sition to renewable energy. Present solar policies generally favor individuals and groups
who can afford solar, own their homes, and possess middle- to upper-income levels. For
example, solar mandates have the potential to reduce the costs of PV system installation
by incorporating solar considerations into building design or construction.

Our study also provides insights into climate- and environment-specific strategies for
the development of DERs. Based on our findings, several natural factors emerge as sig-
nificant predictors of PV deployment in Colorado, namely tree canopy cover, hail risks,
winter weather risks, strong wind risks, and tornado risks. While these conditions are dif-
ficult to change, they should be considered for making grid infrastructure investments to
enhance community resilience and integrate diverse renewable resources into the energy
mix. For instance, regions prone to power outages caused by heavy snowfall may have a
greater interest in solar systems, and investing in large-scale battery storage could prove
advantageous for bolstering power grid resilience in such areas. On the other hand, loca-
tions with high risks of hail or tornadoes may be less suitable for rooftop solar installations,
necessitating the exploration of alternative DER options. As advancements in solar panel
technology have made solar panels more resilient to hailstorms and high winds, educating
potential PV adopters about the durability and safety of solar panels could help promote
PV deployment in these regions. By considering the specific environmental conditions and
tailoring DER strategies accordingly, policymakers and stakeholders can optimize the de-
ployment of DERs, taking into account factors that affect system performance, reliability,
and long-term viability.

Our study has a few limitations. Although the models we developed in this study can be
applied to most areas in the United States and beyond, the empirical application presented
in this study is specific to Colorado, USA in the year 2021. As such, direct applicability of
the findings to other states or countries may require appropriate modifications and adjust-
ments. For instance, when applying our ML models to states in the southern regions, it
may be important to incorporate data related to hurricanes and floods, as they may have a
significant impact on solar PV deployment patterns and outcomes. By incorporating such
specific regional data, the models can be tailored to better capture the unique dynamics
and factors influencing solar PV deployment in those areas.

Furthermore, to investigate the effects of input features on solar deployment over time,
multiple years of satellite imagery data reflecting the evolving patterns of PV deployment
diffusion would be necessary. Future studies should aim to measure spatial disparities in
solar deployment at the block or block-group level over multiple years to fully understand
the underlying dynamics of the spatial distribution of solar PV deployment. Although our
XGBoost model achieved higher performance, some feature importance scores differ from
the other three models. To further validate the robustness of our predictive models, future
studies should expand the spatio-temporal coverage of the solar deployment data.

It is worth noting that we encountered several challenges during the training of Faster-
RCNN models [61, 62]. The RPN layer exhibited poor performance in localizing small-
sized objects due to the coarse-grained nature of satellite images. Our model experienced
similar behavior, as shown in Appendix E Figure S2, which provides an example of training
to identify roofs. Additionally, the RPN layer faced difficulties in distinguishing PVs from
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background effects such as shadows and contrast changes on roofs, as there is limited
color variation, resulting in some false detections. Furthermore, the choice of Intersection
over Union (IoU) threshold could potentially impact the model’s performance [63]. The
available manually annotated data for satellite detection was relatively small, which could
potentially lead to overfitting issues. Lastly, our model outputs rectangular frames around
the objects of interest, while our objective is to calculate the ratio of the object’s area to that
of the entire image. This introduces another source of error, as the object of interest may
not occupy the predicted frame entirely. Some studies [64, 65] have attempted to address
issues related to dense, small, and arbitrarily rotated objects. Future research could focus
on addressing these challenges to enhance the performance of computer vision models in
detecting roof and PV areas.

Lastly, we do not claim that we have captured the true and complete effects of all in-
put features on solar PV deployment patterns. Our primary objective was to develop a
high-performing predictive model based on the 43 predictors, rather than providing a
comprehensive explanation of how each predictor relates to solar PV deployment and
to what extent. To uncover the genuine underlying effects of all input features, we rec-
ognize the need for a more sophisticated analysis that incorporates various interactions
between these features. For instance, the impact of median household income on solar
PV deployment could be influenced by specific policies or regulations, such as PPI rules
or net metering, as well as factors like tree canopy coverage. Similarly, the influence of
electricity prices on solar PV deployment might be contingent upon the proportion of
renters or the age of houses. Therefore, future studies that aim to explore the complex re-
lationships between predictors, rather than solely focusing on building precise predictive
models, should consider incorporating interaction terms into their analyses. This will en-
able a deeper understanding of these intricate relationships and provide insights into the
true effects of the input features on solar PV deployment patterns.

6 Conclusion
Using the RCNN computer vision algorithm, this study developed a model that can iden-
tify solar panels and roofs in satellite imagery. By analyzing 652,795 satellite images con-
taining rooftops and solar panels in Colorado, we estimated the proportion of households
that had installed at least one solar panel and the extent of roof area covered by solar pan-
els at the US Census block and block-group levels. Our RCNN model achieved a mAP of
0.95 for measuring roof areas in the satellite images and an mAP of 0.81 for measuring
solar panel areas.

Our computer vision model developed in this study has the potential to generate one
of the most detailed solar deployment datasets across the United States. It can provide
block-level (typically less than 100 residents) aggregated information on the rate of solar
PV deployment, measured by two key metrics: PV Count per Household and PV-to-Roof
ratio. Thus, our model enables a fine-grained analysis of solar deployment patterns, taking
into account the characteristics of individual blocks.

The other aim of the study was to develop a highly accurate ML model capable of pre-
dicting the deployment of rooftop solar based on demographic, environmental, and en-
ergy/policy characteristics of neighborhoods. To accomplish this, two solar PV deploy-
ment metrics (PV Count per Household and PV-to-Roof ratio) were aggregated at the
block group level, which typically consists of 600 to 3000 residents. A total of 43 input fea-
tures were collected and predictive models for solar PV deployment were built using four
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ML algorithms: Random Forest, CATBoost, LightGBM, and XGBoost. The ML model
that performed the best was XGBoost, achieving an R2 value of 68.5% for the PV Count
per Household model and 71.1% for the PV-to-Roof ratio model. To the best of our knowl-
edge, our novel ML model achieves a higher explained variance (R2) than any existing solar
deployment prediction models that utilize statistical and/or ML methods. Our ML model
can be easily customized and deployed in other states within the United States as well as
potentially in other countries around the world.

We found that lower hail risk, a higher share of Democratic party votes, stronger wind
risks, higher median home value, and shorter rooftop solar permitting timelines were the
five most significant predictors of a higher PV Count per Household. Regarding the PV-
to-Roof ratio, we discovered that shorter rooftop solar permitting timelines, a lower pro-
portion of renters and multifamily housing, and higher winter weather risks were the most
influential features predicting a higher PV-to-Roof ratio.

Other ML models aiming to predict solar PV deployment may enhance their perfor-
mance by incorporating the features that have proven particularly impactful in our model.
For instance, our model uniquely considers vulnerabilities to natural disasters, such as hail
risks, high winds, and wildfires, as predictors of rooftop PV deployment, which emerged
as crucial factors in our analysis. Furthermore, political ideology emerged as an important
predictor of PV adoption. Policymakers, researchers, and planners interested in construct-
ing highly predictive models to forecast future solar deployment could consider including
the input features that performed well in our model.

In summary, this work offers three key contributions:
• Introducing a robust RCNN-based computer vision model for measuring roof and solar

panel sizes. This model can be deployed to assess solar PV deployment in any location
worldwide.

• Presenting a novel, precise model for forecasting future solar PV deployment based on
43 predictors in Colorado and beyond. Our model explains about 70% of the variation
in solar PV deployment. This makes it a valuable tool for forecasting future solar PV
deployment in the United States and beyond. The model can be used to support more
efficient and equitable grid infrastructure investment and distributed energy resource
management.

• Providing insights for business and policy decision making. The insights from this
research can be used to develop targeted marketing campaigns to promote solar PV
deployment, as well as policies that encourage solar PV deployment and mitigate
disparities in deployment. These insights can also be used to improve the efficiency of
solar PV deployment and to make it more accessible to a wider range of people.
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Appendix A: Summary statistics

Table A1 Summary statistics

Count Mean STD Min Max

PV Count per HH 3441 0.070 0.093 0.001 0.784
PV-to-Roof Ratio 3441 0.025 0.020 0.001 0.259
% Tree-to-Land Area 3441 0.006 0.007 0.001 0.052
Solar Radiation 3441 5.851 0.430 4.712 7.236
Median HH Income 3441 77,571 36,263 14,145 250,000
Median Age 3441 39.608 9.067 17.7 84.6
% 65 + 3441 0.268 0.133 0.001 1.000
% Bachelors + 3441 0.283 0.164 0.001 0.855
% Renters 3441 0.333 0.253 0.001 1.000
Year Structure Built 3441 1977 17 1939 2014
Avg. No. Bedrooms 3441 2.872 0.664 0.466 4.524
Median Home Value 3441 354,098 200,610 10,000 2,000,000
Rurality 3441 2.098 2.429 1.000 9.000
% Dem. Votes 3441 0.553 0.154 0.109 0.796
% African American 3441 0.035 0.073 0.000 0.633
% Hispanic 3441 0.213 0.197 0.000 0.923
% Asian 3441 0.027 0.043 0.000 0.422
% Other Race 3441 0.032 0.042 0.000 0.973
Transmission Volt. 3441 1.952 2.724 0.000 8.166
Transmission Length 3441 4.739 5.791 0.000 14.455
Muni. Utilities 3441 0.096 0.295 0.000 1.000
Rural Co-Ops 3441 0.215 0.411 0.000 1.000
Resident. Elec. Rate 3441 0.122 0.019 0.062 0.212
Commercial Elec. Rate 3441 0.103 0.017 0.076 0.260
Solar Mandate 3076 0.271 0.444 0.000 1.000
Net Metering 3441 0.919 0.273 0.000 1.000
SolSmart Awardee 2339 0.501 0.500 0.000 1.000
Online Permit 2339 0.754 0.431 0.000 1.000
Sameday InPerson Permit 2339 0.435 0.496 0.000 1.000
Permit & Pre-Install Days 2339 16.267 6.002 8.000 35
Drought Risk 3441 1.756 3.285 0.000 29.35
Wildfire Risk 3441 4.712 8.509 0.000 48.921
Hail Risk 3441 28.292 13.027 2.583 64.351
Winter Weather Risk 3441 13.037 9.868 0.000 62.890
Strong Wind Risk 3441 17.077 7.332 4.107 59.476
Tornado Risk 3441 30.703 9.831 5.345 56.195
% Below Poverty 3441 0.105 0.099 0.000 0.847
% Disability 3441 11.281 5.050 0.400 44.6
% Single Parent 3441 7.884 4.738 0.000 27.600
% Limited English 3441 3.028 4.317 0.000 37.700
% 10+ Unit Housing 3441 14.635 18.589 0.000 98.900
% Mobile Homes 3441 4.329 8.638 0.000 79.100
% Ppl. > Rooms 3441 2.767 3.303 0.000 24.800
% No Vehicle 3441 5.217 5.310 0.000 43.300
% Unemployed 3441 4.861 2.995 0.000 28.400
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Appendix B: Hyperparameters used in predictive models

Table B1 Hyperparameters used in each ML algorithm

Model Dataset Algorithm Hyperparameters

M1 PV Count per HH XGBoost ‘gamma’: 0, ‘alpha’: 12, ‘learning_rate’: 0.027, ‘seed’: 712
‘colsample_bytree’: 0.3, ‘reg_lambda’: 1,’random_state’: 700,
‘n_estimators’: 299, ‘base_score’: 0.29, ‘max_depth’: 7

M2 CATBoost ‘l2_leaf_reg’: 2, ‘learning_rate’: 0.1, ‘depth’: 9, ‘iterations’: 150

M3 LightGBM ‘objective’: ‘regression’, ‘metric’: ‘rmse’,’is_unbalance’: ‘true’,
‘is_training_metric’: ‘true’, ‘boosting’: ‘gbdt’, ‘num_leaves’: 36,
‘feature_fraction’: 0.99, ‘bagging_fraction’: 0.69, ‘bagging_freq’: 4,
‘learning_rate’: 0.01, ‘max_depth’: 15, ‘max_bin’: 23

M4 RandomForest ‘n_estimators’: 19, ‘max_depth’: 150, ‘min_samples_split’: 2,
‘max_features’: “sqrt”,’min_samples_leaf’: 2, ‘random_state’: 531

M5 PV Count per HH +
Energy Policy

XGBoost ‘gamma’: 0, ‘alpha’: 5, ‘learning_rate’: 0.05, ‘random_state’: 185,
‘colsample_bytree’: 0.5, ‘reg_lambda’: 0,
‘n_estimators’: 311, ‘base_score’: 0.5, ‘max_depth’: 7, ‘seed’: 855

M6 CATBoost ‘l2_leaf_reg’: 2, ‘learning_rate’: 0.1, ‘depth’: 6, ‘iterations’: 200

M7 LightGBM ‘objective’: ‘regression’, ‘metric’: ‘rmse’,’is_unbalance’: ‘true’,
‘is_training_metric’: ‘true’, ‘boosting’: ‘gbdt’, ‘num_leaves’: 36,
‘feature_fraction’: 0.81, ‘bagging_fraction’: 0.91, ‘bagging_freq’: 20,
‘learning_rate’: 0.021, ‘max_depth’: 14, ‘max_bin’: 23

M8 RandomForest ‘n_estimators’: 700, ‘max_depth’: 150, ‘min_samples_split’: 2,
‘max_features’: “sqrt”,’min_samples_leaf’: 2, ‘random_state’: 372

M9 PV-to-Roof Ratio XGBoost ‘gamma’: 0, ‘alpha’: 12, ‘learning_rate’: 0.025, ‘seed’:712
‘colsample_bytree’: 0.35, ‘reg_lambda’: 1, ‘random_state’: 789,
‘n_estimators’:300, ‘base_score’: 0.5, ‘max_depth’: 8

M10 CATBoost ‘l2_leaf_reg’: 1, ‘learning_rate’: 0.09, ‘depth’: 10, ‘iterations’: 200

M11 LightGBM ‘objective’: ‘regression’, ‘metric’: ‘rmse’,’is_unbalance’: ‘true’,
‘is_training_metric’: ‘true’, ‘boosting’: ‘gbdt’, ‘num_leaves’: 45,
‘feature_fraction’: 0.25, ‘bagging_fraction’: 0.75, ‘bagging_freq’: 4,
‘learning_rate’: 0.01, ‘max_depth’: 15, ‘max_bin’: 52

M12 RandomForest ‘n_estimators’: 300, ‘max_depth’: 64, ‘min_samples_split’: 3,
‘max_features’: sqrt, ‘min_samples_leaf’: 2, ‘random_state’: 435

M13 PV-to-Roof Ratio +
Energy Policy

XGBoost ‘gamma’: 0, ‘alpha’: 5, ‘learning_rate’: 0.05, ‘seed’: 1164
‘colsample_bytree’: 0.5, ‘reg_lambda’: 0,’random_state’: 185,
‘n_estimators’: 500, ‘base_score’: 0.52, ‘max_depth’: 9

M14 CATBoost ‘l2_leaf_reg’: 1, ‘learning_rate’: 0.09, ‘depth’: 6, ‘iterations’: 150

M15 LightGBM ‘objective’: ‘regression’, ‘metric’: ‘rmse’,’is_unbalance’: ‘true’,
‘is_training_metric’: ‘true’, ‘boosting’: ‘gbdt’, ‘num_leaves’: 36,
‘feature_fraction’: 0.34, ‘bagging_fraction’: 0.75, ‘bagging_freq’: 4,
‘learning_rate’: 0.01, ‘max_depth’: 15, ‘max_bin’: 23

M16 RandomForest ‘n_estimators’: 300, ‘max_depth’: 280, ‘min_samples_split’: 2,
‘max_features’: sqrt, ‘min_samples_leaf’: 2, ‘random_state’: 42
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Appendix C: Sub-analysis linear regression models

Table C1 Statistical analysis: Tree canopy and solar radiation

PV Count per HH PV-to-Roof Ratio

Model 17 Model 18
Predictors Coef. (SE) Coef. (SE)

% Tree-to-Land Area 2.636 (0.523)*** –0.537(0.111)***
% Tree-to-Land Area2 –116 (17.59)*** –1.111 (3.744)
Solar Radiation (log) –0.053 (0.004)*** –0.001 (0.001)*
Solar Radiation (log)2 –0.106 (0.008)*** –0.004 (0.002)*

Number of Block Groups 3441 3441
R2 0.052 0.041

*** p < 0.001. Robust standard errors (SE) are in parentheses.

Table C2 Statistical analysis: Demographics and built environments

PV Count per Household PV-to-Roof Ratio

Model 19 Model 20 Model 21 Model 22
Predictors Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE)

Median HH Income 0.001 (0.001) 0.001 (0.001) –0.001 (0.001)*** –0.001 (0.001)
Median HH Income2 –0.001 (0.001) 0.001 (0.001)***
Median Age –0.001 (0.001) –0.001 (0.001) –0.001 (0.001)*** –0.001 (0.001)***
% 65+ 0.010 (0.018) 0.009 (0.018) 0.004 (0.004) 0.005 (0.004)
% Bachelor+ –0.014 (0.018) –0.015 (0.018) 0.004 (0.004) 0.001 (0.004)
% Renters –0.049 (0.012)*** 0.049 (0.012)*** 0.004 (0.003)† 0.006 (0.003)*
Year Structure Built 0.100 (0.017)*** 0.105 (0.017)*** 0.011 (0.004)*** 0.011 (0.004)***
Year Structure Built2 –0.001 (0.001)*** –0.001 (0.001)*** –0.001 (0.001)*** –0.001 (0.001)***
Avg. No. Bedrooms 0.011 (0.005)* 0.011 (0.005)* –0.009 (0.001)*** –0.009 (0.001)***
Median Home Value 0.001 (0.001)*** 0.001 (0.001)*** 0.001 (0.001)** 0.001 (0.001)**
Rurality –0.001 (0.001)† –0.001 (0.001)† –0.001 (0.001)*** –0.001 (0.001)***
% Dem. Voters 0.107 (0.014)*** 0.115 (0.014)*** 0.002 (0.003) 0.001 (0.003)
% African American –0.101 (0.022)*** 0.420 (0.561) 0.014 (0.005)** 0.083 (0.115)
% Hispanic –0.026 (0.011)* 0.409 (0.179)* –0.002 (0.002) 0.073 (0.037)*
% Asian 0.220 (0.037)*** –3.245 (0.818)*** 0.021 (0.008)** 0.036 (0.168)
% Other Race 0.008 (0.037) –0.575 (0.657) 0.010 (0.008) 0.001 (0.135)
Income x Afri. Ameri. –0.048 (0.051) –0.006 (0.010)
Income x Hispanic –0.041 (0.017)* –0.007 (0.003)*
Income x Asian 0.310 (0.073)*** –0.001 (0.015)
Income x Other Race 0.053 (0.061) 0.001 (0.013)

No. of block groups 3441 3441 3441 3441
R2 0.143 0.149 0.202 0.198

*** p < 0.001, ** p < 0.01, * p < 0.05, †p < 0.1. Robust Standard Errors are in parentheses.
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Table C3 Statistical analysis: Energy infrastructure, market, and policy

Solar PV Count per Household PV-to-Roof Ratio

Model 23 Model 24 Model 25 Model 26
Predictors Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE)

Transmission Volt. –0.003 (0.001)** 0.001 (0.003) 0.001 (0.001) –0.001 (0.001)
Transmission Length 0.001 (0.001) –0.001 (0.001) –0.001 (0.001) 0.001 (0.001)
Muni. Utilities –0.048 (0.005)*** –0.068 (0.009)*** –0.005 (0.001)*** 0.004 (0.003)
Rural Co-ops. –0.046 (0.005)*** –0.005 (0.011) –0.008 (0.001)*** 0.002 (0.004)
Resident. Elec. Rate –0.839 (0.140)*** 0.150 (0.348) 0.003 (0.029) 0.582 (0.106)***
Commerc. Elec. Rate 1.067 (0.165)*** –2.06 (0.648)** 0.043 (0.034) –0.123 (0.139)
Solar Mandate 0.001 (0.009) 0.006 (0.002)**
Net Metering 0.027 (0.012)* 0.008 (0.008)**
SolSmart Awardee 0.003 (0.007) –0.001 (0.001)
Online Permitting 0.004 (0.005) –0.001 (0.001)
Sameday Inperson Per. 0.002 (0.007) –0.004 (0.001)
Per. & Pre-Install Days –0.001 (0.004)* –0.001 (0.001)***
CONTROLS YES YES YES YES

No. of block groups 3441 2328 3441 2328
R2 0.216 0.277 0.234 0.325

*** p < 0.001, ** p < 0.01, * p < 0.05, †p < 0.1. Robust Standard Errors are in parentheses.
CONTROLS include Income, Median Age, % 65+, % Bachelor+, % Renters, Year Structure Built, Avg. No. Bedrooms, Median
Home Value, Rurality, % Dem. Voters, % African American, % Hispanic, % Asian, % Other Race, % Tree-to-Land Area, Solar
Radiation.

Table C4 Statistical analysis: Social and natural disaster vulnerabilities

PV Count Per Household PV-to-Roof Ratio

Model 27 Model 28 Model 29 Model 30
Predictors Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE)

Drought Risk 0.001 (0.001) 0.001 (0.001)
Wildfire Risk –0.001 (0.001)*** –0.001 (0.001)*
Hail Risk –0.001 (0.001)† 0.001 (0.001)
Winter Weather Risk 0.001 (0.001) 0.001 (0.001)***
Strong Wind Risk 0.002 (0.001)*** –0.002 (0.001)***
Tornado Risk –0.002 (0.001)*** –0.003 (0.001)***
% Below Poverty 0.001 (0.001) 0.015 (0.001)*
% Disability –0.001 (0.001) –0.001(0.001)
% Single Parent 0.001 (0.001) –0.001(0.001)
% Limit. English 0.001 (0.001) 0.001 (0.001)
% 10+ Unit Housing –0.001 (0.001)*** 0.001 (0.001)***
% Mobile Home 0.001 (0.001) 0.001 (0.001)**
% Ppl. > Rooms –0.002 (0.001)*** –0.001 (0.001)***
% No Vehicles –0.001 (0.001) 0.001 (0.001)
% Unemployed 0.001 (0.001) 0.001 (0.001)***
CONTROLS YES YES YES YES

No. of block groups 3441 3441 3441 3441
R2 0.181 0.174 0.231 0.242

*** p < 0.001, ** p < 0.01, * p < 0.05, †p < 0.1. Robust Standard Errors are in parentheses.
CONTROLS include Income, Median Age, % 65+, % Bachelor+, % Renters, Year Structure Built, Avg. No. Bedrooms, Median
Home Value, Rurality, % Dem. Voters, % African American, % Hispanic, % Asian, % Other Race, % Tree-to-Land Area, Solar
Radiation.
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Table C5 Statistical analysis: All predictors

PV Count Per Household PV-to-Roof Ratio

Model 31 Model 32 Model 33 Model 34
Predictors Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE)

% Tree-to-Land Area 0.389 (0.545) 2.057 (0.878)* –0.550 (0.115)*** –0.476 (0.175)**
% Tree-to-Land Area2 –51.098 (17.448)* –145.512 (36.07)** 2.666 (3.669) 1.140 (7.177)
Solar Radiation 0.068 (0.095) 0.207 (0.224) 0.005 (0.020) –0.054 (0.045)
Solar Radiation2 –0.006 (0.008) –0.018 (0.019) 0.001 (0.002) 0.004 (0.004)
Median HH Income 0.001 (0.001) 0.001 (0.001)** 0.001 (0.001) –0.001 (0.001)
Median HH Income2 –0.001 (0.001) –0.001 (0.001)* 0.001 (0.001)* 0.001 (0.001)
Median Age –0.001 (0.001) 0.001 (0.001) –0.001 (0.001)*** –0.001 (0.001)**
% 65+ 0.001 (0.017) –0.017 (0.021) 0.001 (0.004) 0.003 (0.004)
% Bachelor+ 0.032 (0.018)† –0.023 (0.024) 0.004 (0.004) –0.003 (0.005)
% Renters –0.026 (0.012)* –0.039 (0.015)** 0.003 (0.003) 0.001 (0.003)
Year Structure Built 0.120 (0.017)*** 0.089 (0.022)*** 0.017 (0.004)*** 0.010 (0.004)*
Year Structure Built2 –0.001 (0.001)*** –0.001 (0.001)*** –0.001 (0.001)*** –0.001 (0.001)*
Avg. No. Bedrooms 0.002 (0.005) 0.001 (0.006) –0.007 (0.001)*** –0.009 (0.001)***
Median Home Value 0.001 (0.001)*** 0.001 (0.001)*** 0.001 (0.001)*** 0.001 (0.001)***
Rurality –0.004 (0.001)** 0.004 (0.003) –0.001 (0.001)*** –0.001 (0.001)
% Dem. Voters 0.082 (0.016)*** 0.166 (0.029)*** 0.010 (0.003)** 0.013 (0.006)*
% African American –0.019 (0.023) –0.041 (0.026) 0.017 (0.005)*** 0.007 (0.005)
% Hispanic –0.0145 (0.013) –0.012 (0.018) –0.004 (0.003) –0.004 (0.004)
% Asian 0.205 (0.036)*** 0.140 (0.041)*** 0.017 (0.008)* 0.005 (0.009)
% Other Race 0.076 (0.036)* 0.068 (0.052) 011 (0.007) 0.017 (0.012)
Transmission Volt. –0.004 (0.001)*** –0.001 (0.003) 0.001 (0.001) 0.001 (0.001)
Transmission Length 0.001 (0.001) 0.001 (0.002) –0.001 (0.001) –0.001 (0.001)
Muni. Utilities –0.055 (0.006)*** –0.061 (0.009)** –0.004 (0.001)*** –0.004 (0.002)†

Rural Co–ops. –0.046 (0.005)*** –0.013 (0.011) –0.007 (0.001)*** –0.006 (0.002)**
Resident. Elec. Rate –0.921 (0.142)*** 0.429 (0.351) 0.013 (0.030) 0.235 (0.070)***
Commerc. Elec. Rate 0.975 (0.167)*** –1.246 (0.644)† 0.015 (0.035) –0.351 (0.128)**
Solar Mandate 0.015 (0.009)† 0.005(0.002)**
Net Metering 0.033 (0.011)** 0.006 (0.001)*
SolSmart Awardee –0.004 (0.007) –0.001 (0.001)
Online Permitting -0.001 (0.006)* –0.001 (0.001)
Sameday Inp. Per. –0.008 (0.008) –0.001 (0.002)
Per. & Pre–Inst. Days –0.002 (0.001)*** –0.001 (0.001)***
Drought Risk –0.001 (0.001) –0.011 (0.002)*** 0.001 (0.001) –0.001 (0.001)**
Wildfire Risk –0.001 (0.001)*** 0.001 (0.001)† –0.001 (0.001) 0.001 (0.001)***
Hail Risk –0.001 (0.001)*** –0.001 (0.001)** 0.001 (0.001) 0.001 (0.001)
Winter Weather Risk 0.001 (0.001)* –0.001 (0.001) 0.001 (0.001)*** 0.001 (0.001)
Strong Wind Risk 0.002 (0.001)*** –0.004 (0.001)*** 0.001 (0.001) 0.001 (0.001)
Tornado Risk –0.002 (0.001)*** –0.003 (0.001)*** –0.001 (0.001)*** 0.001 (0.001)
% Below Poverty –0.001 (0.021) –0.007 (0.027) 0.014 (0.004)** 0.015 (0.005)
% Disability 0.001 (0.001) –0.001 (0.001) –0.001(0.001)† –0.001 (0.001)*
% Single Parent 0.001 (0.001) 0.001 (0.001) -0.001(0.001) –0.001 (0.001)
% Limit. English –0.001 (0.001) –0.001 (0.001) 0.001 (0.001) 0.001 (0.001)
% 10+ Unit Housing –0.001 (0.001)*** –0.001 (0.001)*** 0.001 (0.001)*** 0.001 (0.001)***
% Mobile Homes –0.001 (0.001) 0.001 (0.001) 0.001 (0.001)*** –0.001 (0.001)***
% Ppl. > Rooms –0.001 (0.001) 0.001 (0.001) 0.001 (0.001)** 0.001 (0.001)***
% No Vehicle –0.001 (0.001) –0.001 (0.001) 0.001 (0.001) –0.001 (0.001)
% Unemployed 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)*** 0.001 (0.001)*

No. of block groups 3441 2328 3441 2328
R2 0.262 0.329 0.271 0.348

*** p < 0.001, ** p < 0.01, * p < 0.05, †p < 0.1. Robust Standard Errors are in parentheses.
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Appendix D: Aggregated FIS: PV count per household models vs. PV-to-roof
ratio models

Figure S1 Comparing FIS between the PV-count-per-household and PV-to-roof-ratio models
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Appendix E: A trial run illustrating accuracy obtained for identifying roofs

Figure S2 A trial run illustrating accuracy obtained for identifying roofs
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