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Abstract
As the living tissue connecting urban places, streets play significant roles in driving
city development, providing essential access, and promoting human interactions.
Understanding street activities and how these activities vary across different streets is
critical for designing both efficient and livable streets. However, current street
classification frameworks primarily focus on either streets’ functions in transportation
networks or their adjacent land uses rather than actual activity patterns, resulting in
coarse classifications. This research proposes an activity-based street classification
framework to categorize street segments based on their temporal street activity
patterns, which is derived from high-resolution de-identified and privacy-enhanced
mobility data. We then apply the proposed framework to 18,023 street segments in
the City of Boston and reveal 10 distinct activity-based street types (ASTs). These ASTs
highlight dynamic street activities on streets, which complements existing street
classification frameworks, which focus on the static or transportation characteristics of
the street segments. Our results show that a street classification framework based on
temporal street activity patterns can identify street categories at a finer granularity
than current methods, which can offer useful implications for state-of-the-art urban
management and planning. In particular, we find that our classification distinguishes
better those streets where crime is more prevalent than current functional or
contextual classifications of streets.

Keywords: Street activity; Temporal patterns; Street classification; Mobile phone GPS
data; Clustering; FCM; Urban management

1 Introduction
While streets bear a critical role of ensuring a functionally connected and accessible city,
they also accommodate the livelihood and experience of cities, as emphasized by Lynch
[1], Gehl and other scholars [2–9]. In recent years, North American cities, such as Boston,
Philadelphia, and Chicago, have seen the emergence of the “Complete Streets” concept,
where streets act as “both great places to live and sustainable transportation networks”
[10, 11].

Many cities have adopted different street classification frameworks to capture street
networks’ functions and characteristics. These frameworks guide the allocation of trans-
portation resources, regional planning, and design of livable streetscapes [11]. Table 1

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjds/s13688-022-00355-5
https://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-022-00355-5&domain=pdf
https://orcid.org/0000-0003-1702-8600
mailto:tsu@gsd.harvard.edu
mailto:emoro@mit.edu
http://creativecommons.org/licenses/by/4.0/


Su et al. EPJ Data Science           (2022) 11:43 Page 2 of 21

Table 1 Functional and contextual street classification frameworks

Framework Organization Document/System Street types Trans-
portation
aspect

Public
life
aspect

Functional U.S. Census Bureau Census Feature Class
Codes (CFCC)

– Primary Highway with Limited
Access

Yes No

– Primary Road without Limited
Access
– Secondary and Connecting
Road
– Local, Neighborhood, and
Rural Road
– Vehicular Trail
– Road with Special
Characteristics
– Road as Other Thoroughfare

Functional Federal Highway
Administration
(FHWA)

Highway Functional
Classification Concepts,
Criteria and Procedures
(2013)

– Arterial Yes No
– Collector
– Local street

Contextual City of Boston Boston Complete Streets:
Design Guidelines (2013)

– Downtown Commercial Yes Yes
– Downtown Mixed-Use
– Neighborhood Main Street
– Neighborhood Connector
– Neighborhood Residential
– Industrial
– Shared Streets
– Parkways
– Boulevards

Contextual City of Philadelphia Philadelphia Complete
Streets Design Handbook
(2017)

– High-Volume Pedestrian Yes Yes
– Civic/Ceremonial Street
– Walkable Commercial Corridor
– Urban Arterial
– Auto-Oriented
Commercial/Industrial
– Park Road
– Scenic Drive
– City Neighborhood
– Low-Density Residential
– Shared Narrow
– Local

exemplifies a few typical street classification frameworks [11]. In general, there exist
two main classification frameworks: functional frameworks and contextual frameworks.
While functional frameworks capture the transportation aspects of streets, contextual
frameworks aim to capture public life by considering streets’ spatial contexts. As an ex-
ample of functional frameworks, the Census Feature Class Codes (CFCC) system classi-
fies street segments into seven main categories based on their transportation functions.
On the other hand, the contextual classification framework proposed in Boston Com-
plete Streets: Design Guidelines [10] categorizes streets into nine types based on their
geographical locations and adjacent land uses.

The functional frameworks, which largely depends on transportation demand, does not
provide enough insights for the future pedestrian friendly urban development. The con-
textual frameworks, mostly resorting to static characteristics, ignore the valuable micro-
level urban dynamics [12]. The locations and land uses are not capable of expressing the
temporal pattern of street activities. For example, a Boston Downtown street segment
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next to a large departmental store and another street segment next to a local grocery can
show distinct street activity patterns, even though both are adjacent to commercial land
uses. Besides, typical contextual frameworks use streets rather than streets segments as
their classification unit, which bears a lower resolution than functional frameworks (e.g.,
CFCC). For longer streets that contain a lot of segments, this approach may overlook the
spatial variations of street activities. Moreover, contextual frameworks’ classification rules
vary significantly across cities (see Table 1), making it hard to apply them in different urban
contexts.

Recently, advancements in urban sensing and location intelligence made it possible to
establish fine-grained street classification frameworks highlighting dynamic street activity
patterns. These patterns demonstrate how individuals use streets to live, play, eat, rest,
shop, as well as conduct a wide range of other activities.

The activity-based street classification frameworks have their roots at the intersection
of urban and social science studies. By observing urban life, Gehl in [2] demonstrates how
street activities occur in outdoor spaces and how places’ physical characteristics (e.g.,
buildings, sidewalks, and street furniture) influence the way people behave. Similar ap-
proaches have been applied by Gehl and Svarre in [4] and Whyte in [6]. However, con-
strained by the tools and methods, these studies mostly focus on concentrated areas or a
few streets, and do not easily scale.

In recent years, the increasing availability in location data enable researchers and prac-
titioners to study human activities in larger urban scales that go beyond neighborhood.
Earlier research focuses on a lower resolution using mainly Call Detail Records (CDR)
data [13–15], while later studies use higher-resolution telecom data and GPS data [16–18].
While lower-resolution location data are capable of analyzing human activities in medium
to large spatial units, such as urban grids or census tracts, higher-resolution data can sup-
port research at smaller spatial units, such as street segments or blocks. For example,
Ratti et al. in [14] introduce the potential applications of location-based services (LBS)
data in the urban studies field and investigate the temporal patterns of urban activities
in Milan by observing CDR data. More recently, the authors in [19] studied the phe-
nomenon of social segregation at individual site level using de-identified high-resolution
GPS data.

Among the studies trying to understand urban dynamics using large-scale location data,
many of them investigated latent patterns in cities [13–16, 20–26]. For example, Zhu et
al. in [20] proposed using street segments as a linear unit to investigate small-scale urban
dynamics, and clustered main street segments of Beijing into nine types using taxi pick-up
and drop-off GPS data. D’Silva et al. [21] extracted the temporal activity patterns on both
venue and ward scales from the Foursquare mobility data and used a k-nearest neighbor
model to predict the performance of new business venues. Pei et al. [13] utilized the mobile
phone calling patterns on the urban cell scale to classify land uses via a semisupervised
fuzzy c-means (FCM) clustering approach.

Building on existing street classification frameworks and the recent progress in finer-
grained urban mobility data, this research proposes a scalable and reusable street clas-
sification framework based on the temporal patterns of street activities on street seg-
ments. Figure 1 portrays the proposed framework. First, we define “street activities” as
non-motorized human activities that take place on streets or in adjacent public spaces
and buildings. Second, we quantify the “rhythms of streets,” the temporal patterns of



Su et al. EPJ Data Science           (2022) 11:43 Page 4 of 21

Figure 1 The framework of activity-based street classification

street activities, using anonymized and aggregated GPS mobility data. Third, we pro-
pose a two-step activity-based classification model to classify 18,023 street segments in
Boston into distinct activity-based street types (ASTs). We also discuss how the proposed
framework can complement current functional and contextual street classification frame-
works.

2 Data description
2.1 Street segments of Boston
We use street segments as the basic study unit to address the finer-grained spatial varia-
tions along streets. A total of 19,212 street segments of Boston are downloaded from An-
alyze Boston,1 the City of Boston’s open data hub. As this study focuses on non-motorized
street activities, we exclude 1189 segments that are only for vehicle traffic uses. This se-
lection is based on the CFCC of each street segment.

Detailed criteria are available in Appendix Table 6.

2.2 Street activities
The GPS location data comes from anonymized users who have opted-in to provide ac-
cess to their LBS data through a GDPR-compliant framework. Data was shared in 2017

1https://data.boston.gov/dataset/boston-street-segments

https://data.boston.gov/dataset/boston-street-segments
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under a strict contract with Cuebiq through their Data for Good program where they pro-
vide access to de-identified and privacy-enhanced mobility data for academic research and
humanitarian initiatives only.

Both geo-tagged social media data and GPS location data have been widely used for
detecting latent patterns in cities. Social media data has been widely used to describe ac-
tivities associated with specific places such as parks, restaurants, coffee places, and transit
stations [21, 24, 25, 27–29]. In comparison, GPS data provides more flexibility to be aggre-
gated at different spatial unit across spatial scales [19]. Admittedly, both data are biased
towards certain user groups, given that GPS data has a much larger sample size and wider
time range, we are able to present the street activities that cover more than certain venues
that have social media presence, and beyond their scheduled operation hour.

The data we use covers 12 weeks from October 2, 2017 to December 24, 2017. It is
processed to get the stays (stops) of individuals so it contains an inferred device location
(i.e., latitude and longitude), a timestamp of the starting time ti, and a dwell time di (see
[19] for more details about the data).

As briefly discussed in Sect. 1, street activities are defined as the non-motorized human
activities that happen on streets or at places accessible from streets in this research. We
choose di, the dwelling time, as the key indicator to filter the raw data and focus on the
street activities. We use the 5 to 120 minutes as a threshold to exclude invalid activities
such as driving through a street or staying at home or work for a long time. A total of
86,220 unique users and 1,419,079 stays are selected based on these criteria.

The filtered GPS stays are then mapped to their nearest street segments via a matching
method [20, 30]. We set the threshold of matching to be 50 m since we focus on the activ-
ities happening on street segments and their adjacent spaces. This process keeps 82,620
unique users and 1,333,390 stays. Through this process, the point-based stays are linked
to street segments. The processed data is then used to represent spatial-temporal patterns
of street activities.

2.3 Point of interest (POI) data
The point of interest (POI) data used in this research is a combination of two major
sources: Reference USA and OpenStreetMaps. Reference USA provides a comprehensive
list of registered businesses located in Boston while contains very little information about
public amenities and outdoor places (e.g., parks). To address this limitation, locations of
public amenities (i.e., kindergarten, schools, colleges, and universities) and outdoor open
spaces (i.e., parks, gardens, and camping sites) are extracted from OpenStreetMaps. We
then use these POI locations as a complement of the business POI data from Reference
USA and compile a complete POI dataset.

3 Methods
3.1 Representation of street activity rhythms
Central to the activity-based classification framework is to represent the spatial-temporal
patterns of street activities for each street segment. Each street segment’s activities are
represented as a time-ordered sequence of 168 hours in a week (i.e., from Monday to Sun-
day). Following previous literature [20, 21], We represent the street activity in 1-hour gran-
ularity. We coded matched street activities into the hour or hours it happened based on
its timestamp and dwelling time, resulting in R[j, τ ], which denotes the total street activ-
ity amount along the segment j during hour τ . To incorporate the underlying impacts of
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occasional fluctuations and construct a more robust longitudinal representation, the 168-
hour activity sequence A[j, τ ] of street segment j on hour τ is calculated using multi-week
activity records. Equation (1) shows the calculating procedure.

A[j, τ ] =
∑K

k=1 R[j, τ ]
K

(j = 1, 2, . . . , J ; τ = 0, 1, . . . , T – 1; k = 1, 2, . . . , K), (1)

where A[j, τ ] denotes the average hourly activity counts during hour τ on street segment j;
R[j, τ ] is the raw hourly activity counts during hour τ for each week. In Eq. (1), J is the total
number of street segments (in this case, J = 18,023); T is the total hours considered in the
pattern representation (in this case, T = 168); and K is the number of weeks aggregated in
our research (in this case, K = 12).

Then, based on the average hourly activity counts generated with Eq. (1), we also con-
struct a volume vector to represent the average weekly total activity volume of street seg-
ment j, given by Eq. (2):

V [j] = log10

(

1 +
T–1∑

t=0

A[j, τ ]

)

(j = 1, 2, . . . , J ; τ = 0, 1, . . . , T – 1), (2)

where A[j, τ ] is the average hourly activity counts during hour τ on street segment j. We
logarithm transform the volume to incorporate the large variations.

3.2 Activity-based street classification framework
Building on early efforts towards understanding urban dynamics, we propose an activity-
based framework to classify street segments. It is based on segments’ street activity
rhythms, namely the average weekly total activity volume V [j] and the average hourly ac-
tivity sequence A[j, τ ].

3.2.1 Activity volume clustering
We first apply an FCM clustering procedure to the volume vector V [j], in order to classify
the segments into C1 volume clusters. In this process, the elbow method is employed to
determine the optimal value of C1, which tests different cluster sizes C1 and compares the
total within-cluster variation.

3.2.2 Activity pattern clustering
As the volume clustering process captures the variations of activity volumes among street
segments, we first normalize A[j, t], the activity sequence, in order to focus on the pattern
dissimilarity of street activities. We then apply a non-negative matrix factorization (NMF)
approach to reduce the dimension of the normalized 168-dimension activity sequence to
make the following clustering process less computationally costly. Finally, an FCM clus-
tering process is applied to identify C2 pattern clusters. We combine the elbow method
and the Silhouette method [31] to determine the optimal C2 value.

Once we obtain the optimal C1 and C2 values for volume clusters and pattern clusters,
we map them and generate a raw matrix of street types, including C1 × C2 final ASTs.
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Figure 2 Identification of volume clusters. Boxplots indicating the distribution of average weekly total activity
volume in the identified four Volume Clusters, where Subdued, Calm,Moderate and Vibrant Clusters are drawn
from left to right

4 Results
In this study we present and test a new street classification framework to explore the un-
derlying rhythms of urban public life. This section elaborates the application of the pro-
posed framework on the case study of Boston.

4.1 Activity volume clustering results
We use the volume vector V [j] to represent the weekly total activity volume of street seg-
ment j in Boston. Through exploratory data analysis, we find that a proportion of street
segments have very low street activity intensity. In order to improve the model robustness,
we group them as the Subdued type. Then, the FCM clustering approach is employed to
identify the volume clusters excluding the Subdued segments. The elbow method helps us
choose 3 as the optimal C1 value (see Appendix Fig. 12).

Figure 2 indicates the identified activity volume clusters, and Fig. 3 shows their spatial
distribution. Subdued segments are mostly small alleys, tunnels and local streets in sub-
urban areas. The Calm type contains the low-volume street segments, which are mainly
located within residential areas. For the Moderate type, most segments are on main streets
in residential areas or on important connecting roads. Lastly, the intensively visited seg-
ments close to the downtown and medical districts belong to the Vibrant cluster.

4.2 Activity pattern clustering results
We apply NMF to the normalized 168-dimension activity sequence and reduce it to 10
dimensions. We identify the optimal dimension candidates with Elbow method as 8, 10
and 12. Then clustering is performed for each candidate and examined by exploring if
the spatial distribution of the clustering result makes sense. We classify street segments
into C2 groups based on their activity patterns. With the elbow method and the Silhouette
methods together, we determine the optimal C2 value as 3 (see Appendix Fig. 13).

Figure 4 shows the average street activities of three pattern clusters. The Work pattern
shows a single daily peak on weekdays and has apparently low values on the weekend. The
Hybrid pattern has two distinguished peaks during weekdays and one peak during the
weekend. Also, a Leisure pattern is characterized by increased activity volumes on Friday
and Saturday with peak hours in the evening.
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Figure 3 Spatial distribution of the volume clusters. The detailed map in each frame shows a zoom-in of
Boston’s downtown area

Figure 4 Identification of pattern clusters. The line graphs show the average street activity rhythms ofWork,
Hybrid, and Leisure pattern clusters

4.3 Resulting ASTs
Each street segment, except the ones in the Subdued type, belongs to one of the vol-
ume clusters, denoted by c1, and one of the pattern clusters, denoted by c2. Pairing them
together, we classify the segments into 10 distinct final ASTs (i.e., Subdued, Hybrid-
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Table 2 Description of resulting ASTs

AST Pedestrian activity rhythms AST
size

Transportation function Adjacent land use

Subdued Low total visit volume and
peak hours at noon everyday

3878 Similar to the overall distribution Nearly 10% more
residential and 10%
less in commercial

Hybrid-Calm Peak hours everyday around
the noon time and evening
with a drop in activity
volumes on Fridays

2575 Similar to the overall distribution Similar to the overall
distribution

Leisure-Calm Peak hours on Friday and
Saturday evenings

1959 More Local, Neighborhood, and
Rural Road

15% more residential
and less commercial

Work-Calm Peak hours in mornings and
afternoons

2860 Slightly bigger proportion of
Secondary and Connecting Road

More residential and
less commercial

Hybrid-Moderate Peak hours on weekday noon
and evening and weekend
noon

2211 Slightly bigger proportion of
Local, Neighborhood, and Rural
Road and less Secondary and
Connecting Road

More commercial and
institutional land use

Leisure-Moderate Peak hours around Friday and
Saturday evenings

1339 Slightly smaller proportion of
Local, Neighborhood, and Rural
Road and more Secondary and
Connecting Road

Less residential and
more commercial

Work-Moderate Peak hours around noon with
a marked drop on weekends

1487 Slightly smaller proportion of
Local, Neighborhood, and Rural
Road and more Secondary and
Connecting Road

Much less residential
and more
commercial,
institutional and
industrial

Hybrid-Vibrant Peak hours in noon with a
drop on weekends

744 15% smaller proportion of Local,
Neighborhood and Rural Road
and 10% more Secondary and
Connecting Road

35% less residential
and much more
commercial,
institutional, and
transportation

Leisure-Vibrant Very high peaks showing at
noon and evening

341 Much Smaller proportion of
Local, Neighborhood, and Rural
Road and more Secondary and
Connecting Road

40% less residential
and much higher
proportion of
transportation,
institutional and
industrial

Work-Vibrant Peak hours in noons and a
drop on weekends

629 Less Local, Neighborhood, and
Rural Roads and more Secondary
and Connecting Road

Much less residential
and more
commercial,
institutional and
transportation

Calm, Leisure-Calm, Work-Calm, Hybrid-Moderate, Leisure-Moderate, Work-Moderate,
Hybrid-Vibrant, Leisure-Vibrant, and Work-Vibrant).

Table 2 summarizes each AST’s size, street activity rhythms, characteristics, transporta-
tion functions (i.e., CFCC), and adjacent land uses. Figures 5 and 6 illustrate the average
street activity rhythms and spatial distribution of ASTs, respectively.

4.4 Case study
Figure 7 shows the ASTs of street segments in three selected Boston neighborhoods:
Downtown, Back Bay, and North End.
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Figure 5 Average street activity rhythms of ASTs

The ASTs implies the following findings. First of all, ASTs show clear spatial heterogene-
ity at the local scale. Street segments that are close to each other can belong to different
ASTs. This indicates diverse street activity rhythms within a small spatial limits. To quan-
tify how street segments’ ASTs are correlated with their locations, we calculate Moran’s I
indices for the volume and pattern clustering results, i.e., Volume Moran’s I and Pattern
Moran’s I. Downtown’s street segments, marked by their substantial variations of activity
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Figure 6 Spatial distribution of ASTs

volumes, have the smallest Volume Moran’s I value among the three neighborhoods. The
small value (0.167) indicates the distribution of volume clusters are the least correlated
with their locations. On the other hand, the clustered Work segments have the highest
Pattern Moran’s I value (0.241) at Downtown Boston.

For the Back Bay area, the relatively regular distribution of activity volume contribute to
the highest Volume Moran’s I (0.368). As one of the main retail clusters in Boston, roughly
half of the street segments belong to the Vibrant types, which are mainly located in the
middle of the neighborhood. In the northern part of Back Bay and on its southern bound-
ary, many street segments in residential areas are classified into the Calm types. On the
other hand, Back Bay’s limited Pattern Moran’s I value (0.107) reflects its heterogeneous
activity pattern types. The North End ranks between these two neighborhoods for both
Volume and Pattern Moran’s I values (0.329 and 0.123, respectively).

Zooming in to the selected street segments in each neighborhood, we find that the ASTs
can help us infer the local functions and street activity types. Segment 3454, located inside
the Boston’s Financial District within Downtown, is classified as a Work-Vibrant type. This
type has high and stable activity volumes during working hours and relatively low volumes
during other periods, including weekends. On the contrary, segment 11292 is located at
the Quincy Market, a well-known shopping and tourism hot-spot in Boston. The high
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Figure 7 ASTs of three example Boston neighborhoods and information of selected street segments,
including Google Street View Images, ASTs, street categories in the functional classification system (i.e., CFCC),
and street categories in contextual classification framework (i.e., land used-based framework)

volume activities in afternoons and weekends result it in the Leisure-Vibrant type. This
inferential capacity is especially helpful for visually similar street segments. For example,
segment 10895, 13698, and 13158 are three visually very similar North End segments.
However, they belong to two different Street Types. This result is reasonably caused by
the physical and social functions of the streets.

In addition, ASTs reveal complementary information for functional and contextual
frameworks. First, segments within the same functional and contextual categories can
show distinct activity patterns. For example, segment 3454 and 17723 in Downtown
Boston are in the same functional (i.e., Local Road) and contextual categories (i.e., Com-
mercial). However, 3454 belongs to Work-Vibrant while 17723 is a Hybrid-Vibrant seg-
ment. This is possibly due to the stores and restaurants on 17223 which contributed cer-
tain street activity during the day.

Second, functionally or contextually distinct street segments can share similar street ac-
tivity patterns and are classified into the same AST. For example, segment 11292 in Down-
town and 4889 in Back Bay are in different functional street categories (i.e., Other Road
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for 11292 and Local Road for 4889), but both belong to the Leisure-Vibrant type in the
AST framework. Both street segments feature highly vibrant commercial activity: 11292
is located in the Quincy Market and 4889 is a part of the Newbury Street. Their simi-
lar social function might explain why they are classified into the same AST. These results
show that the proposed AST framework can capture information that is missing in exist-
ing street classification frameworks and add a layer of granularity to the understanding of
pedestrians’ usage of streets.

5 Discussion
5.1 A comparison between ASTs and functional street categories
We compare the ASTs of Boston’s street segments with the aforementioned functional
street categories indicated by CFCC. We adopt the normalized mutual information (NMI)
[32] index, which evaluates information partitioning, to quantitatively compare street cat-
egories in these two classification frameworks. NMI score ranges from 0 to 1, where 0
represents partitions are completely different and 1 represents perfect overlap between
partitions. The NMI score between CFCC and ASTs is 0.008, indicating little correlation
between two categories. Figure 8 shows that the commonly used functional street cate-
gories do not provide adequate information for the AST results. As the largest functional
category, “Local, Neighborhood, and Rural Road” contains more than half of the street
segments, and they distribute roughly equally amongst the 10 ASTs. It reveals that, even
though the functional street type denotes the street’s (or the street segment’s) role in ur-
ban transportation systems, it does not necessarily illustrate how individuals, especially
pedestrians, use that street.

Figure 8 The comparison between functional street types (on the left side) and AST results (on the right side)
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5.2 A comparison between ASTs and contextual street categories
As one of the mainstream contextual classification systems, land use-based classification
framework has been applied in many practices. For example, Boston employed the land
use-based classification framework in designing its Complete Streets: Design Guidelines.
In this section, we investigate the question of how much the adjacent land use of a street
segment can explain the variation of its street activity rhythms.

Boston outlines nine contextual street types (e.g., Downtown Commercial, Neighbor-
hood Main Street, and Shared Streets) but provides only few examples associated with
each street type. We then represent the contextual street category of each street segment
by its adjacent land use (e.g., residential, commercial, and institutional), in order to have
a larger sample to investigate. The NMI index between land use types and ASTs is 0.04,
representing a slightly greater overlap. Figure 9 summarizes the comparison between seg-
ments’ contextual categories and their ASTs. As shown, land uses carry more information
about streets’ social functions than functional street categories. For example, most of the
“residential” street segments are classified into the Calm and Moderate types, which have
relatively low and medium activity intensity. Moreover, roughly half of the “commercial”
street segments belong to the Vibrant types. It is also worth mentioning that a large pro-
portion of “natural” street segments are in the Subdued type, which shows a pattern with
low activity volume, indicating that these street segments are less used by pedestrians than
others.

Nevertheless, certain information regarding street activities can not be explained by
adjacent land uses. Although many “commercial” street segments belong to the Vibrant
ASTs, another half of these segments are classified into the Calm and Moderate ASTs. It

Figure 9 The comparison between land use-based street types (on the left side) and AST results (on the right
side)
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entails that spatial proximity to commercial land-use cannot guarantee a vibrancy. To il-
lustrate this with a toy example, one street segment next to an office building with ground
floor commerce might have a distinct activity pattern than another segment next to a large
shopping mall, or from a third segment where a few popular restaurants and bars are lo-
cated.

5.3 A comparison between ASTs and POI-based street classification framework
This section explores whether POIs associated with street segments are informative for
street activities. Seven types of POIs are included as they potentially contribute to pedes-
trian visits: Accommodation, Civil and Social Service, Education, Open Space, Restaurant
and Bar, Retail, and Sports. POI points are then matched with their nearest street seg-
ments. Among Boston’s 18,023 street segments, 2127 segments have matched POIs. We
apply a simple hierarchical clustering procedure to find representative POI patterns of the
matched segments. The dominant POI type is used to name these clusters. If more than
one dominant POI type is present, we combine POI types and name them accordingly. As
a result, we find seven POI based street segment categories: Retail, Retail and Restaurant,
Accommodation and Retail, Accommodation and Restaurant, Education, Civil and Social
Service, and Open Space.

The small value (0.03) of NMI score indicates limited correlation between POI based
category and ASTs. Figure 10 shows the comparison of POI-based segment categories
and ASTs for the 2127 street segments. Similar to adjacent land uses, POIs are able to rep-
resent some street activities. For example, “Open Space” segments are mainly associated
with Moderate ASTs. Most of Accommodation and Retail segments belong to Vibrant
ASTs. However, while most streets are classified into Retail and Restaurant, it occupies a

Figure 10 The comparison between POI-based street types (on the left side) and AST results (on the right
side)
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relatively similar proportion in all ASTs. This fact limits the POI-based framework’s pre-
dicting power of street activity rhythms, even in this very selected sample.

5.4 Street classification as representation of street activities
As representation of the streets’ dynamics, the ASTs can be related to different urban
planning topics that are closely related to human activities. In this section, we show the
potential of street classifications as representations of street activities. More specifically,
we use regression model as a tool to show the potential of street classification in quanti-
fying the variability of crime across areas.

We obtain crime data from the Boston Police Department,2 which includes the time,
location and category of reported crimes. To make sure the crime data aligns with our
research scope, we selected crimes categories including robbery and assault, which are
more related to street activities or happening on streets. The crime dates range from Jan
1, 2018 to Oct 3, 2018. Then, we aggregate these crime incident reports to their nearest
street segments (within a 50-meter threshold) for further investigations. As a result, 5835
streets with 18,167 crime is used.

To understand the relationship between street AST and crime, we apply random for-
est regressors to predict crime count and crime density with our ASTs. By dividing the
crime count of each street segment by weekly total activity volumes, we calculate crime
count per activity as a proxy for crime density. Table 3 illustrates summary statistics about
crime count and density per street segment. Furthermore, we compare the performance
of prediction among ASTs, functional street categories and contextual categories. We im-
plement the random forest regressor with following parameters: number of trees is 10,
max depth is 3. The prediction is evaluated with Root Mean Square Error (RMSE), which
measures the performance on the absolute number.

The prediction result is shown in Table 4. We can see that for both crime count and crime
density prediction, ASTs achieve better performance over functional and contextual clas-
sifications. This shows that our classification framework is able to reveal more information
about the streets compared to traditional classifications. The results also point to the po-
tential of using ASTs to understand street dynamics and extending to other applications
such as garbage collecting route planning, dynamic curb usage and crowd management.

Table 3 Summary of crime count and density per street segment

Min Median Mean Max

Crime Count 1.0 2.0 3.16 56.0
Crime Density 0.0001 0.048 0.167 17.0

Table 4 Prediction performance (RMSE)

Crime count Crime density

AST 4.144 0.481
Functional Category 4.265 0.521
Contextual Category 4.242 0.522

2https://data.boston.gov/dataset/crime-incident-reports-august-2015-to-datesource-new-system

https://data.boston.gov/dataset/crime-incident-reports-august-2015-to-datesource-new-system
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Figure 11 Scatter plot of unweighted and weighted activity count for each street at each hour

5.5 Limitation
Our study has several limitations. First, the data contains the Christmas period of 2017,
which might impact the street activities. We remove the data for December 24, 2017, and
re-run the whole analysis to explore such effects. Results show that for Subdued, Mod-
erate, and Vibrant ASTs, more than 90% of the streets are classified as the same type.
For Calm streets, about 75% of the street stay the same. It is worth mentioning that the
Christmas period also helps our model capture the characteristics of the streets. For ex-
ample, increasing street activity volumes indicates that such streets are related to holiday
activities. In the future work, we will extend the data coverage periods to capture more
completed pictures of street activity patterns.

Second limitation of our study is that the data involved only covers a sample of the pop-
ulation. Therefore, to test the representatives of our data, we apply a weighting method
(post-stratification) [33] which is calculated based on the ratio of recorded users to the true
population in the census block group. We calculated the weighted activity count for each
street at each hour. Figure 11 shows how activity count changes after post-stratification.
Results before and after weighting have a Pearson’s correlation of around 0.96. This shows
that our data is able to represent the population to a large extent.

6 Conclusion and future work
The contributions of this research are twofold. First, from a methodological perspective,
we propose an activity-based street classification framework that emphasizes street seg-
ments’ social functions, denoted by street activity rhythms. Inspecting street activities is
made possible by using large-scale anonymized and aggregated GPS mobility data. Sec-
ond, we represent the temporal patterns of street activities as longitudinal activity se-
quences. Based on the structure of these sequences, we classify street segments with dis-
tinct activity volume and pattern characteristics. While many efforts have been made to
identify latent patterns in cities, this study is one of the first ones focusing on street or
street segment scales, a finer-grained scale.

The empirical contribution of this work emerges from the large-scale application of the
framework to Boston’s street segments. In this case study, we identified 10 ASTs street
segments with distinct street activity patterns. We find that our proposed approach can
highlight street activities that are overlooked in existing frameworks. This finding has im-
portant implications for finer-grained urban policymaking and governance, especially for
the successful design and management of “Complete Streets.” Although many large cities
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have advocated the concept of “Complete Street” and proposed new street classification
systems to support the street design, most of these systems are incomplete or hard to scale.
By applying the proposed framework on street segments, we present an understanding of
the sidewalk spaces from the pedestrian perspectives.

Finally, this research also suggests a path for future investigations of street dynamics.
We suggest an investigation of street activity patterns of different temporal units. As one
of the most dynamic procedures happening in urban spaces, patterns of street activities
can evolve across hours, days, weeks, months, seasons, and years. An investigation of the
effect of time may be of interest. Meanwhile, we think it would be beneficial to compare
ASTs with street classifications extracted from other types of behavior data sets, for ex-
ample, geo-tagged social media data and urban sensing data. Also, street activities can
be sensitive to a broad branch of physical and social factors, such as opening or closing
new stores, renovation of urban parks, and election activities. In the context of early 2021,
policies and regulations in the context of COVID-19 profoundly changed how people use
streets. An in-depth study of these factors and the change of street activity patterns and
corresponding ASTs can be valuable.

Appendix
The crime data is downloaded from Boston Police Department (BPD).3 Each crime record
contains latitude, longitude, street name, crime type by offense code, and date. We only
consider the outdoor violent crimes happened in 2018. Detailed categories of selected
crimes are listed in Table 5.

Table 5 Summary statistics for selected crime events in the study area

Offense code group Offense description Count

Aggravated Assault ASSAULT & BATTERY D/W – KNIFE 2
Aggravated Assault ASSAULT & BATTERY D/W – OTHER 5
Aggravated Assault ASSAULT & BATTERY D/W – OTHER ON POLICE OFFICER 1
Aggravated Assault ASSAULT – AGGRAVATED 2561
Aggravated Assault ASSAULT – AGGRAVATED – BATTERY 4211
Robbery ROBBERY – STREET 2333
Robbery ROBBERY – UNARMED – STREET 5
Simple Assault ASSAULT & BATTERY 3
Simple Assault ASSAULT – SIMPLE 844
Simple Assault ASSAULT SIMPLE – BATTERY 13,073

3https://data.boston.gov/dataset/crime-incident-reports-august-2015-to-date-source-new-system

https://data.boston.gov/dataset/crime-incident-reports-august-2015-to-date-source-new-system
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Table 6 Street segment selection based on the Census Feature Class Codes (CFCC)

Census Feature Class Codes (CFCC) Select or
not for this
research

A15 Primary road with limited access or interstate highway, separated No

A21 Primary road without limited access, US highways, unseparated Yes
A25 Primary road without limited access, US highways, separated Yes

A30 Secondary and connecting road, state highways Yes
A31 Secondary and connecting road, state highways, unseparated Yes
A35 Secondary and connecting road, state highways, separated Yes

A40 Local, neighborhood, and rural road, city street Yes
A41 Local, neighborhood, and rural road, city street, unseparated Yes
A45 Local, neighborhood, and rural road, city street, separated Yes

A60 Special road feature, major category used when the minor category could not be determined No
A61 Cul-de-sac, the closed end of a road that forms a loop or turn-around Yes
A62 Traffic circle, the portion of a road or intersection of roads forming a roundabout No
A63 Access ramp, the portion of a road that forms a cloverleaf or limited-access interchange No
A64 Service drive, the road or portion of a road that provides access to businesses, facilities, and rest
areas along a limited-access highway; this frontage road may intersect other roads and be named

No

A70 Other thoroughfare, major category used when the minor category could not be determined Yes
A71 Walkway or trail for pedestrians, usually unnamed Yes
A72 Stairway, stepped road for pedestrians, usually unnamed Yes
A73 Alley, road for service vehicles, usually unnamed, located at the rear of buildings and property Yes
A74 Driveway or service road, usually privately owned and unnamed, used as access to residences,
trailer parks, and apartment complexes, or as access to logging areas, oil rigs, ranches, farms, and
park lands

No

Figure 12 Elbow method to choose best c for volume clustering, we choose c = 3 where the elbow of the
curve happens
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Figure 13 Methods to choose best c for pattern clustering, on left plot, elbow of the curve happens at c = 3
and 5, on right plot, the clustering achieves highest average silhouette score at c = 3. Combining two plots
together, we choose c = 3 as the best cluster number for pattern clustering
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