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Abstract
Urban clustering detects geographical units that are internally homogeneous and
distinct from their surroundings. It has applications in urban planning, but few studies
compare the effectiveness of different methods. We study two techniques that
represent two families of urban clustering algorithms: Gaussian Mixture Models
(GMMs), which operate on spatially distributed data, and Deep Modularity Networks
(DMONs), which work on attributed graphs of proximal nodes. To explore the
strengths and limitations of these techniques, we studied their parametric sensitivity
under different conditions, considering the spatial resolution, granularity of
representation, and the number of descriptive attributes, among other relevant
factors. To validate the methods, we asked residents of Santiago, Chile, to respond to
a survey comparing city clustering solutions produced using the different methods.
Our study shows that DMON is slightly preferred over GMM and that social features
seem to be the most important ones to cluster urban areas.
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1 Introduction
Urban clustering is a challenging problem that focuses on finding areas of a city which are
internally homogeneous and distinct from their surroundings [1]. Being a relevant input
for the design and implementation of public policies, there is an abundant body of related
literature, that reveals urban structure based on ethnicity [2], socioeconomic status [3, 4],
and the perceived built environment [5]. These methods have been helpful in measur-
ing residential segregation [6] or the contribution of public places to race/ethnicity-based
territorial agglomerations [7].

Methodologically, the way how information is represented affects the results of clus-
tering methods, but there is no consensus on what is the best way to represent these
data, neither on how to combine the different indicators. This article compares two urban
clustering methods to explore the effects of data representation on urban clustering algo-
rithms. The methods under consideration—Gaussian Mixture Models (GMMs) [2] and
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Deep Modularity Networks (DMONs) [8]—represent the data differently. While GMMs
work directly on the spatial distribution of points, DMONs build upon Graph Convolu-
tional Neural Networks (GCNs) [9] to work on an attributed graph of proximal nodes.
There is little knowledge about the effect of both types of representation on clustering
solutions.

One aspect distinguishing this study from similar ones is our effort to include multiple
indicators. Determining which indicators matter most for detecting urban clusters is a
relevant yet understudied subject, with application in the design of public policies [10, 11].
We considered classic urban factors such as land use and socioeconomic index, but also
less usual data sources such as surname distributions and indices of aesthetic perception.
Based on different combinations of indicators, we studied the parametric sensitivity of the
clustering methods.

In terms of validation, we applied and calibrated our methods with data from Santi-
ago, Chile, and implemented a survey asking residents to select the clustering solutions
that conform with their knowledge of the city. Santiago is Chile’s largest and most diverse
city. Moreover, Santiago is segregated [12], with most high-income groups located in the
northeastern quarter, making it a suitable testbed to compare methods.

The main contributions of this study are the following:
– We study the effect of different experimental factors on urban clusters identified by

two methods that operate on different territorial representations, clarifying the
advantages and disadvantages of the strategies.

– We survey residents of Santiago to provide empirical validation to the clustering
solutions of the methods under examination.

– Our study shows that DMON is slightly preferred over GMM and that social features
seem to be the most important ones to cluster urban areas.

– We release a dataset with territorial variables describing the city of Santiago (please
see: https://doi.org/10.5281/zenodo.6821928).

2 Materials and methods
2.1 Data
The first data source used in this study is the Chilean electoral registry of 2020. It contains
the full name, sex, age, the unique identifying number (RUT: Registro Único Tributario),
in Chilean administrative parlance, commune, and the address of all individuals eligible
to vote for political authorities in Chile (People over 18 years of age, including Chilean
citizens and foreigners that have resided in Chile for more than five years). Only residents
of Santiago were included in this analysis, totaling 4,652,933 individuals. The second data
source used in this study is the Territorial Well-being Index of 2012 [13], which indexes the
mean socioeconomic status of every census administrative unit down to the block level,
of which Santiago has 40,962.

A data crossing phase involved geocoding every address in the electoral registry us-
ing the Google Maps API, which yields four types of definitions: approximate, geometric
center, range interpolated, and rooftop. Only addresses geocoded with rooftop and range
interpolated-level precision were kept in the analysis, totaling 3,947,875 records. Then,
each address was matched with a census block. Individuals’ socioeconomic status (SES)
was assigned based on the mean socioeconomic level of the blocks where they live.

We also used aesthetic features of neighborhoods. To generate this data source, we build
upon the methodology described in [5, 14], which assigns real-valued scores to more than

https://doi.org/10.5281/zenodo.6821928
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120,000 geocoded images of Santiago depending on their perceived aesthetic features. We
consider six attributes: (a) Beauty, which indexes the perceived beauty of an urban land-
scape, (b) Boring, which indexes the degree to which a spot is perceived as monotonous,
(c) Depressing, which indexes how depressive an urban landscape is perceived, (d) Lively,
which measures how exciting an urban spot is perceived, (e) Safe, which refers to the per-
ception of safety, and (f ) Wealthy, which refers to the perception of wealth.

We also considered the proportion of immigrants per urban block, obtained from the
Chilean census of 2017.

Regarding surname distributions, we considered the α index-based data proposed in [3],
which provides surname affinity information aggregated at the city block level.

In addition, we included land use data at the urban block level. This indicator contains
information on how the State classifies different areas of the city for tax purposes.

Finally, we considered the results of two elections: the Constitutional plebiscite of 2020,
in which Chileans decided whether to approve or reject the writing of a new Constitution,
and the first presidential round of 2021. These results were estimated at the block level.

The inclusion of these data is relevant to our study, as it might help in characterizing the
current sociopolitical polarization of the citizens, and its relation with the rest of the indi-
cators we considered. The Constitutional plebiscite of 2020 was proposed as a response to
the 2019 protests in Chile. This election is considered a divisive event in Chilean politics,
as it is also connected to the clash between the right and left parties. Consequently, the
presidential election held the following year was heavily influenced by the results of the
plebiscite, due to the possible political consequences.

2.2 Data preprocessing design
We use two units of territorial representation: persons and urban blocks. In terms of per-
sons, we geocoded their data using their addresses in the Electoral Registry of 2020. Then,
we attributed the SES of their closest urban block. Next, we assigned the aesthetic features
of places to their closest geocoded point and the land use of the nearest urban block. Then,
we use the alpha indicator of the residents’ paternal and maternal surnames, which indi-
cates the diversity of surnames in an area. At the level of individuals, we also considered
the proportion of voters for a given electoral choice and two Boolean indexes that indicate
if at least one of the individual’s two surnames (paternal or maternal surname) matches a
list of Mapuche or upper-class surnames.

In the case of urban blocks, there are two types of features. First, features such as land
use and SES are computed at the urban block level. Then, we assign the value recorded in
each index to the block. The second type of feature is computed at the level of individuals
and averaged at the block level. In this category of feature are the proportion of people with
Mapuche surnames, the proportion of people with elite surnames, and the proportion of
people related to specific electoral choices, both in the Constitutional plebiscite and in
the first presidential round of 2021. We also included certain demographic features at the
urban block level, such as mean and standard deviation of age and proportion of women.
We summarize the variables used in this study in Table 1.

Many features have different scales. We used min-max normalization to bound them in
[0, 1] to avoid over-representing features with high positive values.

Then, we applied Principal Components Analysis (PCA) to reduce the number of fea-
tures used to cluster the data. To do this, we grouped the features into three types: Social
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Table 1 Variables used in this study

Type Level Description Variables

Location I/B† Geocoded position of the unit LON, LAT

SES I Socioeconomic status SES
B AVG_SES, STD_SES

Aesthetic I/B Aesthetic perception index of the nearest
geocoded image (individual) or averaged at
the urban block level

BEAUTY, BORING,
DEPRESSING, LIVELY,
SAFE, WEALTHY

Political I/B Proportion of a political choice in the
Constitutional plebiscite or in the Chilean
Presidential Elections (first round)

PROP_APPROVE,
PROP_{BORIC,KAST,
PROVOSTE,SICHEL,
ENRIQUEZ,PARISI,
ARTES}

Surnames I Eliteness (α) and presence/absence MAPUCHE, ELITE
B of Mapuche or high-class surnames AVG_{MAPUCHE,ELITE,

ALPHA}
Land use I/B Proportion/M2‡ of land use of the urban block

according to a land use typology∗
PROP_{A,C,D,E,G,H,I,
K,L,M,O,P,Q,S,T,V,W,Z}
M2_{A,C,D,E,G,H,I,
K,L,M,O,P,Q,S,T,V,W,Z}

Demographic I Sex, age, proportion of immigrants SEX, AGE, PROP_IM
B Age, proportion of immigrants/women AVG_AGE, STD_AGE,

PROP_{IMM,WO}

* A: farming, C: commerce, D: sports, E: education, F: forest, G: hotel, H: housing, I: industry, K: not encoded, L: storage, M:
mining, O: business, P: government, Q: worship, S: health, T: transport, V: other, W: wasteland, Z: parking.
†I: individuals, totaling 3,947,875 records; B: blocks, totaling 40,962 records.
‡: we used the log of the sum of M2 per urban block to avoid over-representing big urban blocks.

(SES, political, surnames, and demographic), visual (aesthetic features), and land use. For
each of these types of features, we applied PCA. For every data type, we chose the number
of PCA dimensions that captured at least 80% of the variance.

Finally, to generate the feature vectors used as inputs to the clustering methods, we used
the concentric rings scheme proposed in [2], where the attributes are represented by a vec-
tor where each element is an average or a proportion within the chosen geographical radii.
We used radii that capture walkable distances from a reference point to select insightful
values for the analysis. We tested different walkable radii for the analysis, measuring the
effect of this parameter on the maps produced by the studied methods.

2.3 Methods
2.3.1 Graphs
We define a graph G = (V , E) via nodes V = (v1, . . . , vn) and edges E ⊆ V ×V . Here we have
|V | = n and |E| = m. In this work, we consider an attributed representation of a graph,
a.k.a. attributed graph, that includes feature vectors in the nodes. Let X 0 ∈ R

n×s be the
collection of node vectors, where s is the feature space dimensionality. Feature vectors are
relevant for our study, as the present additional information not explicitly reflected in the
graph structure, but correlated with it.

2.3.2 Deep Modularity Networks (DMON)
To detect urban clusters, we use Deep Modularity Networks (DMONs) [8], which are a
variant of graph convolutional neural networks. We apply DMON to our data creating
a proximity graph between contiguous urban points. We provide an adjacency matrix A
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from G(V , E), where V is the set of nodes (urban blocks or inhabitants), and E is the set
of edges that connects the nearest points in the city. The node attributes are provided to
DMON in the initial node feature matrix X 0.

DMON makes use of transductive neural layers that computes node embeddings. These
layers work with the normalized adjacency matrix A = D– 1

2 AD– 1
2 , where D corresponds

to the degree matrix. Then, the output of the t-th layer is given by:

X t+1 = SeLU
(
A ·X t · W + X t · Wskip

)
,

where W and Wskip are learnable parameters of the network ∈ R
s×s, and SeLU is a

scaled exponential linear activation function. This layer introduces one change regard-
ing the classic GCN architecture, removing the self-loop creation step and instead using
an Wskip trainable skip connection matrix. This matrix allow the transference of infor-
mation through layers without going through the adjacency matrix. Note that the node
attributes X 0 are passed through these layers. Then, DMON defines a list of projections
DMON(A,X 0) : X 0 → ·· · → X t → X t+1 that produces the node embeddings. As these
layers combine the adjacency matrix with the node attributes, the node embeddings en-
code attributes and graph structural information, enriching the representation at the node
level with local information provided by the neighborhood.

As DMON was initially designed to cluster co-citation networks, we adapt the method
to the urban clustering context by replacing the adjacency matrix with a proximity matrix.
There are several ways to define the proximity matrix, but we use a classical approach
based on radial proximity, from which two urban points connect in the proximity graph if
their Euclidean distance is less than a given radius.

Given a proximity matrix A from G(V , E), DMON optimizes the assignment of each
node. So, we define the cluster assignment matrix C using the following formula:

LDMON = –
1

2m
Tr

(
CᵀBC

)

︸ ︷︷ ︸
modularity

+
√

k
n

∥
∥∥
∥
∑

i

Cᵀ
∥
∥∥
∥

F
– 1

︸ ︷︷ ︸
collapse regularization

,

where ‖ · ‖F is the Frobenius norm and k is the number of partitions. The matrix B is the
modularity matrix defined as A – ddᵀ

2m , with d being the degree vector.
To optimize LDMON, DMON uses a softmax layer with K neurons in the output layer,

which operate on the multi-layer convolutional network that computes the node embed-
dings. The number of outputs of the softmax, K , is a hyperparameter of the model. Ac-
cordingly, C is given by

C = softmax
(
DMON

(
A,X 0)).

DMON uses the Frobenius norm of the soft cluster membership counts as a regularizer,
normalized to range [0, 1]. The value of the regularizer is 0 when clusters are balanced and
1 if all clusters collapse to one.
LDMON is a non-convex function that combines spectral modularity maximization and

an explicitly defined regularization factor in the second term of the objective function. As
such, DMON considers an additional regularization strategy by applying dropout to the
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embeddings before the softmax to prevent the gradient descent algorithm from stalling at
local optima.

2.3.3 DMON calibration design
Since DMON works on a proximity matrix, a relevant parameter to calibrate is the max-
imum radius up to which two territorial units are considered nearest neighbors. In the
proximity matrix, represented for DMON by an adjacency matrix, two territorial units
(individuals/urban blocks) will be connected by an edge of the graph if their Euclidean
distance is at most the value of a maximum radius ρmax. Small values of ρmax will pro-
duce a matrix with low connectivity, while higher values will generate higher connectivity.
High connectivity implies a high clustering coefficient and, therefore, better conditions
to identify larger clusters. Radii values will be selected concerning reasonable walkable
distances.

DMON itself also has hyperparameters that need to be calibrated. The two most rele-
vant refer to regularization factors. First, as mentioned before, DMON defines a collapsed
regularization coefficient based on the Frobenius norm. The presence of this factor in the
objective function is weighted by a multiplicative factor, which increases or decreases the
presence of the regularizer. This factor will be calibrated considering its effect on the clus-
tering solutions.

Second, the dropout regularization strategy considers a dropout-rate hyperparameter.
The logic of this parameter is that a higher dropout rate prevents the effect of overfitting
on the model. Since the parametric complexity of DMON is kept fixed, what varies in
terms of overfitting is the size of the area that DMON must cluster. The rationale is that
overfitting risks increase if the clusters are generated by downscaling at the commune
level. Accordingly, the dropout rate is expected to increase in inverse proportion to the
size of the area to be clustered. We will test the dropout rate at 0.1, 0.2, and 0.3. We will
calibrate its effect on the clustering solutions depending on the size of the area.

2.3.4 Gaussian Mixture Models (GMM)
Gaussian Mixture Model (GMM) is a specific type of finite mixture model that assumes
that the observed data is generated from a mixture of K Gaussian distributions. Accord-
ingly, given a feature vector χ that represents an urban point, a GMM calculates the prob-
ability of the observation, given by:

p(χ ) =
K∑

k=1

πkp(χ |�k),

where �k represents the Gaussian distributional parameters of the k component of the
GMM and πk is the weight of this component in the mixture in the model. Note that
0 ≤ πk ≤ 1, k = 1, . . . , K , and

∑K
k=1 πk = 1.

In the case of spatial data, the Gaussian parameters represent the location (mean) and
the spatial coverage (variance) of each cluster. The number of components of the GMM,
K , is a hyperparameter of the model. The generative probability of the samples is given by:

log p(X |�) =
N∑

n=1

log
K∑

k=1

πkp(χn|�k),
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where N is the number of samples used to estimate the GMM. Using the maximum like-
lihood approach for inference, the model parameters are given by:

�ML = argmax
�

log p(X |�).

Model fitting is driven by the Expectation–Maximization (EM) algorithm. The EM uses an
iterative method to calculate and recalculate the parameters of each cluster (distribution),
i.e., mean, variance.

EM inference is based on distance-based estimators of cluster membership. Mixed
membership models define a function that estimates a sample’s probability of belonging
to a given cluster. We estimate this quantity by:

p̂(χn|�k) = exp

(
–

(χn – ck)2

2b2
k

)
,

where ck and b2
k are the mean and variance distributional parameters of the k-component

of the GMM, respectively. Note that the location of the cluster is only one of the Gaussian
features. Indeed, the distance function measures the difference at the feature level between
the vector of means of the Gaussian (ck) and the feature vector of the sample (χn).

2.3.5 User-centric parameters
A set of parameters relates to both methods (DMON and GMM). We named them user-
centric parameters as they have interpretability for the end-user. These parameters are
distinguished from model-centric parameters, such as the dropout-rate, in that they rep-
resent the user’s information needs. We identified the following user-centric parameters:

– Type of feature: type of features refers to a set of features of the same type or retrieved
from the same information source. Under this qualification, the features are grouped
into three types: (a) Social (SES, political, surnames, and demographic), (b) Visual
(aesthetic features), and (c) Land use. The use of certain features reflects the user’s
information need, seeking to represent clustering on the map based on these
characteristics or a combination of them. We study the effect on the maps of these
types of features, revealing which of them are effective in detecting homogeneous
urban clusters.

– Method (GMM/DMON): The user can choose the method. We evaluate the effect of
this choice in the clustering solutions.

– Territorial unit: Territorial units can be represented at the level of individuals or
urban blocks. The end-user could decide between both levels of representation. We
evaluate the effect of this choice in the clustering solutions.

2.4 Empirical validation methodology
We conducted a survey to validate the clustering partitions produced by the different
methods and specifications. To do this, we surveyed people in Santiago, Chile. Each re-
spondent was presented with two maps representing two clustering solutions for the same
area, and they were asked to choose the one that best fits with their knowledge of the city.
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To carry out the survey,1 we developed a web tool. The survey allows us to evaluate the
effect of user-centric parameters on the generated solutions. Each pair of images isolate
a specific parameter to measure its effects, keeping the rest of the parameters fixed. Ac-
cordingly, we designed the following paired tests to measure the effect of each user-centric
parameter:

– Type of feature: We generate pairs of images where one is generated using only one
type of feature (social, visual, or land use), and the other image uses all the features.
The method and territorial units used for the pair are the same. For example, for the
pair of images (X, Y), both X and Y are generated for the same area using the same
territorial unit (individual or urban block) and the same method (GMM or DMON).
Both solutions only differ in the type of feature used. Specifically, we used one feature
type for X and all features for Y. This test allows us to evaluate if the solutions found
by a method, under the same experimental conditions, better represent the territorial
perception of the respondents when using a specific type of feature or when using all
the characteristics.

– Method: We generate pairs of images where one is generated using GMMs, and the
other uses DMON. The features and territorial units are the same for both solutions.
This test allows us to evaluate which method produces better solutions under specific
experimental conditions.

– Territorial unit: We generate pairs of images where one is generated using individuals
and the other urban blocks. The method and features used for both images are the
same. This test allows us to evaluate whether the solutions found by a given method,
under the same experimental conditions, better represent the respondents’ perception
when using individual or urban blocks as territorial units.

Each clustering strategy can be applied at different scales. At a city-wide scale, the model
should cluster the urban region into macro zones. At the local scale, the model should
cluster neighborhoods. The effect of the method used and its dependence on the scale
chosen by the end-user is an essential factor in the analysis. To measure this effect, we
generate tests at both scales.

We summarize the paired tests implemented in our survey in Table 2. The table shows
the factor to be evaluated, the experimental setting used to generate the test, and its in-
stances.

Our paired test framework requires 28 configurations, 12 for the type of feature, 8 for
the method, and 8 for the territorial unit to evaluate the factors under the indicated experi-
mental conditions. We evaluated the 28 configurations in different areas of Santiago, Chile.
To assess the effect of scale, we generate urban clusters considering the whole urban area.
In addition, at the local level, we evaluated the effect in two specific communes: Santiago,
which is approximately located in the middle of the city of Santiago, and Providencia-
Ñuñoa, which is located in the east of the city.

The web tool developed to capture the respondents’ data is shown in Fig. 1. It is a tool
with little information overload to focus on the task at hand. The survey begins with one (1)
brief contextual description. Then, (2) the user advances to the first question (3), in which

1Ethics statement: As we surveyed residents of Santiago, we submitted our study design to the ethics committee of the
University of Concepcion. The ethics committee endorsed the methodological plan of our study, as well as a pilot sur-
vey applied from February 17, 2022 to March 6, 2022, and the applications of informed consent to the participants. The
committee found no ethical objections related to the research, as stated in the certificate issued by the institution in April
2022.
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Table 2 Paired tests used in the survey∗

Factor Experimental setting (fixed) Instances 〈X ,Y〉
Type of feature GMM, individual 〈 Social, All 〉

GMM, urban block 〈 Social, All 〉
DMON, individual 〈 Social, All 〉
DMON, urban block 〈 Social, All 〉
GMM, individual 〈 Visual, All 〉
GMM, urban block 〈 Visual, All 〉
DMON, individual 〈 Visual, All 〉
DMON, urban block 〈 Visual, All 〉
GMM, individual 〈 Land use, All 〉
GMM, urban block 〈 Land use, All 〉
DMON, individual 〈 Land use, All 〉
DMON, urban block 〈 Land use, All 〉

Method Social, individual 〈 GMM, DMON 〉
Social, urban block 〈 GMM, DMON 〉
Visual, individual 〈 GMM, DMON 〉
Visual, urban block 〈 GMM, DMON 〉
Land use, individual 〈 GMM, DMON 〉
Land use, urban block 〈 GMM, DMON 〉
All, individual 〈 GMM, DMON 〉
All, urban block 〈 GMM, DMON 〉

Territorial unit GMM, Social 〈 Individuals, Blocks 〉
DMON, Social 〈 Individuals, Blocks 〉
GMM, Visual 〈 Individuals, Blocks 〉
DMON, Visual 〈 Individuals, Blocks 〉
GMM, Land use 〈 Individuals, Blocks 〉
DMON, Land use 〈 Individuals, Blocks 〉
GMM, All 〈 Individuals, Blocks 〉
DMON, All 〈 Individuals, Blocks 〉

* We generate tests at both scales (global/local) to evaluate the cross effect with each factor.

they must decide which of the two images at the regional level best segments the space. (4)
A text box allows capturing user comments for optional use. Then the user advances (5) to
the next question, in which they must choose between one of the images at the community
level. For example, (6) the task is addressed in the commune of Santiago. (7) A text box
allows capturing user comments for optional use. Then the user advances (8), and the poll
ends by recording the user’s answers (9).

The tool was designed to be responsive and accessed from mobile devices and desktops.
It is available at http://ciudades.imfd.cl.

3 Results
3.1 Data preprocessing
The data was preprocessed using PCA. To do this, we ran PCA per group, these being
social, visual, and land use features. For the visual features, the first two principal com-
ponents captured 95% of the variance at the level of urban blocks. In the case of social
characteristics, the first two principal components capture 84% of the variance. Mean-
while, four components were required to capture 85% of the variance for land use. No
critical changes were detected in this analysis when processing at the level of individuals.

Then, we tested different concentric rings over the range of walking distances [2]. The
idea is to smooth the feature vectors from an aggregate feature calculation involving near-
est neighbors. The notion of proximity used is the Euclidean distance between territorial
units. We tested for radii in the walkable range for concentric rings between 200 and 600

http://ciudades.imfd.cl
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Figure 1 The web tool developed to capture the respondents’ data. The task is to decide which of the two
displayed images best segments the indicated area. Users are asked to solve this task both at the regional
level and at the commune level. In the example, the user must decide at the global level and then at the
communal level for Santiago

meters in radius for the local level. We compared the consistency of different clustering
solutions for these values without finding inconsistencies in the observed range. Then, we
used three concentric rings of 200, 400, and 600 meters in radius to compute the vector
features. The idea of using three components is that the neighbors within the first ring will
be counted three times, those in the second that are not in the first are counted twice, and
those in the third that are neither in the first nor the second are counted only once. The
aggregation function is a simple average. In the case of the region, we tested for radii be-
tween 500 and 1500 meters in radius. We compared the consistency of different clustering
solutions for these values without finding inconsistencies in the observed range. Then, we
used three concentric rings of 500, 1000, and 1500 meters in radius to compute the vector
features.

Data release. We release the data used in this study into two datasets. The first
dataset was computed at the level of urban blocks. The second dataset was computed
at the level of individuals. We release PCA features for both datasets. The data is avail-
able for open access under Creative Commons Attribution 4.0 International license at:
https://doi.org/10.5281/zenodo.6821928.

3.1.1 DMON calibration
In order to calibrate the relevant hyperparameters of DMON, we took a qualitative ap-
proach: we contrasted our knowledge of the city with the outputs delivered by the model.
As mentioned before, Santiago is a highly segregated city, with several well-known sec-
tors and neighborhoods that we expect to be detected as clusters in any reasonable so-
lution. These expected sectors allow us to discard hyperparameter configurations that

https://doi.org/10.5281/zenodo.6821928
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Figure 2 ρmax calibration. For high values of ρ , the local structures of the clusters are lost. The best results are
obtained for ρ in walkable ranges, between 55 and 155 meters around each territorial unit

consistently provide unrealistic clusters. By executing this scheme, we avoid degenerate
or ill-formed urban clusters and provide a cleaner and more interpretable dataset for the
empirical validation.

We start the process by calibrating ρmax, which captures the maximum distance between
two connected graph nodes representing territorial units. We tested the effect of this pa-
rameter in the maps generated by DMON on the whole city of Santiago, using all the
features. We worked with reg = 1.0, dropout = 0.0, and four clusters. Using urban blocks
as territorial units, we tested three different radii, 55 meters, 155 meters, and 1550 me-
ters. The rationale behind selecting these radii is to compare walkable distances with long
distances. The results are shown in Fig. 2.

Figure 2 shows that local cluster structures are preserved when using ρmax at small dis-
tances. However, some local structures are lost when we use a long distance to compute
the adjacency matrix. This effect can be observed both for 155 meters and 1550 meters,
where the high-class neighborhood of the region mixes with the downtown. This effect
is undesirable since both territorial areas are different. Accordingly, ρmax was fixed at 55
meters, corresponding to a local grid of urban blocks connected with their immediate
neighbors (8 neighbors).

To calibrate the collapsed regularization factor, we tested four values: 0.0, 0.1, 0.9 and
1.0. The idea is to test the effect of these parameters on the maps generated by DMON
using experimental settings with low and high presence of the regularizer. These maps
were produced using 20 clusters, with dropout = 0.0 and urban blocks based on all the
features. The maps are shown in Fig. 3.

Figure 3 shows that by not using a regularizer, the clusters collapse. As the presence of
the regularizer increases in the objective function, more local structures appear. The best
configuration is obtained with reg = 1.0, where the local structures are easily distinguish-
able from each other. In fact, for reg = 0.9 and reg = 1.0, most of the city’s well-known
urban sectors and milestones are preserved in the generated maps. However, when using
reg = 0.9, the high-income area of the region is merged with the downtown area. On the
contrary, in the case of reg = 1.0, the downtown and high-income areas are easily distin-
guishable.
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Figure 3 Collapsed regularizer calibration. As the presence of the regularizer increases in the objective
function, more local structures appear. The best configuration is obtained with reg = 1.0, where the local
structures are easily distinguishable from each other

Finally, we also analyze the maps generated in Santiago using DMON with all the fea-
tures and urban blocks to calibrate the dropout factor. We generated four maps for fixed
reg at 1.0 and dropout values in 0.0, 0.1, 0.2, and 0.3. These maps are shown in Fig. 4.

Figure 4 shows that low dropout values (0.0 or 0.1) do not allow distinguishing the local
structures of the clusters, mixing them throughout various areas of the region. However,
as the dropout-rate increases to 0.2 and 0.3, the clusters become more distinguishable.
Specifically, for dropout = 0.2, the high-income area is perfectly isolated from the rest of
the region, without mixing it with downtown or other areas. In the case of dropout = 0.3,
the upper-class neighborhood is mixed with downtown, showing a mixture of both areas.

The same calibration procedure was performed using individuals as territorial units.
Results vary slightly, showing that the best settings are for reg = 0.9 and dropout = 0.3.
To perform the analyzes at the local level (Santiago and Providencia/Ñuñoa), we kept the
same calibration parameters found at the global level. The rationale is that the calibration
method is adjusted at the regional level and then in downscaling, the method should not
be recalibrated for each new commune analyzed. The results found at the commune level
show identifiable local structures for these parameters, which confirms that for DMON,
it is sufficient to calibrate at a global level.

3.2 Survey
A preliminary survey was applied from February 17, 2022, to March 6, 2022. The prelim-
inary study aimed to identify improvements in the survey. Some respondents suggested
improvements to the agreement consent. Other users indicated improvements in the use
of colors. After including these changes in the survey, we applied the final version of the
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Figure 4 Dropout calibration. Low dropout values (0.0 or 0.1) do not allow distinguishing the local structures
of the clusters, mixing them throughout various areas of the region. However, as the dropout increases to 0.2
and 0.3, the clusters become more distinguishable

survey between May 10 and 30, 2022. It was promoted through the Facebook (2.2K fol-
lowers), Twitter (10K followers), and Instagram (2.5K followers) accounts of the Millen-
nium Institute of Foundational Research on Data (https://imfd.cl/). It was also promoted
through a mainstream media outlet.2 A total of 277 people responded to the survey. Each
subject had the opportunity to review all paired questions but also had the option to leave
the survey early. In total, 3451 paired answers were recorded, with an average of 12.5 paired
questions per respondent.

For each factor of analysis (method, territorial unit, and type of feature), we aggregated
the respondents’ answers at the level of each factor, computing the number of preferences
for each option. Since the questions are paired, we applied a two-sided cumulative bino-
mial test for each setting with a fair coin toss as the null hypothesis. Tables 3, 4, and 5
show the results of the study by factor. The users’ preference is indicated with bold fonts
if the trend is significant (i.e., with a null hypothesis rejected). The last columns show the
p-value of the statistical test (the likelihood of the sample result if the null hypothesis were
true) and the confidence interval for the true probability of fair coin toss at 95% for the first
variable.

Table 3 shows that the social variables produce better partitions than all the features
combined. These differences are noticeable at the global level and when the maps are built
using blocks or GMM. Respondents preferred maps based on all features versus visual fea-
tures only. The differences in this comparison are significant for all experimental settings.
Respondents preferred maps based on all features versus land use features only. These

2https://bit.ly/3zYyw6I

https://imfd.cl/
https://bit.ly/3zYyw6I
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Table 3 Results obtained for type of feature from the survey∗

Type of feature SOCIAL ALL N p-value 95% Conf. Interval

SOCIAL VS ALL 294 236 530 0.013 0.51–0.59
SOCIAL VS ALL / BLOCK 145 111 256 0.038 0.50–0.62
SOCIAL VS ALL / INDIVIDUAL 149 125 274 0.164 0.48–0.60
SOCIAL VS ALL / GMM 164 103 267 0.001 0.55–0.67
SOCIAL VS ALL / DMON 130 133 263 0.901 0.43–0.55
SOCIAL VS ALL / GLOBAL 169 131 300 0.032 0.51–0.62
SOCIAL VS ALL / LOCAL 125 105 230 0.210 0.47–0.60

VISUAL ALL N p-value 95% Conf. Interval

VISUAL VS ALL 159 386 545 2.2E–16 0.25–0.33
VISUAL VS ALL / BLOCK 55 212 267 2.2E–16 0.15–0.25
VISUAL VS ALL / INDIVIDUAL 104 174 278 3.19E–05 0.31–0.43
VISUAL VS ALL / GMM 80 180 260 5.01E–10 0.25–0.36
VISUAL VS ALL / DMON 79 206 285 3.14E–14 0.22–0.33
VISUAL VS ALL / GLOBAL 115 226 341 1.86E–09 0.28–0.39
VISUAL VS ALL / LOCAL 44 160 204 2.2E–16 0.16–0.27

LANDUSE ALL N p-value 95% Conf. Interval

LAND USE VS ALL 208 311 519 7.08E–06 0.35–0.44
LAND USE VS ALL / BLOCK 92 162 254 1.32E–05 0.31–0.42
LAND USE VS ALL / INDIVIDUAL 116 149 265 0.05 0.37–0.49
LAND USE VS ALL / GMM 107 149 256 0.01 0.35–0.48
LAND USE VS ALL / DMON 101 162 263 0.001 0.32–0.44
LAND USE VS ALL / GLOBAL 106 186 292 3.31E–06 0.31–0.42
LAND USE VS ALL / LOCAL 102 125 227 0.144 0.38–0.51

* Significant results at the 5% are indicated with bold fonts.

Table 4 Results obtained for method from the survey∗

Method DMON GMM N p-value 95% Conf. Interval

DMON VS GMM 551 482 1033 0.034 0.50–0.56
DMON VS GMM / BLOCK 281 230 511 0.026 0.50–0.59
DMON VS GMM / INDIVIDUAL 270 252 522 0.456 0.47–0.56
DMON VS GMM / ALL 152 99 251 0.001 0.54–0.66
DMON VS GMM / SOCIAL 128 147 275 0.277 0.40–0.52
DMON VS GMM / LAND USE 136 119 255 0.316 0.47–0.59
DMON VS GMM / VISUAL 135 117 252 0.284 0.47–0.59
DMON VS GMM / GLOBAL 301 282 583 0.456 0.47–0.55
DMON VS GMM / LOCAL 250 200 450 0.021 0.50–0.60

* Significant results at the 5% are indicated with bold fonts.

Table 5 Results obtained for territorial unit from the survey∗

Territorial unit BLOCK INDIVIDUAL N p-value 95% Conf. Interval

BLOCK VS INDIVIDUAL 308 516 824 4.19E–13 0.34–0.40
BLOCK VS INDIVIDUAL / DMON 167 256 423 1.75E–5 0.34–0.44
BLOCK VS INDIVIDUAL / GMM 141 260 401 2.99E–9 0.30–0.40
BLOCK VS INDIVIDUAL / ALL 87 116 203 0.05 0.35–0.49
BLOCK VS INDIVIDUAL / SOCIAL 87 126 213 0.009 0.34–0.47
BLOCK VS INDIVIDUAL / LAND USE 82 117 199 0.015 0.34–0.48
BLOCK VS INDIVIDUAL / VISUAL 52 157 209 1.91E–13 0.19–0.31
BLOCK VS INDIVIDUAL / GLOBAL 160 218 378 0.003 0.37–0.47
BLOCK VS INDIVIDUAL / LOCAL 148 298 446 1.06E–12 0.28–0.37

* Significant results at the 5% are indicated with bold fonts.
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differences are noticeable at the global level, when maps are built using GMM or DMON,
and at the block level of aggregation.

Table 4 shows that more users prefer DMON-generated maps versus GMM. This pref-
erence becomes noticeable at the block level when using all features and at the local level
of aggregation. When using only social, visual, or land use features, the difference between
DMON and GMM is not significant.

Table 5 shows that respondents prefer the maps generated using features aggregated at
the level of individuals. This trend is persistent across the experiments, with significant
differences in favor of the individual level for almost all factors.

3.3 Maps for a low segregation area
The maps generated for the Metropolitan Region describe areas with a high level of so-
cioeconomic segregation. To understand how these methods behave in areas where urban
segregation is lower, we studied the commune of Maipú, a populous commune located on
the west end of Santiago. According to the 2017 census, Maipú has a population of 521,627
inhabitants, making it the second most populous commune in the country. Socioeconomic
groups C3 (medium) and D (medium-low) make up 61.3% of the communal population,
and only 4.0% of the inhabitants are below the poverty line (E). Only 7.5% of the people
who live in the commune belong to the middle-upper class (ABC1), which is why it is
considered a commune with low segregation. The commune has few rural areas and more
than 90% of the area is urbanized. We obtained the maps for this commune based on the
same data sources used in the first part of the study.

The maps in Fig. 5 show a distinction between the commune’s center, the industrial
neighborhood and the residential area. According to visual examination, social variables
have more intuitive validity than the other types of indicators. The maps that include all
variables also make sense intuitively. The large avenues mark the division of the territory
and, overall, the maps seem consistent with our local knowledge.

Villa San Luis is the most dangerous neighborhood in the commune. The clustering
methods that contains social features (ALL and SOCIAL) detect it successfully. This
makes sense since those features should be similar across the neighboring territory. We
observe that the resulting maps shows consistency with the built environment.

4 Discussion of results
The results of the empirical validation show clear trends. In Fig. 6, we show the study re-
sults for each of the five factors. Only statistically significant results were included in these
charts. On the one hand, Fig. 6(a) shows a tendency to favor social features over all fea-
tures. This difference is especially relevant when using GMM. As for the visual (Fig. 6(b))
and land use-based features (Fig. 6(c)), they perform worse compared to combining all
features. These results are relevant. In principle, one can imagine their urban surround-
ings as partitioned by land use (e.g., commercial versus residential) or by their looks (e.g.,
beautiful versus ugly). However, the results suggest that Santiago residents think of their
urban surroundings as partitioned mainly by social characteristics such as SES, political
choices, and the proportion of immigrants.

Observing Fig. 6(d), we note a difference in favor of DMON over GMM, especially in
the setting that considers all the features. The chart shows that the difference in favor
of DMON is robust to the preprocessing technique used. We hypothesize that DMON
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Figure 5 Maps for a low segregation area (Maipú). DMON using ALL as SOCIAL features, detects the
residential area, clustering Villa Los Héroes precisely. This Villa has a circular shape almost in the middle of the
map. When using LAND USE or VISUAL, this cluster disappears. The GMMmap that makes the best territorial
sense also uses SOCIAL features. All maps were generated at the level of individuals

outperforms GMM due to its ability to handle high-dimensional input data. DMON uses
graph convolutional layers, which use dropout and max-pooling operators. These opera-
tors allow them to improve their generalization capabilities, reducing the risks associated
with overfitting. Furthermore, since the graph convolutional layers combine the attribute
vectors with the adjacency matrix, and parameters handle this combination learned dur-
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Figure 6 Results of the survey. Each plot shows the results of the survey per factor, sorted in decreasing order
from top to bottom according to statistical significance. Each of the five factors shows a clear trend in favor of
one of the two variables studied. Only significant results at 5% are shown on these charts

ing network training, DMON has better properties for learning how to combine attributes
and structure. On the other hand, GMM does not combine structure and attributes in the
input representation. Instead, it manages the structural information based on Gaussian
kernels whose location accounts for the territorial pattern of the data. We hypothesize
that this learning mechanism is less expressive than that of DMON.

Finally, Fig. 6(e) shows that the respondents made more sense of the maps generated
using data at the level of individuals rather than at the level of urban blocks. Since both
types of territorial data preprocessing include ring-level aggregation, a second block-level
aggregation operator deteriorates the quality of the maps. The study considered the city
(Santiago Metropolitan area) and local maps (communes). As a result, both partitions gen-
erated at the level of individuals performed better than partitions generated at the level
of blocks. In the case of features, the trend in favor of social features is only significant
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at the city level (Metropolitan area). At the commune level, the social characteristics lose
relevance, showing that when down-scaling, these characteristics are territorially homo-
geneous and, therefore, less informative to generate maps.

4.1 Compactness analysis
The results of the survey yielded three main conclusions. First, maps calculated using so-
cial features are preferred by respondents over those generated using all the features. We
also found that the maps generated by DMON have more preferences than those gener-
ated using GMM. Finally, the survey shows that maps generated at the level of individuals
are preferred over those calculated at the level of blocks. To study the robustness of these
conclusions, we consider the influence on respondents’ preferences of variables not con-
sidered in the study. The most relevant of these may be the territorial compactness of the
clusters, which could shape user preferences.

To measure the compactness per cluster, we do the following. First, for each data point
(individual or block), we computed its k nearest neighbors (k = 100). Then, we calculated
the proportion of data points that belong to the cluster of the original point vs. those that
do not. Finally, we compute the average proportion for all the points of the same cluster,
and we compute a global compactness score of each map averaging across the clusters.
The index takes values in [0, 1], and a higher value indicates a solution with more compact
clusters. Table 6 shows the compactness index calculated in each evaluation considered
in the cluster. The table shows the results of each study’s conclusions, along with the re-
spondents’ preferences.

The last column of Table 6 shows the fraction of preferences in favor of the winning
factor. We measured the dependence between compactness (independent variables) and
preferences (dependent variable) by fitting linear and logistic regression models for each
hypothesis. For H1: SOCIAL WINS ALL, we obtained a standard error = 0.046 and
R2=0.669 using linear regression and a standard error = 0.059 and R2=0.453 using log. re-
gression. For H2: DMON WINS GMM, we obtained a standard error = 0.118 and R2=0.039
(linear regression) and error = 0.119 and R2=0.017 (log. regression). Finally, for H3: IN-
DIVIDUALS WINS BLOCKS we obtained standard error = 0.089 and R2=0.376 (linear
regression) and error = 0.08 and R2 = 0.495 (log. regression).

The low determination coefficients show that compactness cannot explain user prefer-
ences. The lowest coefficient was achieved for H2 and indicates that compactness has a
very low influence on respondents’ preferences. We evaluated another compactness index
that, instead of kNN, measures compactness using radii. The index was calculated for a
walkable distance (R=300 m). The regression analysis performed with this index yielded
similar conclusions.

We complement the previous analysis by working on a categorical version of the com-
pactness index. To do this, we discretized the compactness index around its median
(0.425). The categorical compactness encodes the indices above (1) and below (0) the me-
dian. Using this variable, we separated the users’ preferences for each hypothesis in cases
where the indices agree in value (both low or high) or differ in value (one high and one
low). This analysis allows us to distinguish the number of preferences conditioned to each
scenario. Table 7 shows this analysis.

The ’SOCIAL WINS ALL’ conclusion shows that the preferences favor the SOCIAL
factor in all scenarios. The cases in which the contrasted pair coincides in compactness
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Table 6 Compactness of the maps used in our study. A higher value indicates a solution with more
compact clusters. C1 and C2 show the indices for the first and second map, respectively

H1: SOCIAL WINS ALL C1 C2 N1 N2 Frac. of Pref.

GMM, SOCIAL, BLOCK, GLOBAL GMM, ALL, BLOCK, GLOBAL 0,297 0,192 46 26 0,639
DMON, SOCIAL, BLOCK, GLOBAL DMON, ALL, BLOCK, GLOBAL 0,317 0,274 35 36 0,493
GMM, SOCIAL, INDIVIDUAL, GLOBAL GMM. ALL, INDIVIDUAL, GLOBAL 0,498 0,433 49 29 0,628
DMON, SOCIAL, INDIVIDUAL, GLOBAL DMON, ALL, INDIVIDUAL, GLOBAL 0,499 0,494 39 40 0,494
GMM, SOCIAL, BLOCK, LOCAL GMM, ALL, BLOCK, LOCAL 0,405 0,366 34 22 0,607
DMON, SOCIAL, BLOCK, LOCAL DMON, ALL, BLOCK, LOCAL 0,386 0,394 30 27 0,526
GMM, SOCIAL, INDIVIDUAL, LOCAL GMM, ALL, INDIVIDUAL, LOCAL 0,912 0,860 35 26 0,574
DMON, SOCIAL, INDIVIDUAL, LOCAL DMON, ALL, INDIVIDUAL, LOCAL 0,923 0,933 26 30 0,464

294 236

H2: DMON WINS GMM C1 C2 N1 N2 Frac. of Pref.

DMON, SOCIAL, BLOCK, GLOBAL GMM, SOCIAL, BLOCK, GLOBAL 0,317 0,297 29 49 0,372
DMON, VISUAL, BLOCK, GLOBAL GMM, VISUAL, BLOCK, GLOBAL 0,122 0,081 48 25 0,658
DMON, LAND USE, BLOCK, GLOBAL GMM, LAND USE, BLOCK, GLOBAL 0,276 0,167 45 27 0,625
DMON, ALL, BLOCK, GLOBAL GMM, ALL, BLOCK, GLOBAL 0,274 0,192 53 20 0,726
DMON, SOCIAL, INDIVIDUAL, GLOBAL GMM, SOCIAL, INDIVIDUAL, GLOBAL 0,499 0,498 36 40 0,474
DMON, VISUAL, INDIVIDUAL, GLOBAL GMM, VISUAL, INDIVIDUAL, GLOBAL 0,468 0,288 27 43 0,386
DMON, LAND USE, INDIVIDUAL, GLOBAL GMM, LAND USE, INDIVIDUAL, GLOBAL 0,420 0,334 32 39 0,451
DMON, ALL, INDIVIDUAL, GLOBAL GMM, ALL, INDIVIDUAL, GLOBAL 0,494 0,433 31 39 0,443
DMON, SOCIAL, BLOCK, LOCAL GMM, SOCIAL, BLOCK, LOCAL 0,386 0,405 27 30 0,474
DMON, VISUAL, BLOCK, LOCAL GMM, VISUAL, BLOCK, LOCAL 0,413 0,223 24 24 0,500
DMON, LAND USE, BLOCK, LOCAL GMM, LAND USE, BLOCK, LOCAL 0,346 0,317 21 32 0,396
DMON, ALL, BLOCK, LOCAL GMM, ALL, BLOCK, LOCAL 0,394 0,366 34 23 0,596
DMON, SOCIAL, INDIVIDUAL, LOCAL GMM, SOCIAL, INDIVIDUAL, LOCAL 0,923 0,912 36 28 0,563
DMON, VISUAL, INDIVIDUAL, LOCAL GMM, VISUAL, INDIVIDUAL, LOCAL 0,788 0,846 36 25 0,590
DMON, LAND USE, INDIVIDUAL, LOCAL GMM, LAND USE, INDIVIDUAL, LOCAL 0,874 0,793 38 21 0,644
DMON, ALL, INDIVIDUAL, LOCAL GMM, ALL, INDIVIDUAL, LOCAL 0,933 0,860 34 17 0,667

551 482

H3: INDIVIDUAL WINS BLOCKS C1 C2 N1 N2 Frac. of Pref.

GMM, SOCIAL, INDIVIDUAL, GLOBAL GMM, SOCIAL, BLOCK, GLOBAL 0,498 0,297 31 19 0,620
DMON, SOCIAL, INDIVIDUAL, GLOBAL DMON, SOCIAL, BLOCK, GLOBAL 0,499 0,317 27 20 0,574
GMM, VISUAL, INDIVIDUAL, GLOBAL GMM, VISUAL, BLOCK, GLOBAL 0,288 0,081 34 10 0,773
DMON, VISUAL, INDIVIDUAL, GLOBAL DMON, VISUAL, BLOCK, GLOBAL 0,468 0,122 34 18 0,654
GMM, LAND USE, INDIVIDUAL, GLOBAL GMM, LAND USE, BLOCK, GLOBAL 0,334 0,167 25 22 0,532
DMON, LAND USE, INDIVIDUAL, GLOBAL DMON, LAND USE, BLOCK, GLOBAL 0,420 0,276 18 24 0,429
GMM, ALL, INDIVIDUAL, GLOBAL GMM, ALL, BLOCK, GLOBAL 0,433 0,192 25 20 0,556
DMON, ALL, INDIVIDUAL, GLOBAL DMON, ALL, BLOCK, GLOBAL 0,494 0,274 24 27 0,471
GMM, SOCIAL, INDIVIDUAL, LOCAL GMM, SOCIAL, BLOCK, LOCAL 0,912 0,405 37 23 0,617
DMON, SOCIAL, INDIVIDUAL, LOCAL DMON, SOCIAL, BLOCK, LOCAL 0,923 0,386 31 25 0,554
GMM, VISUAL, INDIVIDUAL, LOCAL GMM, VISUAL, BLOCK, LOCAL 0,846 0,223 42 10 0,808
DMON, VISUAL, INDIVIDUAL, LOCAL DMON, VISUAL, BLOCK, LOCAL 0,788 0,413 47 14 0,770
GMM, LAND USE, INDIVIDUAL, LOCAL GMM, LAND USE, BLOCK, LOCAL 0,793 0,317 34 17 0,667
DMON, LAND USE, INDIVIDUAL, LOCAL DMON, LAND USE, BLOCK, LOCAL 0,933 0,346 40 19 0,678
GMM, ALL, INDIVIDUAL, LOCAL GMM, ALL, BLOCK, LOCAL 0,860 0,366 32 20 0,615
DMON, ALL, INDIVIDUAL, LOCAL DMON, ALL, BLOCK, LOCAL 0,933 0,394 35 20 0,636

516 308

concentrate most cases, with only 14.7% of comparisons between pairs with different com-
pactness. This finding reinforces the argument that compactness has a very weak influence
on this conclusion. For ’DMON WINS GMM’, the scenarios in which DMON wins GMM
are always for pairs with similar compactness. The cases in which pairs with different com-
pactness are compared cover only the 15.1% of the total. In this scenario, DMON does not
perform better. These results reinforce the argument that compactness has a marginal in-
fluence on this conclusion. Finally, for ’INDIVIDUAL WINS BLOCK’, we see that a large
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Table 7 Categorical compactness of the conclusions obtained in our study. C∗ = 0 indicates a map
whose compactness is below the median score (0.425), 1 indicates above the median

C1 C2 SOCIAL ALL P(SOCIAL|C1,C2) P(C1,C2)

0 0 145 111 0.566 0.483
1 1 100 96 0.511 0.369
1 0 49 29 0.628 0.147
0 1 0 0 0.5 0

C1 C2 DMON GMM P(DMON|C1,C2) P(C1,C2)

0 0 313 230 0.576 0.582
1 1 180 131 0.578 0.333
1 0 58 82 0.414 0.151
0 1 0 0 0.5 0

C1 C2 IND BLOCK P(IND|C1,C2) P(C1,C2)

0 0 84 52 0.617 0.165
1 1 0 0 0.5 0
1 0 432 256 0.627 0.834
0 1 0 0 0.5 0

number of pairs (83.4%) have different compactness, with maps based on individuals hav-
ing higher compactness than those based on blocks. Although comparing pairs with co-
incidence in compactness under individuals also outperforms blocks, the results suggest
a potential influence of compactness in these comparisons. Consequently, the result ’IN-
DIVIDUALS WINS BLOCKS’ is weaker than the previous ones.

Limitations of the study Our article has some limitations that are inherent to the design
of the study. For example, our study is not helpful to measure the absolute quality of a
map but to determine which of the two algorithms conforms better to the subjective per-
ception of users. Accordingly, we do not have an answer or evidence to support whether
the solutions are good or bad in absolute terms. We only have evidence in relative terms.
Another limitation is that this study only compares two algorithms, but more algorithms
can be applied to the urban clustering problem.

5 Conclusions
To the best of our knowledge, this is the first works that compare different clustering al-
gorithms in light of social perceptions. The study indicates that DMON—a graph neural
network-based method—conforms slightly better with respondent’s perceptions of their
space than GMM, a commonly-used clustering algorithm. We have also learned that peo-
ple’s perception of space correlates more with social characteristics than features based
on aesthetics or land use.

In future work, we plan to extend this study to include more urban clustering techniques
and a more extensive survey. This subsequent work will include a comprehensive library
for urban clustering methods. In addition, the relationship between socioeconomic at-
tributes and other urban territorial descriptors, such as the use of cars or the type of
clothing of the inhabitants, can be helpful. In this line, Gebru et al. [15] show that so-
cioeconomic attributes such as income and voting patterns can be inferred from cars de-
tected with Google street view, avoiding dependency on census data. We also plan to study
the performance of multi-scalar approaches, aiming to address the modifiable areal unit
problem in urban clustering [16]. We believe that current methods can be extended using
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hierarchical graph neural networks [17], providing multi-scalar methods endowed with
attention mechanisms [18].
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