Hilman et al. EPJ Data Science

https://doi.org/10.1140/epjds/s13688-022-00341-x

.0rg
B,

(2022) 1132 ® EPJ Data Science

a SpringerOpen Journal

REGULAR ARTICLE Open Access

Socioeconomic biases in urban mixing

®

Check for
updates

patterns of US metropolitan areas

Rafiazka Millanida Hilman', Gerardo Iniguez'** and Méarton Karsai'*"

“Correspondence: karsaim@ceu.edu
'Department of Network and Data
Science, Central European
University, 1100 Vienna, Austria
4Alfréd Rényi Institute of
Mathematics, 1053 Budapest,
Hungary

Full list of author information is
available at the end of the article

@ Springer

Abstract

Urban areas serve as melting pots of people with diverse socioeconomic
backgrounds, who may not only be segregated but have characteristic mobility
patterns in the city. While mobility is driven by individual needs and preferences, the
specific choice of venues to visit is usually constrained by the socioeconomic status of
people. The complex interplay between people and places they visit, given their
personal attributes and homophily leaning, is a key mechanism behind the
emergence of socioeconomic stratification patterns ultimately leading to urban
segregation at large. Here we investigate mixing patterns of mobility in the twenty
largest cities of the United States by coupling individual check-in data from the social
location platform Foursquare with census information from the American Community
Survey. We find strong signs of stratification indicating that people mostly visit places
in their own socioeconomic class, occasionally visiting locations from higher classes.
The intensity of this ‘'upwards bias’ increases with socioeconomic status and correlates
with standard measures of racial residential segregation. Our results suggest an even
stronger socioeconomic segregation in individual mobility than one would expect
from system-level distributions, shedding further light on uneven mobility mixing
patterns in cities.

Keywords: Segregation in mobility; Urban mixing; Socioeconomic inequalities

1 Introduction

Patterns of socioeconomic inequality can be found everywhere in a modern city. Large
variations in earned income leading to uneven access to services, healthcare and educa-
tion [1, 2], as well as spatial and housing segregation [3, 4], are just two of the most drastic
examples of socioeconomic disparity. Less studied is the segregation related to mobility
mixing, where people from different socioeconomic classes encounter each other less of-
ten than what is potentially allowed by the city fabric [5-7].

Big data presents a unique opportunity to analyse the role of human mobility in segre-
gation, from the level of individuals to the scale of societies. Digital data tracing human
movements in cities ranges from mobile call detail records (CDRs) [8, 9] and GPS trajec-
tories [10-12], to location-sharing services (LSS) and check-in sequences on social media
platforms [13—15]. The analysis of these data sources, providing anonymised individual
trajectories with unprecedented spatiotemporal resolution, has proven essential for our
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growing understanding of the underlying mechanisms of human mobility [16-19], and
the associated ability to predict future trajectories [20, 21]. It also offers the possibility to
engage in a more comprehensive and nuanced exploration of urban socioeconomic seg-
regation, by combining high-dimensional mobility data with information on the socioe-
conomic traits of individuals [5, 22, 23].

Earlier studies on human mobility present evidence of characteristic spatial scales
[8,9, 16, 19], as well as a correlation between human spatial behaviour and socioeconomic
dynamics [24—26]. Rather than being homogeneously mixed, human mobility (as repre-
sented by daily individual trajectories throughout urban spaces) is strongly influenced by
socioeconomic preferences. People sharing socioeconomic backgrounds are more likely
to visit similar places within their class range and interact amongst themselves [27-30],
thus generating stratified mobility and social network patterns. In the presence of ho-
mophily mixing [31], spatial exploration is dictated by one’s socioeconomic class, reduc-
ing the number of visits to locations with different economic status, and thus inducing
highly predictable trajectories. However, when people aspire to diversify their experiences
by, e.g., visiting lavish areas of the city, where they have never been able go before, the
potential for an upwards bias in visiting patterns appears. Meanwhile, other has studied
the effects of segregation of mixing in urban places using location data to detect explo-
ration/exploitation behavioural patterns and their correlations with socioeconomic status
[32].

Homophily mixing is not the only mechanism influencing mobility patterns. The vari-
ability of socioeconomic traits such as ethnic group, education level, occupation sector,
etc. also constrains the possibility of movement in urban spaces via residential segrega-
tion [3, 4, 33, 34], where people with similar backgrounds live next to each other and form
fragmented areas in the city. Given the potentially complex interplay between human mo-
bility and socioeconomic stratification, it is worth asking whether the presence of biased
mobility across tracts of some socioeconomic trait is associated with lower residential seg-
regation. This is particularly relevant given the number of studies reporting mobility as a
key pillar in diminishing segregated spaces among people from diverse groups in society
[35-38]. People show heterogeneity in many aspects, including their mobility characteris-
tics and socioeconomic capacities, which shape their patterns of movement across urban
space.

In related studies, Dong and others [5] investigate segregation in economic and social
interactions by using credit card transactions and Twitter data. They find that segregation
increases with difference in socio-economic status but is asymmetric for purchase activ-
ity. Meanwhile, neighbourhood isolation has been used [29] to observe travel patterns of
individuals extracted from Twitter data. These findings show racial differences in the com-
position of the neighbourhoods visited. Black and Hispanic neighbourhoods, regardless
of their socioeconomic status, are less exposed than white neighbourhoods. Moreover,
white poor neighbourhoods are substantially isolated from non-poor white neighbour-
hoods. Morales et al. [30] aim to investigate polarization in shopping, communication, and
mobility reflected by online interaction in Twitter. It confirms the theoretical underpin-
ning in which within-group homogenization and between-group differentiation promote
social fragmentation. They provide in-depth assessment on polarization of conversations
between neighbourhoods and show that the differentiation of online conversations reflects
the distribution of wealth.
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Build on these results, our study is dedicated to reveal the role of visit preference in mo-
bility bias across socioeconomic status at the individual and class levels. We specifically
analyse the extent to which mobility may contribute to the emergence of socioeconomic
stratification, ultimately leading to urban segregation at large. The scope of our discus-
sion is concentrating on visit preference to detect generic patterns where ‘upwards bias’
increases with socioeconomic status. Additional investigation on ethnic isolation aims to
instantiate the entanglement between characteristics and mobility patterns with other so-
cioeconomic features, such as ethnic residential distribution.

In this study, we emphasise the need to query the extent to which behavioural segre-
gation (bias in mobility) is related to residential segregation. We take a step forward in
the current analysis of segregation in mobility by asking the following question: How do
socioeconomic attributes and geographic constraints affect the spatiotemporal process of
individuals moving in urban spaces? To answer this question, we analyse individual check-
in trajectories in the twenty largest cities of the United States, coupled with detailed so-
cioeconomic maps indicating the economic status of people and places they visit. After a
short data description, in the following we will introduce stratification matrix measures
and individual- and class-level mobility bias scores to quantify patterns of mobility segre-
gation, visiting biases, and their variation across cities with wide-ranging socioeconomic
and ethnics segregation profiles. We base our analysis on observational behavioural data,
which may not be fully representative for the observed populations. To address this short-
coming we carry out a careful analysis about the biases and confounding effects character-
ising the analysed data set. While the results of this analysis are reported in the discussion
and the Supplementary Material of this paper, they confirm the robustness of upward bi-
ased visiting patterns of people to places in cities with various socioeconomic stratification
profiles.

2 Data description

In order to simultaneously capture the mobility patterns and socioeconomic status of peo-
ple, we concentrate on two independent sources (mobility and socioeconomic data, de-
scribed below) and combine them using spatial information.

Mobility data: To construct individual mobility trajectories, we analyse a large, open
Foursquare dataset [39], which records how people move from one place to another.
Data comes as a sequence of user check-ins to places, or points of interest (POls), thus
providing information on mobility trajectories of individuals and visiting frequencies of
places. This dataset is not collected directly through the Foursquare open API, but from
Foursquare check-ins via Twitter. The crawling method corresponds to 18 months (549
days) of observations between April 2012 and September 2013 for users with Foursquare-
tagged tweets. Using this mobility data, constituted by roughly 26,502 people with nearly
1,830,276 check-ins, we concentrate only on active users (who checked-in from at least two
different places during the observation period). Focusing on the 20 largest metropolitan
areas in the US, we also infer the home locations of 26,502 users following a conventional
pipeline of conditions [40] [for a detailed description of the method and a statistical sum-
mary see Additional file 1, Section A]. The Foursquare dataset is not a uniform sample
of the population, and as such, it may introduce bias in our analysis of mobility patterns.
However, we expect that aggregation and averaging, as well as the length of the observa-
tion period (beyond yearly seasonality), decreases this potential for bias. In any case, in
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Figure 1 Mobility and socioeconomic data combination pipeline. (left) Overview of data sources, data
processing pipelines and data combination steps to obtain data for the analysis of socioeconomic
segregation in spatiotemporal urban mobility. (right) As a result we obtain a bipartite network, with nodes
classified into two sets comprising individuals u and POIs p. Each node in both types is labelled by a
socioeconomic indicator (cy and ¢p) assigned via our location-based method on the census tract level.
Weighted edges between individuals and POls indicate the frequency of visits of a given user to a given place

the Supplementary Material we estimate discrepancies between Foursquare data and the
real population via a bootstrapping analysis (Additional file 1, Section A), a Kruskal-Wallis
H test, and a Dunn’s test (Additional file 1, Section H).

Socioeconomic data: To estimate the socioeconomic status of people and places, we rely
on the 2012 American Community Survey (ACS) [41] (recorded in the year matching the
closest to the Foursquare observation period). After identifying the corresponding ACS
census tract where a user’s home location lies, we associate the socioeconomic indicators
of this location to the individual. In order to estimate the economic status of a place, we
follow a similar strategy and assign local socioeconomic status indicators to POIs based
on their locations. Although the socioeconomic status of venues could arguably be better
estimated from their pricing, this information is at present not available to us. Thus, we
assume that the socioeconomic status (SES) of people living at a location is well correlated
with the pricing of venues in the same neighbourhood and offered services around (for a
summary of our data construction pipeline see Fig. 1).

In order to obtain a proper representation of socioeconomic status in the context of
segregation, we consider 78 features from the ACS data. Although such a large number
of dimensions in principle provides a rich way of quantifying the socioeconomic status of
locations (and people living there), it turns out these variables have high redundancy. We
perform a principal component analysis to identify the most relevant ones and find that
income features (11 variables) have the largest loading, accounting for most of the socioe-
conomic variance between places. After implementing three different techniques (mutual
information rank [42], decision tree [43], and Gini coefficient [44]), per capita income con-
sistently stands out as the best indicator of individual SES: It accounts for the largest vari-
ance and it correlates strongly with other income variables such as earning/wage, wealth,
and supplementary source of income (for more details on this analysis see Additional file 1,
Section A). By using the average per capita income as the socioeconomic indicator of ac-
tive users living in a given tract, we sort them in an ascending order. To group them into
distinct socioeconomic classes, we then segment this sorted list into 10 equally popu-

lated groups with people of the lowest income in class 1 and highest income in class 10.
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By means of this procedure we assign a socioeconomic class ¢;; to each user. In identical

fashion, each venue is assigned a value cp.

3 Results

Our main scientific goal is to study socioeconomic segregation and biases in population
mixing in cities by observing correlation patterns between the SES of people and places
they visit. Using the collected data, this objective can be addressed by building a network
of individuals visiting places. We define a stratified bipartite network G = (U, P, E), where
individual # is a node in set U, and place p belongs to set P (with U N P = ). People
and places are connected by edges e, , € E with weights w,,, coding the number of times
person u visited place p (see Fig. 1). Further, we stratify U into a set of socioeconomic
classes indexed by values from Cy; thus assigning a class membership ¢, = i € Cy; to each
individual.

In the same way we define ¢, = j € Cp classes for places. This network representation
captures all information about the socioeconomically stratified visiting patterns of people
to venues, coding their possible encounters and giving an aggregated description of the
potential mixing patterns of people of different socioeconomic classes.

3.1 Matrix measures

Based on the bipartite network representation we can measure the frequency at which
people of a given class visit places in different classes. To summarise these visiting patterns
we use stratification matrices [23]. An empirical stratification matrix gives the probability
that a person u € U from a given socioeconomic class ¢, = i € Cy; visits a place p € P

belonging to a class ¢, = j € Cp. More formally:

B Dl Zp,cp:/ Wup
Z'ecp Zu,cu=i Zp,c =i Wup ’
] p=]

M;; (1)

where the numerator counts the number of times people from class i visit places of class
j, and the denominator normalises this frequency matrix column-wise to obtain a visiting
probability distribution for each individual class i € Cy;. Such matrices are shown in Fig. 2
for selected cities (Houston, New York and San Diego). The dominant diagonal elements
for Houston and San Diego indicate strongly stratified visiting patterns in these cities.
People prefer to visit places of their own or similar socioeconomic class, rather than places
from remote classes. Interestingly, for New York this pattern is less evident suggesting
weaker socioeconomic preferences in visiting venues.

To decide if these patterns appear as the consequence of population statistics or other
confounding effects, we compare the matrix M;; to a reference matrix, which measures
similar stratification patterns in a system where visiting patterns appear uniformly at ran-
dom with certain constraints. This randomised stratification matrix is defined through a
random rewiring process of the bipartite network, while constraining the total number
and frequency of visits of each individual (i.e. their activity and link weights), the class of
individuals and places, but fully randomising links between individuals and visited places
otherwise. The randomisation is performed by selecting randomly for each link of an indi-
vidual u a place to visit from the set of places ever visited by their respected socioeconomic
classes ¢,, while keeping the link weight intact. This in-class randomisation allows us to
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Figure 2 Socioeconomic stratification matrices. (top) Empirical stratification matrices M;;, showing the
probabilities that individuals from a given class visit to places of different classes. The darker colour shades of
bins represent larger visiting probability. Matrices of Houston (Fig. 2(a)), New York (Fig. 2(b)) and San Diego
(Fig. 2(0)) all show strong stratification patterns, indicating that people tend to visit most likely places with
similar status. The normalised stratification matrices Nj;, defined as the fraction of the empirical and
randomised stratification matrices. After normalisation, such stratification pattern becomes less evident for
New York (Fig. 2(e)) and San Diego (Fig. 2(f)) but quite persistent in Houston (Fig. 2(d)). Similar matrices
computed for other urban areas are available in Additional file 1, Section B. (bottom) Mean of matrix element
N;;, computed separately for the upper, lower, and main diagonals. Among 20 urban areas, 12 of them
(including Houston) have higher mean values for upper diagonal elements, indicating dominant upward
visiting biases. In contrast, we see dominant downward visiting biases in San Diego, while mean values of
upper and lower diagonal elements are almost indistinguishable in New York (respectively 0.932 and 0.945)

compare an individual’s behaviour to similar others, meanwhile distinguishing between
socioeconomic classes, which potentially are characterised by very different visiting pat-
terns.

After generating randomised bipartite networks via 100 independent realisations, we
compute a similar column-wise normalised stratification matrix R;;, representing the
probability of people from class ¢; randomly visiting to places of class c,. To finally obtain
whether the empirical mobility patterns appear more frequently than by chance, we com-
pare the empirical and the preference-based null model matrices. We obtain a normalised

stratification matrix N;; by taking the element-by-element fraction of the empirical and

Page 6 of 18
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random contact matrices as:

M;;
Nij=—. (2)
Rij
Each element in the matrix N;;, which are Nj; > 1 (red bins in Fig. 2(d)—(f)) indicates that
the visits made by individuals from class i € Cy; to place of class j € Cp appeared with
higher probability in the empirical observations than it was expected from the random
null model.

Otherwise, the blue blocks for N;; < 1 show that the corresponding visits appeared with a
smaller probability than expected by chance. In cases red bins dominate the diagonal of the
normalised matrix N, it indicates patterns of socioeconomic stratification, where peo-
ple prefer to visit places of similar socioeconomic status as their own, rather than places,
which are richer or poorer than them. This is the case of Houston and San Diego (see
Fig. 2(d) and (f) respectively) and many other cities listed in Additional file 1, Section B.
However, this character is less evident for New York (see Fig. 2(e)), where despite known
strong residential segregation, the city fabric mitigates a more homogeneous mixing of
people.

These normalised stratification matrices reveal further characters of possible biases of
people in choosing places to visit, out of their own class. If in a city people exhibit upward
visiting biases, thus they tend to choose more expensive places to visit when they step out
of their own class, the upper diagonal matrix elements of N;; would appear dominantly
red. While, if the opposite is true, the lower diagonal elements would reflect similar but
downward visiting biases. To simply quantify these patterns, we compute the average val-
ues N;; elements of normalised stratification matrix of cities above, at, and under their
diagonals. From Fig. 2(g) it is clear that, in all cities, diagonal elements dominantly con-
centrate visiting probabilities. However, in terms of off-diagonal averages, in most of the
cities (like in Houston in Fig. 2(d)) the upper diagonal average takes a larger value as com-
pared to the lower diagonal average, indicating present upward visiting biases in these
metropolitan areas. Meanwhile, in some cases the contrary is true (like in San Diego in
Fig. 2(f)) or in some cities these averages are very similar thus indicating no dominant
upward or downward visiting biases, as in case of New York (see Fig. 2(e) and Fig. 2(g)).

3.2 Individual bias
The matrix measures presented in Fig. 2 reflect the coexistent socioeconomic configura-
tions derived from visit trajectories. Firstly, the empirical stratification matrices M;; bring
an initial indication of homophily mixing as seen in the dominant frequency visit within
own class. Secondly, these results reveal the underlying inclination in visiting places sit-
uated in higher SES as depicted by the larger proportion of upper diagonal elements in
the normalised stratification matrices N;; in most of the cities. Taking these two config-
urations into account, it can be inferred that while individual mobility is dictated by the
membership of socioeconomic class most of the time, the embedded motivation to visit
upper class places is still present.

We take a technical step ahead in order to adequately quantify this visiting bias that
indicates deviations in mixing from the respected c, socioeconomic class of an individual.

We compute a single empirical individual bias score for each individual u € U as

B, = (Cp)u — Cu, (3)
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2 pep WupXcp . . . e qels .
where (c,), = ”ET'M is the average socioeconomic status of places an individual u vis-

ited, defined as the fraction of the Zp

the trajectory of individual « and the 1, = Zp op

<p Wup X ¢, sum of socioeconomic status of places in
Wy, number of times individual # visited
any places. An individual has upward visiting bias if her individual score B, is positive,
meaning that she tends to visit places located in more affluent areas than where she lives.
Secondly, an individual with negative score value has downward visiting bias since places
she usually visits are situated in lower socioeconomic class than her own. Otherwise, an
individual does not have any indication of bias (B, = 0) if she visits places within her own
socioeconomic rank. A reference model for this measure can follow a similar logic as the
in-class randomisation for the realisations of network reference models explained before.
Given the individual trajectory resulted from the random visit generating process, we cal-
culated a randomised individual bias score using the same formula as in Eq. (3). Note that
in this measure boundary effects may appear, as people from the poorest class cannot ex-
hibit downward bias, and similarly, the highest class cannot be upward biased. Individual
bias scores can be fairly compared to null models, which retain these boundary effects. In-
class randomisation fulfils this requirement, providing an average randomised bias score
(Bndy, for each individual separately. Note, that the randomised individual bias scores
take non-trivial values, different from zero, due to the individual variance of visiting fre-
quencies of individuals to different places. These are represented by the weights w, , in
the bipartite network, which are preserved during the randomisation process.

The comparison of the empirical and in-class normalised individual bias scores can be

best quantified by an individual bias z-score as

Y — <Brand>u

B
ZE” = prand 4 (4)
Uu

where (B, is the mean and o,fmnd is the standard deviation of the randomised indi-
vidual bias scores across 100 independent realisations of the null model. The value of Z5«
reflects how much the individual bias deviates from the expected bias for an individual
who chooses places to visit with the same frequency as before but selects them from a
given set of places dictated by others within the same socioeconomic class.

The class distributions of individual z-scores together with their median values are
shown in Fig. 3, where the unbiased level is assigned as a flat red line. These distributions

@, Houston ® New York ©  San Diego
. 2
Qs L]
N g ollo]|® oll® Ole
() . © of|®
1Y ) e
o HID 5 e
(%] L]
9 -17e
N2
-3 -
12345678910 12345678910 12345678910
SES People i SES People | SES People /

Figure 3 Individual Bias z-score ZEUA Class level distributions and their median values are shown for each
socioeconomic class in Houston (Fig. 3(a)), New York (Fig. 3(b)) and San Diego (Fig. 3(c)). The overall increasing
trend of medians (blue dots) indicates that people from lower classes are less biased than expected, while the
contrary is true for others from higher classes. Solid red line indicates the fully unbiased case. For results on
other cities see Section C and Fig. 7 in the Additional file 1
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appear broad for each class, indicating that actually people from any class exhibit upward
or downward biases in terms of their visiting patterns to other socioeconomic classes.
Interestingly, the median z-scores indicate an increasing trend in all the three depicted
cities. The people from lower classes appear with slightly negative bias z-score, mean-
ing they have a slightly weaker bias to visit places of different socioeconomic classes than
expected from their random visiting patterns. In contrary, the middle and upper classes
are evidently biased stronger than expected. This increasing trend of the median of the
individual bias z-score with socioeconomic classes surprisingly characterises all the in-
vestigated cities as shown in Section C and in Fig. 8 in the Additional file 1.

3.3 Class-level bias

The individual bias score B, compares the average class of visited places of an individual
to its own socioeconomic rank inferred from its home location. Meanwhile, its z-score
zP« indicates if this individual bias is weaker or stronger than expected from random be-
haviour. However, this measure is using the class label of the individual as a reference of
comparison, and it says less about whether an individual visits higher or lower class places
as compared to the random expected behaviour characterising other individuals in its own

class. To directly measure this effect we introduce a class level z-score measure

_ rand
£ = (cphu (Cp)gu ’ (5)

u
O-crand
u

rand

where (c,), is the average socioeconomic status of places individual u visited, and (c,);>

and acr:“d are the average and standard deviation (respectively) of class of places that others
from class ¢, would visit if behave randomly. This reference measure, just like before, is
generated by in-class shuffling to obtain null models over 100 realisations. The value of
z: reflects directly how much the individual behaviour deviates from the expected level,
when the individual could choose randomly places to visit from a given set dictated by
others from the same socioeconomic class.

Results in Fig. 4 show a different behaviour as compared to the individual bias scores.
In case of New York (see Fig. 4(b)), the distributions of the class level bias z-scores indi-
cate that, although the variation is large in each socioeconomic classes, the medians of

these distributions are all slightly positive and independent of the socioeconomic class.

O
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Figure 4 Class-level Bias z-score z;. Distribution of class-level biased z-scores as the function of
socioeconomic classes. Distributions are shown for each socioeconomic class with their median values as
blue points for Houston (Fig. 4(a)), New York (Fig. 4(b)), and San Diego (Fig. 4(c)). Z-score values corresponding
to unbiased cases are shown with red solid lines. Positive z-score values signal an upward visiting bias
characterising each city. For results on other cities see Section C and Fig. 8 in the Additional file 1
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This signals a weak upward bias in people’s visiting patterns in New York as compared to
the class behaviour that appears for each class. In other cities, we find several other bias
patterns during our analysis (see Additional file 1, Section C Fig. 10). In case of San Diego
(in Fig. 4(c)) class-level biases are all positive and evidently increasing with the socioeco-
nomic classes. This suggests that richer people in San Diego may visit even more affluent
places, than one would expect from their random class behaviour. Somewhat the opposite
trend can be observed for Houston (Fig. 4(a)), where although the class-level bias z-score
is always positive and indicates upward bias for each class, it seems to follow an overall
decreasing trend.

Visiting patterns measured by the class-level bias scores suggest that an upward socioe-
conomic bias characterise each cities we study. Although these measures incorporate the
visiting frequency distribution of individuals, they do not show evidently that upward bi-
ases typically appear due to repeated visits to places with higher class scores, or due to
several occasional visits to places out of ones socioeconomic classes. To answer this ques-
tion, we recompute the median bias scores, excluding places which were visited less num-
ber of times by an individual than a given threshold. Results are depicted in Fig. 5 for
each city. As expected, the median class-level bias score appears as a decreasing function
of the frequency threshold in each city. This suggests that people visit more frequently
places, which are closer in terms of socioeconomic status to their own class, while visit
more affluent places occasionally only, that in turn causes upward bias patterns charac-
terising their class. Beyond this general decreasing character, this function indicates large

variance between different cities. For example, in case of San Diego (red line in Fig. 5), this
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Figure 5 Sensitivity of class-level bias z-score 7. Lower bound cutoff is set as b > 1 to which we only take
into account venues visited at least once. For each set of venues in individual trajectory cumulatively visited b
times or higher, we measure class-level bias z-score z¥ and take the median values. Upper bound cutoff

b > 20 is added to accommodate venues visited even more frequently. As b incrementally becomes larger,
the medians are largely dropped closer to 0. It indicates that venues visited more frequently tends to be more

homogeneous in term of mixing and closer to own socioeconomic status
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curve starts from a high z-score value when all visits are consider but decreases rapidly
as repeated visits are taken into account. In case of New York this function starts from a
relatively small z-score values and decrease linearly for larger threshold values. This sug-
gests a different visiting behaviour where people typically visit places more than one time,
but closer to their own socioeconomic class.

We prefer this particular measure over the one on individual bias, as our objective here
is to reveal the source of upward bias, whether it is driven by repeated visits to places with
higher class scores, or due to several occasional visits to places out of one’s socioeconomic
class. The class-level bias z-score serves this purpose as it already incorporates the visiting
frequency distribution of individuals compared to their own class and gives positive z-

score values.

3.4 Mobility mixing and segregated residences

While there is an expected relation between the mobility mixing patterns and residential
segregation in a city, the combined investigation of these phenomena has not received
much attention so far. Their relation is important however for several reasons. For exam-
ple, due to the multitude correlated socioeconomic factors it is likely that e.g. ethnicity,
which strongly correlates with income status in US metropolitan areas, correlates also with
residential segregation, as it has been shown in several studies [4, 45]. On the other hand,
the daily mobility of people and their visiting patterns to different places are constrained
also by these socioeconomic factors, thus they are likely to resemble similar segregation
patterns. To investigate these correlations, we focus on different ethnic groups and the
likelihood of their mixing in cities, which exhibits different level of mobility segregation
patterns.

To quantify the level of segregation in mobility mixing, we analyse the earlier introduced
normalised stratification matrix N;; for each city. As we have discussed, signatures of seg-
regation can be associated to strong diagonal elements in these matrices, indicating that
people of a given SES are the most likely to visit places associated with the same or similar
SES, as compared to random visiting patterns. To quantify the strength of diagonal con-
centration of visiting probabilities, we measure the diagonality index of the normalised
stratification matrices [46], which is similar to the assortativity coefficient used by others

[5, 47]. It is defined as the Pearson correlation coefficient of matrix entries as

r 24 Nij = 2247 iNij 3, /Nij
N = ‘
\/Zi’/ ENij = (25N )2\/2,»,,-1 °Nij — (32;/Nij)?

(6)

Here i € ¢, indicates the socioeconomic class of individuals and j € ¢, is the same for
places. The diagonality index takes values between —1 and 1. In case it is 1, it indicates
perfect assortative mixing corresponding to a fully stratified matrix with non-zero ele-
ments in its diagonals and zero anywhere else. Cities with large r,, values are characterised
by visiting patterns of people who are strictly bounded to places associated to their own
socioeconomic class. On the contrary, if r, takes smaller than zero values (in extremity
r, = —1), it indicates dis-assortative connections between people and places of different
socioeconomic status. This corresponds to mobility mixing patterns where people prefer

to visit places of different SES rather than places from their own class. In case r,, = 0, the
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normalised stratification matrix is flat indicating no choice preferences of people to visit
places with particular SES.

The mixing patterns in a city may not be only determined by the socioeconomic status
of people but also by residential segregation. Residential segregation is strongly correlated
with the ethnicity of people [45, 48, 49], which in turn, according to Wang and others [29],
is an even stronger predictor of mobility mixing than socioeconomic status when it turns
to black, Hispanic, and white poor and non-poor populations. This study find that the
minority groups — despite their socioeconomic status — have lower exposure to richer or
white neighbourhoods, comparing to poor white groups. The fact that they travel across
similar distance and frequency to many places, does not change the persistent pattern of
their isolation and segregation. Therefore, racial segregation emerges from a higher-order
level, not limited to their residential neighbourhood but expanded to their mobility and
potential contact.

To address the effects of residential segregation on mobility mixing, we took a similar
path than others [29, 50] and considered the ethnic group distribution in a city as a proxy.
Residential segregation is indicated by housing clustering tendency of individuals from
the same ethnic group. This can be formally quantified by the so-called distance decay
isolation [51], which measures the probability that a racial group minority interacts with
members of their own group by considering the distance from the racial group minority’s

housing area. This is measured as:

n : n kz
Dpxx* :Z<§_(Z I];C]>r (7)

i=1 j=1

where x; and x; are the population sizes of a minority group in census tracts i and j (respec-

tively), X = D, «; is the total population of the minority group, and ¢; is the total population
-dj;

of census tract j. The distance decay dimension is reflected by k; = ’—_dl_j, where dj; is
sy

the distance between the centroids of census tracts i and j. Hence, higher index suggests

higher probability of interaction with people from the same group, inferring isolation from
the rest of population. In our case, we use a probabilistic individual profiling to identify
the most likely socioeconomic profile of an individual based on the ethnic group with the
highest proportion at the respected census tract where one lives. For instance, if an in-
dividual u lives at census tract i where the racial composition there is 60% white, 15%
Hispanic, 10% black, and 5% Asian, this individual is considered as white. We consider
different thresholds at first and we find out that considering a neighbourhood the ethnicity
if such people consist of at least the 30% of the given tract is the optimum cut-off because
it is the highest threshold with the lowest unidentified census tract ethnicity profiles.
Recalling the above mentioned diagonality index and individual bias, we take the average
of z-score of each of these bias measures at the level of ethnic groups in every urban area
and correlate them with their distance decay isolation value computed for the same ethnic
group in the same city. By considering four ethnic groups (White, Hispanic, Black and
Asian) we receive four data points for each cities as shown in Fig. 6. Although the total
number of analysed individuals are not proportional to the total population of each city,

the in-city fraction of different ethnic groups are similar to the census distributions.
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Figure 6 Segregation and bias measure correlations with isolation scores for different ethnic groups. Panel (a)
depicts the correlation between the diagonality index ry and distance decay isolation Dpyy while panel (b)
show a similar correlation of the average individual bias z-score zf“. In each plot colours of symbols and blobs
indicate ethnic groups of Hispanic (green), White (green), Black (purple) and Asian (red) people. The sizes of
symbols are scaled with the size of these ethnic population identified in the Foursquare dataset in each city.
Blobs with respected colour illustrate the cluster formation based on racial groupings. The shape is arbitrary,
only to demonstrate the visibility of clusters

There is a striking correlation emerging between the diagonality index (quantifying as-
sortativity mobility mixing of each ethnic groups) and the distance decay isolation (mea-
suring the isolation of different ethnic groups) with R = 0.35 (p = 0.0). Notably, almost all
diagonality index measures appear with positive values suggesting assortative mixing for

most ethnic groups, with a few exceptions. Further, the overall correlation suggests the in-
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tuitive picture that the stronger mobility mixing stratification patterns characterises a city
(i-e. larger its corresponding diagonality index), the stronger isolation patterns emerge be-
tween its ethnic groups. In turn, it indicates that residential segregation (and thus physical
proximity) play an important role in determining visiting and mixing patterns of people
in a city. More interestingly, the de-coupled ethnic groups for each city show an emerg-
ing clustering, which assigns the importance of racial differences in mobility segregation.
From Fig. 6(a) it appears that people belonging to the white ethnic group (shown as or-
ange points in Fig. 6(a)) appear to be the most isolated from the rest of the population
(with the largest values of Dp;,,.), while they appear with the strongest assortative mobil-
ity segregation patterns too (with the highest diagonality indices) consistently in several
cities (to lead the eye we coloured this group as an orange blob in Fig. 6(a)). The contrary
is true for the members of the Asian ethnic groups (indicated by red points and blob in
Fig. 6(a)). In most cities they appear as the least isolated and the most dis-assortative (least
stratified) ethnic group, thus mixing well with the rest of the population. In between these
two groups, people from the Hispanic ethnic group (green points and blob) seem to be
more isolated than people from the black ethnic group (purple points and blob) although
they show comparable strength of segregation in mobility mixing, all weaker than white
people.

Needless to say that the grouping patterns shown in Fig. 6(a) indicate overall trends only,
while several exception exists for each ethnic group. For example, the Hispanic ethnic
group of Charlotte appears with the strongest assortative pattern, although this group is
not strongly isolated from the rest of the population. Or the black community of Austin
appears with the lowest diagonality index, suggesting a strong dis-assortative mixing of
these people with the rest of the population, while they also appear as one of the least
isolated among any other communities.

A similar positive correlation appears in Fig. 6(b) with R = 0.25 (p = 0.04) between the
average individual bias z-score and distance decay isolation values over all the investigated
ethnic groups and cities. Moreover, ethnic groups show certain clustering trends, which
suggest ethnic trends in terms of visiting bias patterns. Interestingly, white ethnic groups
(shown by orange points and blob), who we have already found the most isolated, show the
strongest upward bias to visit more affluent places then their own socioeconomic class. As
high SES classes are populated mostly by white people, this pattern derives from our earlier
observations in Fig. 3, where we find upward bias to increase with the SES of people. Their
high isolation score can be explained by their upward bias towards higher socioeconomic
places, which are most likely to be visited by other white people. Meanwhile, it may also
indicate that our data have an over-represented white population, as we find upward biases
in all of the cities. Strikingly, other racial groups indicate negative visiting biases and lover
level of isolation. This effect is the strongest for people from black racial groups all over
the country, but also characterises Hispanic and Asian communities although they show
more unbiased patterns, with average individual z-score values closer to O.

Exceptions are again interesting. The Hispanic community of Washington appears as
the most upward biased ethnic group, while the black ethnic group of Seattle sits on the
other end of the spectrum and being the most downward biased minority among the anal-
ysed cities. Both of these communities appear with low level of isolation. Consequently,

similar to the conclusion of Wang et al. [29], we observe that beyond socioeconomic sta-
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tus, ethnicity (strongly correlated with residential segregation) is another very important
factor determining mixing patterns of people.

4 Discussion and conclusions

Mobility patterns are strongly determined not only by the fabric of a city but also by the
socioeconomic structure of the population living there. This leads to biased mixing and
segregation in mobility, which can be observed as stratification patterns in choices to visit
places. We have addressed this complex phenomenon via a mobility analysis of people liv-
ing in the 20 largest cities in the US, and aimed to quantify segregation patterns in mobility
capturing their visit patterns to places of interest. We systematically found upward-biased
mobility in all cities, with some variance across metropolitan areas. In one extreme, peo-
ple living in New York do not exhibit dramatic stratification in their visit patterns but visit
places in all kinds of locations, rich or poor, independently of their own socioeconomic
status. Meanwhile, in Houston and San Diego people are more stratified and visit places
of their own socioeconomic class, and show an upward bias towards richer places to visit.
We found that this upward bias, which characterises most cities analysed, is usually in-
duced by single visits of individuals to affluent places, while most visits correspond to
their own socioeconomic class. We also revealed distinct patterns of individual mobility
in terms of stratified correlations between the bias magnitude and residential segrega-
tion based on spatial distribution of racial groups in urban areas. Visual representations
of ethnic clusters indicate overall trends of behaviour characterising most studied cities,
where segregated mobility is bounded together with residential segregation and broadly
contributes to the portrayal of inequality.

It should be taken into account that data for a given socioeconomic class in the popula-
tion might not be comparable across cities due to sampling in the data collection process.
Particularly, Foursquare data over-represents wealthy classes when compared to the un-
derlying population. To understand better the fluctuations of the distribution of SES due
to the representativeness of the used dataset, we designed a bootstrapping method (see
Additional file 1, Section A). Bootstrapping results suggest that the SES distribution of
Foursquare users is sufficiently similar to the SES distribution of the real population.

Multiple sources of data containing digital traces of human movements with higher res-
olution, such as mobile phone call records and GPS trajectories, may improve the robust-
ness of findings presented in this paper. Methodological improvements to infer individual
attributes (like racial group membership) provide a direction of future research. More-
over, algorithms for probabilistic individual profiling could be developed by using ma-
chine learning techniques such as Random Forests and Support Vector Machines in the
presence of ground truth information from alternative data sources.

One potential confounding factor of the emergent stratification patterns reported here
is distance, as people visit places closer to their home more frequently, thus inducing simi-
lar correlation motifs. To check the robustness of our methods in investigating segregation
in mobility and biased visiting patterns and the magnitude of such distance effect, we re-
computed our results on out-of-class data after excluding own census tract visits for each
individual’s trajectory. Even with this constraint, SES plays a considerable role in shaping
mobility (comparative observations for all cities can be found in Additional file 1, Section
B and D, along with Additional file 1, Section F Fig. 15 in the case of Houston, New York,
and San Diego, in contrast to Fig. 2 above). On the ground of visiting biases, there are
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some variations among cities regarding individual bias. The earlier notion of upward vis-
iting bias is also very much present in the case of out-of-class measurements since z-score
values are all positive above the red median unbiased line (complete plots are available in
Additional file 1, Section C and E, while a deeper exploration for Houston, New York, and
San Diego is available in Additional file 1, Section F Fig. 16 and Fig. 17). Therefore, there
are no conflicting results from our methodology even after controlling for this confound-
ing factor. Enforcing out-of-class treatment is reasonable in this context because our study
aims to analyse and quantify mixing patterns and not yet look for causal links or underly-
ing reasons of their emergence.

Segregation is not an exclusive phenomenon to the quasi-static configuration of hous-
ing settlement, but also exists in more dynamic settings such as mobility. Questions about
the conceptual relations between segregated mobility and segregated residence stand still
in the literature, yet relatively untapped, while scientific investigations should follow this
line of inquiry. We take a step forward through empirical data-driven analysis and yield an
interaction effect between both types of segregation. Individual attributes (such as racial
groups) partly explain the emergence of distinct clusters, beyond income levels. Our find-
ings also highlight the notion that inequality is multidimensional in nature. A compre-
hensive policy design to address this issue should entail the wider possibility of individual
movement across the urban landscape to accommodate larger socioeconomic heterophily

and further interaction between socioeconomic classes.
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